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Abstract

A prototype of zero-sum theorems, the well-known theorem of Erdős, Ginzburg and Ziv says that for any positive integer n, any11
sequence a1, a2, . . . , a2n−1 of 2n−1 integers has a subsequence of n elements whose sum is 0 modulo n.Appropriate generalizations
of the question, especially that for (Z/pZ)d , generated a lot of research and still have challenging open questions. Here we propose13
a new generalization of the Erdős–Ginzburg–Ziv theorem and prove it in some basic cases.
© 2005 Published by Elsevier B.V.15
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1. Introduction17

The famous Erdős–Ginzburg–Ziv theorem [5] states that, given any sequence of 2n−1 integers, there are n of them
that add up to a multiple of n. Furthermore, a sequence of 2n−2 integers does not always enjoy this property (consider19
for example the sequence of n − 1 zeros and n − 1 ones). Therefore we have that, if E(n) is the least integer t such that
any sequence of t integers contains n integers that add up to a multiple of n, then21

E(n) = 2n − 1.

A number of different proofs of this result are presented in the book [1].23
Various generalizations and variations of the above property have been considered in the past (see for example [6,2]).

Here we consider a different one that (at least to our knowledge) is new.25
If n is a positive integer, we will identify Z/nZ with the set of the integers {0, . . . , n − 1}.
Let n ∈ N and assume A ⊆ Z/nZ. We consider the function EA(n) defined as the least t ∈ N such that for all27

sequences (x1, . . . , xt ) ∈ Zt there exist indices j1, . . . , jn ∈ N, 1�j1 < · · · < jn � t , and (ϑ1, . . . ,ϑn) ∈ An with
n∑

i=1

ϑixji
≡ 0 (mod n).

29
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To avoid trivial cases, we will always assume that A does not contain 0 and it is non-empty. It is clear thatE{1}(n)=E(n)1
and that

EA(n)�E(n) = 2n − 1.3

Further, if we consider the sequence with n − 1 zeros and one 1, we deduce that

EA(n)�n + 1.5

We propose the problem of enumerating EA(n). Here we consider the case A = {1, n − 1} = {1, −1} . We denote
EA = E± in this case, which is perhaps the most basic one aside from the classical Erdős, Ginzburg, Ziv problem.7

It is easy to see that

E±(n)�n + �log n�, (1.1)9

where here and throughout the paper log will mean the base 2 logarithm. Indeed, consider the sequence of integers:

(

n−1 times︷ ︸︸ ︷
0, 0, . . . , 0, 1, 2, . . . , 2r ),11

where r is defined by 2r+1 �n < 2r+2. Any combination with signs of n integers of the sequence gives rise to a number
whose absolute value is �2r+1−1 and is not zero by the uniqueness of the binary expansion. Furthermore, the sequence13
has n + r = n + �log n� − 1 elements.

We will prove that15

Theorem 1.1. For any positive integer n, we have

E±(n) = n + �log n�.17

We will illustrate a number of different approaches to the problem. Whereas the approach of Section 2 leads to the
solution in the even case in Theorem 2.2, the approach in Sections 4 and 5 will lead to that in the odd case in Theorem19
5.1. In Section 3, we give a number of results for odd prime modulus, which imply Theorem 1.1 in this particular
case. Although not really needed due to the other results presented, this argument, which uses the Cauchy–Davenport21
inequality, seems to us of independent interest.

