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Abstract

This note is a continuation of a paper by the same authors that appeared in 2002 in the same
journal. First we extend the method of the previous paper proving an asymptotic formula for
the number of permutations for which the associated permutation polynomial has d coefficients
in specified fixed positions equal to 0. This also applies to the function Nq,d that counts the
number of permutations for which the associated permutation polynomial has degree < q−d−1.
Next we adopt a more precise approach to show that the asymptotic formula Nq,d ∼ q!/qd

holds for d ��q and � = 0.03983.
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1. Introduction

Let Fq be a finite field with q > 2 elements. For any permutation � of the elements
of Fq the permutation polynomial

f�(x) =
∑
c∈Fq

�(c)
(

1 − (x − c)q−1
)

∈ Fq [x] (1)

has the property that f�(a) = �(a) for every a ∈ Fq . From the definition, it follows
that for every �, the degree �(f�)�q − 2.

In [2] the authors proved that if S(Fq) denotes the group of permutations on Fq ,
then

∣∣# {� ∈ S(Fq) |�(f�) < q − 2
}− (q − 1)!∣∣ �

√
2e

�
qq.

A similar result has also been proved by Das [1].
Here we consider a more general function. Fix d integers k1, k2, . . . , kd with the

property that 0 < k1 < · · · < kd < q − 1 and define

Nq(k1, . . . , kd) = #
{
� ∈ S(Fq) | ∀i = 1, . . . , d, the ki-th coefficient of f� is 0

}
,

where by k-th coefficient of a polynomial f we mean its coefficient of xk .
We will extend the method of [2] proving the following:

Theorem 1.

∣∣∣∣Nq(k1, . . . , kd) − q!
qd

∣∣∣∣ <

(
1 +

√
1

e

)q

((q − k1 − 1)q)q/2.

The above result also applies to

Nq,d = #
{
� ∈ S(Fq) | �(f�) < q − d − 1

}
since

Nq,d = Nq(q − d − 1, . . . , q − 3, q − 2).

We also have

Corollary 1. If d � q
log q

(
1
2 log log q − log log log q

)
, then Nq,d ∼ q!/qd (q → ∞).
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In the case when d is larger with respect to q, the above statement for Nq,d can be
improved. In Section 3 we will prove:

Theorem 2. Suppose � = (e − 2)/3e = 0.08808 · · ·, and d < �q. Then

∣∣∣∣Nq,d − q!
qd

∣∣∣∣ < 2ddq2+q−d
(q

d

)( 2d

q − d

)(q−d)/2

.

Therefore we have

Corollary 2. The asymptotic formula Nq,d ∼ q!/qd holds for q → ∞, d ��0q and
�0 = 0.03983 is a suitable constant.

2. The method of [2]—Proof of Theorem 1

The coefficient of xi in f�(x) in (1) equals

(−1)q−i

(
q − 1

i

)∑
c∈Fq

cq−i−1�(c)

for i > 0. Observe that
(

q−1
i

)
= (−1)i for i = 1, . . . , q −1 (the equality is considered

in Fq ; see [3, Exercise 7.1]).
Hence the jth coefficient of f�(x) is 0 if and only if

∑
c∈Fq

cq−j−1�(c) = 0.

We will follow the proof in [2] that uses exponential sums defining auxiliary functions
for each S ⊆ Fq :

nS(k1, . . . , kd) = #

⎧⎨
⎩f

∣∣∣∣∣∣ f : Fq −→ S and
∑
c∈Fq

cq−ki−1f (c) = 0, for i=1, . . . , d

⎫⎬
⎭ .

By inclusion–exclusion, it is easy to check that

Nq(k1, . . . , kd) =
∑
S⊆Fq

(−1)q−|S|nS(k1, . . . , kd). (2)
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Now we need to evaluate nS(k1, . . . , kd). If ep(u) = e
2�iu

p and Tr(�) ∈ Fp denotes the
trace of � ∈ Fq , then

nS(k1, . . . , kd) = 1

qd

∑
(a1,...,ad )∈Fd

q

∑
f :Fq−→S

ep

⎛
⎝∑

c∈Fq

Tr

(
f (c)

d∑
i=1

aic
q−ki−1

)⎞
⎠

= 1

qd

∑
(a1,...,ad )∈Fd

q

∏
c∈Fq

∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))

= |S|q
qd

+ RS, (3)

where

|RS |� qd − 1

qd
max

(a1,...,ad )∈Fd
q\{0}

∏
c∈Fq

∣∣∣∣∣
∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))∣∣∣∣∣ .