In the concluding Section 6 we make a few remarks about the problem for other sets A.23

2. A conditional result and the even case

It turns out to be easier to deal with sequences where one or more of the elements is in the zero class. We have25

Theorem 2.1. Let n ∈ N. Assume that N �n + �log n� is an integer. Given any sequence (x1, . . . , xN) ∈ ZN with at
least one multiple of n, there exist m = N − �log n� indices {j1, . . . , jm} ⊆ [N ] and signs ε1, . . . , εm ∈ {1, −1} such27
that

ε1xj1 + · · · + εmxjm ≡ 0 (mod n).29

Here, and throughout the paper, [N ] will denote the set {1, . . . , N}.
We will make use more than once of the following:31

Lemma 2.1. Let n ∈ N and (y1, . . . , ys) be a sequence of integers with s > log n. Then there exists a non-empty
J ⊆ [s] and εj ∈ {±1} for each j ∈ J such that33 ∑

j∈J

εj yj ≡ 0 (mod n).
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Proof of Lemma 2.1. This is an application of the pigeonhole principle. Consider the sequence of 2s > n integers1 ⎛
⎝∑

j∈I

yj

⎞
⎠

I⊆[s]
that cannot contain distinct integers modulo n. Therefore, there are J1, J2 ⊆ [s] with J1 �= J2 such that3 ∑

j∈J1

yj ≡
∑
j∈J2

yj (mod n).

Set J = J1 ∪ J2\J1 ∩ J2 and5 {
εj = 1 if j ∈ J1,

εj = −1 if j ∈ J2.

It is clear that J is non-empty and it has the required property. �7

Proof of Theorem 2.1. Let us reorder the sequence in such a way that, modulo n,

x1 = 0, x2 = x3, x4 = x5, . . . , x2t = x2t+19

and x2t+2, . . . , xN are all distinct. Hence N − 2t − 1�n and 2t + 1�N − n��log n�.
Let B ={r1, . . . , rl} ⊆ {2t +2, 2t +3, . . . , N} be maximal with respect to the properties that there exist ε1, . . . , εl ∈11

{−1, 1} with

l∑
j=1

εj xrj ≡ 0 (mod n).
13

Now we claim that l + 2t + 1�m. Indeed, if this were not the case then the set

C = {2t + 2, . . . , N}\{r1, . . . , rl}15

would contain N − 2t − 1 − l > �log n� elements. Hence by Lemma 2.1 there would exist a non-empty B ′ ⊆ C and
εj ∈ {±1} for each j ∈ B ′ such that17 ∑

j∈B ′
εj xj ≡ 0 (mod n).

So we would find that B ∪ B ′ still verifies the property above and we would contradict the maximality of B.19
Hence we write l + 2t + 1 = m + r and distinguish the two cases:
If r = 2r ′ is even then we choose the sequence21

(x1, x2(r ′+1), x2r ′+3, . . . , x2t , x2t+1, xr1 , . . . , xrl )

which has m elements and23

x1 +
t∑

j=r ′+1

(x2j − x2j+1) +
l∑

j=1

εj xrj ≡ 0 (mod n).

If r = 2r ′ + 1 is odd then we leave out x1 and consider the sequence25

(x2(r ′+1), x2r ′+3, . . . , x2t , x2t+1, xr1 , . . . , xrl )

which has m elements and also verifies the thesis. �27

When the modulus n is even it turns out to be possible to modify the above ideas so as to obtain this case of Theorem
1.1 without any hypothesis. For this we shall use the following:29
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Lemma 2.2. Let n ∈ N and (y1, . . . , ys) be a sequence of integers with s > log n + 1. Then there exists a non-empty1
J ⊆ [s] with |J | even and εj ∈ {±1} for each j ∈ J such that∑

j∈J

εj yj ≡ 0 (mod n).
3

Proof. Just as in the proof of Lemma 2.1 above, we apply pigeonhole on the 2s−1 > n integers⎛
⎝∑

j∈I

yj

⎞
⎠

I⊆[s]
|I |even

. �
5

The following theorem takes care of the case ‘n is even’ in Theorem 1.1.

Theorem 2.2. Let n ∈ N be even. Consider the integer N =n+�log n�. Then, given any sequence (x1, . . . , xN) ∈ ZN ,7
there exist n indices {j1, . . . , jn} ⊆ [N ] and signs ε1, . . . , εn ∈ {1, −1} such that

ε1xj1 + · · · + εnxjn ≡ 0 (mod n).9

Proof. Let us reorder the sequence in such a way that, modulo n,

x1 = x2, x3 = x4, . . . , x2t−1 = x2t11

and x2t+1, . . . , xN are all distinct. Hence N − 2t �n and 2t �N − n = �log n�. Let B = {r1, . . . , rl} ⊆ {2t + 1, 2t +
2, . . . , N}, with l = |B| even, be maximal with respect to the properties that there exist ε1, . . . , εl ∈ {−1, 1} with13

l∑
j=1

εj xrj ≡ 0 (mod n).

Now we claim that l + 2t �n. Indeed, if this were not the case then we have l + 2t �n − 2 since the numbers l + 2t15
and n are both even, and the set

C = {2t + 1, . . . , N}\{r1, . . . , rl}17

would contain N − 2t − l��log n� + 2 > log n + 1 elements. Hence by Lemma 2.2 there would exist a non-empty
B ′ ⊆ C with |B ′| even and εj ∈ {±1} for each j ∈ B ′ such that19 ∑

j∈B ′
εj xj ≡ 0 (mod n).

So we would find that B ∪ B ′ still verifies the property above and we would contradict the maximality of B.21
Since both l and n are even, from l + 2t = n + r , we see that r is even. If r = 2r ′ then we choose the sequence

(x2r ′+1, x2r ′+2, . . . , x2t , xr1 , . . . , xrl )23

which has n elements and

t∑
j=r ′+1

(x2j − x2j−1) +
l∑

j=1

εj xrj ≡ 0 (mod n). �
25

3. The case n = p with p an odd prime and the Cauchy–Davenport inequality

We will state and prove a couple of results that have their own interest.27
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Lemma 3.1. Let p be an odd prime. If N �p − 1 is an integer and (x1, . . . , xN) ∈ ZN is any sequence of integers not1
divisible by p, then for every b ∈ Z there exist signs ε1, . . . , εN ∈ {1, −1} such that

ε1x1 + · · · + εNxN ≡ b (mod p).3

The above is a direct consequence of the famous:

Lemma 3.2 (Cauchy–Davenport inequality). Let A and B be two non-empty subsets of Z/pZ. Then5

|A + B|� min{p, |A| + |B| − 1},
where7

A + B = {x ∈ Z/pZ | x ≡ a + b (mod p), a ∈ A, b ∈ B}
and |K| denotes the cardinality of the subset K of Z/pZ.9

This was first proved by Cauchy [3] in 1813 and later rediscovered by Davenport [4] in 1947. By iterating the
Cauchy–Davenport inequality we immediately obtain:11

Lemma 3.3. Let A1, A2, . . . , Ah be non-empty subsets of Z/pZ. Then

|A1 + A2 + · · · + Ah|� min

{
p,

h∑
i=1

|Ai | − h + 1

}
.

13

By choosing Ai = {xi, −xi}, we deduce that

|{x1, −x1} + {x2, −x2} + · · · + {xN, −xN }|�p15

which immediately implies Lemma 3.1.
The statements of Lemma 3.1 and Theorem 2.1 imply the result of Theorem 1.1 when the modulus p is an odd prime17

since the first statement deals with the case when none of the elements of the sequence are 0 modulo p and the second
statement deals with the case when the sequence contains an element which is 0 modulo p.19

4. Complete sequences of integers

We are not aware whether the notion in the following definition has already appeared in the literature. However, it21
appears natural in this context.

Definition. Let x = (x1, . . . , xN) ∈ ZN . We say the sequence x is complete with respect to a positive integer m if for23
every positive d |m we have

|{j ∈ [N ] | xj /≡ 0 (mod d)}|�d − 1. (4.1)25

A complete sequence of integers with respect to a prime p is a sequence that contains p − 1 elements which are not
divisible by p.27

Let us collect some properties of complete sequences:

Lemma 4.1. If (x1, . . . , xN) ∈ ZN is complete with respect to m and N �m then there is j0 ∈ N, 1�j0 �N , such29
that

(x1, . . . , xj0−1, xj0+1, . . . , xN) ∈ ZN−131

is complete with respect to m.
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Proof. Let d1, d2, . . . , ds be the divisors d of m that satisfy1

|{j ∈ [N ] | xj /≡ 0 (mod d)}| = d − 1.