Furthermore, since the geometric mean is always bounded by the arithmetic mean,

∏
c∈Fq

∣∣∣∣∣
∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))∣∣∣∣∣

�

⎛
⎝ 1

q

∑
c∈Fq

∣∣∣∣∣
∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))∣∣∣∣∣
2⎞⎠

q/2

�

⎛
⎝ 1

q

∑
u∈Fq

(q − k1 − 1)

∣∣∣∣∣
∑
t∈S

ep(Tr(tu))

∣∣∣∣∣
2
⎞
⎠

q/2

.

By the identity

∑
u∈Fq

∣∣∣∣∣
∑
t∈S

ep(Tr(tu))

∣∣∣∣∣
2

= q|S| (4)

we get

∏
c∈Fq

∣∣∣∣∣
∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))∣∣∣∣∣ �((q − k1 − 1)|S|)q/2.
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Using inclusion–exclusion for counting the mappings Fq → Fq we see that

∑
S⊆Fq

(−1)q−|S||S|q = q!. (5)

Now let us plug the estimate for |RS | in Eq. (3) and then in Eq. (2). By (5) we
obtain

∣∣∣∣Nq(k1, . . . , kd) − q!
qd

∣∣∣∣ =
∣∣∣∣∣∣Nq(k1, . . . , kd) −

∑
S⊆Fq

(−1)q−|S|

qd
|S|q

∣∣∣∣∣∣
� qd − 1

qd

∑
S⊆Fq

((q − k1 − 1)|S|)q/2.

Next, using the inequality

1 + x�ex (6)

we get

∣∣∣∣Nq(k1, . . . , kd) − q!
qd

∣∣∣∣ < (q − k1 − 1)q/2
q∑

u=0

uq/2
(q

u

)

� (q − k1 − 1)q/2
q∑

u=0

(q

u

)(
q exp

(
−q − u

q

))q/2

= ((q − k1 − 1)q)q/2
q∑

u=0

(q

u

)(√1

e

)q−u

= ((q − k1 − 1)q)q/2

(
1 +

√
1

e

)q

.

This completes the proof. �

Proof of Corollary 1. From Theorem 1 since Nq,d = Nq(q − d − 1, q − d, . . . , q − 2),
we have

∣∣∣∣Nq,d − q!
qd

∣∣∣∣ < 2q(dq)q/2.
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By the Stirling formula

lim
q→∞

q!(q

e

)q √
2�q

= 1, (7)

we obtain that the error term is dominated by the main term if

(dq)q/2 2q = o

(
1

qd

(q

e

)q √
q

)
(q → ∞).

The above is satisfied if

d

q
= o

(
1

q2d/q

)
(q → ∞). (8)

Replace d = u · q
log log q

log q
and obtain that (8) holds for

u� 1

2
− log log log q

log log q

and q large enough. �

3. Proof of Theorem 2

The key ingredient is to use the special properties of Nq,d to estimate (3) more
accurately.

Assume that d is a positive integer and d < q. Let Fq(d) denote the vector space
of polynomials with degree up to d with constant term equal to 0.

If P(x) ∈ Fq(d), then define

�(P ) = min
T ⊂Fq ,|T |=d

|P(T )|.

In view of identity (5) and from (2) and (3) we can write:

Nq,d − q!
qd

= Nq,d −
∑
S⊆Fq

(−1)q−|S||S|q
qd

= 1

qd

∑
S⊆Fq

(−1)q−|S| ∑
P∈Fq (d)\{0}

∏
c∈Fq

∑
t∈S

ep(Tr(tP (c)))
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= 1

qd

∑
S⊆Fq

(−1)q−|S| ∑
��d

∑
P∈Fq (d)\{0}

�(P )=�

∏
c∈Fq

∑
t∈S

ep(Tr(tP (c))). (9)

In order to estimate the above we will need some lemmas.

Lemma 1. Given an integer � ∈ N, let H� be the set of polynomials P ∈ Fq(d) such
that �(P ) = �. Then

|H�|��d

(
q

�

)(q

d

)
.

Proof. Let us fix one of the
(

q
d

)
subsets of Fq with d elements and denote it with T.