Assume also that m�d1 > d2 > · · · > ds , set Dk = lcm[d1, . . . , dk] and3

Uk = {j ∈ [N ] | xj /≡ 0 (mod dk)}.
Our goal is to show that5

|U1 ∪ · · · ∪ Us | < m

so that we can choose j0 ∈ [N ]\U1 ∪ · · · ∪ Us and the sequence (x1, . . . , xj0−1, xj0+1, . . . , xN) will still verify the7
hypothesis of completeness.

Note that9

U1 ∪ · · · ∪ Uk = {j ∈ [N ] | xj /≡ 0 (mod Dk)}
and that U1 ∪ · · · ∪ Uk = U1 ∪ · · · ∪ Uk−1 if Dk = Dk−1. Thus,11

U1 ∪ · · · ∪ Us = U1 ∪
⋃

Dk>Dk−1

Uk .

Now, for those k participating in this formula we have Dk > Dk−1 and so Dk = [Dk−1, dk]�2Dk−1. This implies, for13
these k > 1, that

Dk − Dk−1 �Dk−1 �dk−1 > dk − 1,15

while D1 > d1 − 1. We deduce that

|U1 ∪ · · · ∪ Us |� |U1| +
∑

Dk>Dk−1

|Uk|

= d1 − 1 +
∑

Dk>Dk−1

(dk − 1)

< D1 +
s∑

k=2

(Dk − Dk−1)

= Ds �m.17

This completes the proof. �

Lemma 4.2. If (x1, . . . , xN) ∈ ZN is complete with respect to m then there exist indices {j1, . . . , jm−1} ⊆ [N ] such19
that the sequence (xj1 , . . . , xjm−1) ∈ Zm−1 is complete with respect to m.

Proof. From the definition of complete sequence in (4.1) we deduce that N �m − 1. By applying Lemma 4.1 several21
times we can eliminate elements from the sequence until we arrive at exactly m − 1 elements. �

Theorem 4.1. If (x1, . . . , xN) ∈ ZN is complete with respect to m, then for every integer b there is a choice of23
coefficients �1, . . . , �N ∈ {0, 1} such that

N∑
j=1

�j xj ≡ b (mod m).
25

Proof. We prove the theorem by induction on m. The case m = 1 is clear. Now we assume that k�2 and the theorem
is true for m < k. Suppose that the sequence x1, x2, . . . , xN of N integers is complete with respect to k. Without loss27
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of generality, we may assume that k�x1. For any integer a, let a be the residue class of a mod k. For any set A of1
integers, let

A = {a | a ∈ A}.3

Let A1 = {0, x1} and i1 = 1. Then |A1| = 2. Now, if possible, we choose an index i2 �= i1 such that

A1 + {0, xi2} �= A1.5

If such an i2 exists, then let A2 = A1 + {0, xi2}. We continue this procedure and suppose that the procedure stops at
At . Noting that7

A1 ⊂ A2 ⊂ · · · ⊂ At ,

we have9

|At |� |At−1| + 1� · · · � t + 1. (4.2)

To complete the proof, it is enough to prove that |At |�k. By (4.2), we may assume that t �k − 2. Without loss of11
generality, we may assume that ij = j (j = 1, 2, . . . , t).

Since13

|{j | xj �= 0 (mod k)}|�k − 1,

we have N �k − 1. Also, rearranging the remaining elements if necessary, we can assume that k�xt+1.15
By the assumption on At , for all t + 1�j �N , we have

At + {0, xj } = At . (4.3)17

Let H be the subgroup of Zk generated by xt+1. By (4.3), we have

At + H = At .19

Thus, At is the union of some cosets of H. Let

At =
s⋃

i=1

(bi + H), (4.4)
21

where bi − bj /∈ H for all i �= j . Then |At | = s|H |. Let k1 = (xt+1, k). Then, since k�xt+1 we have k1 < k and the
sequence x1, x2, . . . , xN is complete with respect to the positive integer k1. By the induction hypothesis, we see that,23
for every integer b, there is a choice of coefficients �1, . . . , �N ∈ {0, 1} such that

N∑
j=1

�j xj ≡ b (mod k1). (4.5)
25

By (4.3) we have⎧⎨
⎩

N∑
j=1

�j xj (mod k) | �i = 0, 1, i = 1, 2, . . . , N

⎫⎬
⎭ = At .

27

Thus, by k1|k, k1|xt+1 and (4.4), we have⎧⎨
⎩

N∑
j=1

�j xj (mod k1) | �i = 0, 1

⎫⎬
⎭ = {b1 (mod k1), . . . , bs (mod k1)}.

29

Hence, by (4.5) we have s�k1. Noting that

|H |xt+1 ≡ 0 (mod k),31
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it follows that1

|H | ≡ 0

(
mod

k

k1

)
.

Since |H |�1 we have |H |�k/k1. Therefore,3

|At | = s|H |�k.

This completes the proof. �5

The above theorem deals with linear combinations of the xj having coefficients 0 and 1 whereas we are really
interested in combinations with coefficients ±1. The following result allows us to move from one to the other, but only7
in the case where the modulus is odd.

Corollary 4.1. If m is odd and (x1, . . . , xN) is complete with respect to m, then for every integer b ∈ Z there is a9
choice of coefficients ε1, . . . , εN ∈ {±1} such that

N∑
j=1

εj xj ≡ b (mod m).
11

Proof. Given any integer b ∈ Z, Theorem 4.1 implies that there exist �1, . . . , �N ∈ {0, 1} such that

b

2
+ x1 + · · · + xN

2
≡

N∑
j=1

�j xj (mod m),
13

which is meaningful since m is odd. Consider the identity

�1x1 + · · · + �NxN = x1 + · · · + xN

2
+ 1

2

N∑
j=1

(2�j − 1)xj .
15

Since εj = 2�j − 1 ∈ {±1}, we obtain the claim. �

5. Proof of Theorem 1.1 in the case ‘n is odd’17

The result in the ‘n is odd’ case is a direct consequence of (1.1) and the following statement:

Theorem 5.1. Assume that m ∈ N is odd. If N �m + �log m� and x = (x1, . . . , xN) ∈ ZN , then there exists I0 =19
{j1, . . . , jt } ⊆ [N ] with |I0| = t = N − �log m� and some choice of coefficients ε1, . . . , εt ∈ {±1}, so that

t∑
i=1

εixji
≡ 0 (mod m).

21

Proof. If x is complete with respect to m, then, by Lemma 4.2, there are m − 1 indices j1, . . . , jm−1 ∈ [N ] such that
(xj1 , . . . , xjm−1) is still complete with respect to m.23

Choose arbitrarily indices jm, . . . , jt ∈ [N ]\{j1, . . . , jm−1}. Then (xj1 , . . . , xjt ) is also complete with respect to m,
and the assertion follows from Corollary 4.1.25

Next suppose that x is not complete with respect to m. Then there exists a divisor d of m such that

|{j ∈ [N ] : xj /≡ 0 (mod d)}| < d − 1.27

Let D be the maximal divisor of m possessing this property. We claim that if f |m is such that D |f then

|{j ∈ [N ] | xj ≡ 0 (mod D), xj /≡ 0 (mod f )}|� f

D
− 1. (5.1)29
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Indeed, the claim is trivial if f = D. If f > D and (5.1) does not hold then1

|{j ∈ [N ] | xj /≡ 0 (mod f )}| = |{j ∈ [N ] | xj /≡ 0 (mod D)}| + |{j ∈ [N ] | xj

≡ 0 (mod D), xj /≡ 0 (mod f )}|
< D + f/D − 2�f − 1.