It is sufficient to show that the number of polynomials P ∈ Fq(d) with |P(T )| = � is

at most �d
(

q
�

)
.

There are
(

q
�

)
choices for the set U = P(T ). Take an arbitrary a ∈ Fq \ T and

observe that the polynomials of degree �d correspond to functions T ∪ {a} → Fq .
Therefore, the number of polynomials P of degree �d such that P(T ) ⊂ U is equal
to q�d and the number of polynomials P of degree �d such that |P(T )| = � is at

most q�d
(

q
�

)
.

Finally, observe that |P(T )| does not change if we add a constant to any polynomial

P. Thus the number of polynomials P ∈ Fq(d) such that |P(T )| = � is at most �d
(

q
�

)
as required. �

Lemma 2. Assume that d �q/3 and S ⊆ Fq . If P ∈ Fq(d) is such that �(P )���2,
then

∣∣∣∣∣∣
∏
c∈Fq

∑
t∈S

ep(Tr(tP (c)))

∣∣∣∣∣∣ �
(q

2

)(q+d)/2
(

d

� − 1

q

q − d

)(q−d)/2

while if �(P ) = 1, P �= 0, then

∣∣∣∣∣∣
∏
c∈Fq

∑
t∈S

ep(Tr(tP (c)))

∣∣∣∣∣∣ �
(q

2

)(q+d)/2
(

dq

q − d

)(q−d)/2

Proof. Assume �(P )�� and write

P(Fq) = {u1, u2, . . .}
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where the order is chosen in such a way that

#P −1(u1)�#P −1(u2)� · · · .

Note that since �(P )��,

#P −1(u1) + · · · + #P −1(u�−1) < d. (10)

Therefore for j = � − 1, �, . . . we have

#P −1(uj ) <
d

� − 1

provided that ��2.
By (10), there is a set T ⊂ Fq such that |T | = d and

T ⊃ {t : P(t) ∈ {u1, . . . , u�−1}}.

Hence, for each c �∈ T we have that P(c) ∈ {u�, u�+1, . . .}. Therefore there are at most
d/(� − 1) elements c′ of Fq with P(c′) = P(c). If � = 1 then we use the observation
that there are at most d elements c′ with this property. Denoting �′ = max(�, 2), we
see that there are at most d/(�′ − 1) elements c′ of Fq with P(c′) = P(c).

Now, bounding from the above the geometric mean with the arithmetic mean, we
deduce

∣∣∣∣∣∣
∏
c∈Fq

∑
t∈S

ep(Tr(tP (c)))

∣∣∣∣∣∣ =
∣∣∣∣∣
∏
c∈T

∑
t∈S

ep(Tr(tP (c)))

∣∣∣∣∣×
∣∣∣∣∣∣
∏

c∈Fq\T

∑
t∈S

ep(Tr(tP (c)))

∣∣∣∣∣∣
� |S|d

⎛
⎝ 1

q − d

∑
c∈Fq\T

∣∣∣∣∣
∑
t∈S

ep(Tr(tP (c)))

∣∣∣∣∣
2
⎞
⎠

(q−d)/2

� |S|d
⎛
⎝ 1

q − d

d

�′ − 1

∑
u∈Fq

∣∣∣∣∣
∑
t∈S

ep(Tr(tu))

∣∣∣∣∣
2
⎞
⎠

(q−d)/2

= |S|d
(

1

q − d

d

�′ − 1
q|S|

)(q−d)/2

,

where we used once again (4). This concludes the proof of the lemma in the case
|S|�q/2.
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If |S| > q/2 then, by the identity

∑
t∈Fq

ep(Tr(tP (c))) = 0

for P(c) �= 0, we can reduce the product for S to the product for Fq \ S. Also,
the identity combined with the supposition d < q shows that the product is zero for
|S| = q. Thus, we can consider q/2 < |S| < q. If � is the number of the zeros of the
polynomial P in Fq then we have

∣∣∣∣∣∣
∏
c∈Fq

∑
t∈S

ep(Tr(tP (c)))

∣∣∣∣∣∣ =
( |S|

q − |S|
)�
∣∣∣∣∣∣
∏
c∈Fq

∑
t∈Fq\S

ep(Tr(tP (c)))

∣∣∣∣∣∣ .