This would contradict the maximality of D.3
Denote

I1 = {j ∈ [N ] | xj /≡ 0 (mod D)},
I2 = {j ∈ [N ] | xj ≡ 0 (mod D)}.5

Let I3 be a maximal subset of I1 such that for some choice of coefficients ε′
j ∈ {±1}, j ∈ I3, we have∑

j∈I3

ε′
j xj ≡ 0 (mod D).

7

By Lemma 2.1 we know that

|I1| − |I3|��log D�. (5.2)9

Let k = t − |I3|. By (5.2) we have

k�N − |I1| = |I2|.11

On the other hand,

k�m − |I3|�m − |I1| > m − D + 1�m/D.13

Therefore,

|I2|�k� m

D
. (5.3)15

Now set

x̃ =
(xj

D

)
j∈I2

.17

By (5.1), x̃ is complete with respect to m/D.
Lemma 4.2 implies that there exists I ′ = {j1, . . . , jm/D−1} ⊆ I2, such that19 (xj

D

)
j∈I ′ =

(
xj1

D
, . . . ,

xjm/D−1

D

)
is complete with respect to m/D.21

By (5.3), we can choose a set I ′
1 such that I ′ ⊆ I ′

1 ⊆ I2 and |I ′
1| = k. Clearly(xj

D

)
j∈I ′

1
23

is also complete with respect to m/D.
Therefore, Corollary 4.1 implies that we can choose coefficients ε′′

j ∈ {±1}, j ∈ I ′
1, such that25

∑
j∈I ′

1

ε′′
j

xj

D
≡ − 1

D

∑
j∈I3

ε′
j xj

(
mod

m

D

)
.

To complete the proof of Theorem 5.1, it suffices to set27

I0 = I3 ∪ I ′
1
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and choose1

εj =
{

ε′′
j if j ∈ I ′

1,

ε′
j if j ∈ I3,

and this concludes the proof. �3

6. Concluding remarks

An interesting choice for the set A is that of A = (Z/nZ)∗, namely, A = {a : (a, n) = 1}. It is easy to see that5
EA(n)�n + �(n) where as usual �(n) denotes the number of prime factors of n, multiplicity included. Indeed, write
n = p1, . . . , ps as product of s = �(n) not necessarily distinct primes. Consider the sequence consisting of n − 17
zeros and {1, p1, p1p2, . . . , p1p2 · · · ps−1}, giving the lower bound. Perhaps, one can show that equality holds so that
EA(n) = n + �(n).9

An easier case is A = (Z/nZ)\{0} . As mentioned in the introduction, we always have EA(n)�n + 1 and, for this
particular choice of A (the maximal A, since we always exclude 0), this lower bound is achieved.11

Theorem 6.1. Let A = (Z/nZ)\{0}. Then EA(n) = n + 1.

Proof. We can assume that n > 2. We have the following observations.13
Fact 1: If r �2 and (xj , n) = 1 for j = 1, . . . , r then there are coefficients ϑj ∈ A such that

r∑
j=1

ϑj xj ≡ 0 (mod n).
15

Indeed, without loss of generality, we can consider xj = 1 for j = 1, . . . , r . If r is even we take ϑj = (−1)j , otherwise
we replace ϑ2 by 2.17

Fact 2: If (xj , n) > 1 then there is ϑj ∈ A such that

ϑj xj ≡ 0 (mod n).19

Let (x1, . . . , xt ) ∈ Zt where t �n+1. By re-ordering we can assume that (xj , n)=1 for j =1, . . . , r and (xj , n) > 1
for j > r . If r �2, we take ij =j for j =1, . . . , n and use Facts 1 and 2 while if r �1, we take ij =r +j for j =1, . . . , n21
and use Fact 2. �

It might be interesting to characterize any other sets A for which EA(n)=n+1 or even those for which EA(n)=n+j23
for specific small values of j.
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