Therefore,∣∣∣∣∣∣
∏
c∈Fq

∑
t∈S

ep(Tr(tP (c)))

∣∣∣∣∣∣ �
( |S|

q − |S|
)d

(q − |S|)d
(

1

q − d

d

�′ − 1
q(q − |S|)

)(q−d)/2

= (|S|(q − |S|))d(q − |S|)(q−3d)/2
(

1

q − d

d

�′ − 1
q

)(q−d)/2

�
(

q2

4

)d (q

2

)(q−3d)/2
(

1

q − d

d

�′ − 1
q

)(q−d)/2

,

as required. We have taken into account that (q − 3d)/2�0 by our supposition. The
proof of the lemma is complete. �

Lemma 3. If d < e−2
3e

q then we have the following estimate:

d∑
�=2

(
1

� − 1

)(q−d)/2

·
(

q

�

)
�d �2d−1(d − 1)q2.

Proof. The lemma is trivial for d = 1. Consider d > 1 and define the function

f (�) =
(

1

� − 1

)(q−d)/2

·
(

q

�

)
�d .

Let d = uq, u < e−2
3e

. Taking into account (6), we have

f (� + 1)/f (�) =
(

� − 1

�

)(q−d)/2 (� + 1

�

)d (
q

� + 1

)(
q

�

)−1
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<

(
� − 1

�

)(1−3u)q/2
q

� + 1

< exp

(
− (1 − 3u)q

2�

)
q

�
.

By our supposition, (1 − 3u)/2 > 1/e. Denoting v = q/� we have

f (� + 1)/f (�) < ve−v/e.

But, by (6), ve−v/e �1 for any v. Therefore, f (� + 1)/f (�) < 1. Thus, the function
f (�) is decreasing for 2���d . Hence,

d∑
�=2

(
1

� − 1

)(q−d)/2

·
(

q

�

)
�d =

d∑
�=2

f (�)�(d − 1)f (2).

This implies the statement of Lemma 3. �

We are in the condition to prove Theorem 2.

Proof of Theorem 2. In view of Lemma 2 (recall that d < e−2
3e

q) and Lemma 1, the
absolute value of the right-hand side of (9) is

�
∑
S⊆Fq

1

qd

(q

d

) (q

2

)(q+d)/2
(

dq

q − d

)(q−d)/2
⎛
⎝q +

d∑
�=2

(
1

� − 1

)(q−d)/2

·
(

q

�

)
�d

⎞
⎠ .

By Lemma 3, we obtain that the above is

<
2q

qd

(q

d

) (q

2

)(q+d)/2
(

dq

q − d

)(q−d)/2

2ddq2

= 2ddq2+q−d
(q

d

)( 2d

q − d

)(q−d)/2

. (11)

This concludes the proof by using (9). �

4. Range of uniformity (proof of Corollary 2)

In this last section we want to establish how large d can be in order for the asymptotic
formula Nq,d ∼ q!/qd to hold.
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Since �0 < �, we can use Theorem 2. Substitute d = �q (���0) in (11) and note
that in order to have an asymptotic formula it is enough to verify that

2�qq3+q

(
q

�q

)(
2�

1 − �

)q(1−�)/2

= o(q!) (q → ∞). (12)

From the Stirling formula (7),

(
q

�q

)
>

(
1

��(1 − �)1−�

)q

,

we obtain that (12) is satisfied uniformly over ���0 if we have

sup
�∈(0,�0]

g(�) < −1, (13)

where

g(�) = log
(

2�
)

− log
(
��(1 − �)1−�

)
+ log

⎛
⎝( 2�

1 − �

) 1−�
2

⎞
⎠ .

It is easy to see that the functions

log
(

2�
)

, − log
(
��(1 − �)1−�

)
, log

⎛
⎝( 2�

1 − �

) 1−�
2

⎞
⎠

are increasing on (0, 1/3]. Hence, g is also increasing, and (13) follows from the
inequality g(�0) < −1. This completes the proof of the corollary.

In a future paper we are planning to adopt the method of Theorem 2 to prove an
asymptotic formula for Nq(k1, . . . , kd) with arbitrary k1, . . . , kd where d is fixed or
grows slowly as q → ∞.

It would be of interest to enumerate permutation polynomials with degree approx-
imately

√
q. Unfortunately our approach cannot reach this range since we know that

for q odd there are no permutation polynomials of degree (q − 1)/2 (see
[3, Corollary 7.5]).
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