On Artin's Conjecture over Function Fields

FRANCESCO PAPPALARDE

Departmento di Matematica, Terza Universita degli Studi,
Via C. Segre, 2/6, 00146, Rome, Italy
E-mail: pappa@mat.uniroma3.it

AND

IGOR SHPARLINSKI

School of MPCE, Macquarie University,
Sydney, New South Wales 2109, Australia
E-mail: igor@mpce.mq.edu.au

Communicated by Stephen D. Cohen

Received June 17, 1994; revised October 6, 1994

We prove an unconditional analog of Artin’s conjecture for the function field of a curve over a finite field.

In this paper we consider an analog of Artin’s conjecture for polynomials and rational functions over the finite fields \(\mathbb{F}_q \) of \(q \) elements. A proof of the original Artin’s conjecture was given by Hooley in [H] under the assumption of the Generalized Riemann Hypothesis (see also [N] for a survey of many other relevant results). We show that similar considerations (a kind of sieve method) can be used (in a much simpler form) for the case of function fields as well. Moreover, because for function fields an analog of the Generalized Riemann Hypothesis has been obtained by Weil (see [L-N] for details), we get an unconditional result. We also mention the papers [B] and [L] where similar (and even more general) questions were considered. However, the asymptotic formulas obtained there do not contain any estimates of the error terms.

Let \(r(x) \in \mathbb{F}_q(x) \) be a rational function over the finite field \(\mathbb{F}_q \) of \(q \) elements. One of many possible analogs of Artin’s conjecture is the question
about the number of monic irreducible polynomials \(p(x) \in \mathbb{F}_q[x]\) of degree \(n\) such that \(r(x)\) is a primitive root modulo \(p(x)\), i.e., such that the powers

\[r(x)^i, \quad i = 0, 1, \ldots, \]

generate all nonzero elements of the residue ring \(\mathbb{F}_q[x]/p(x)\). In this paper we consider this and an even more general but similar question for arbitrary function fields over a finite field.

Let \(\mathcal{C}\) be a nonsingular irreducible curve over \(\mathbb{F}_q\) of degree \(d\); this means that it is defined by a system of polynomial equations of total degree \(d\) over \(\mathbb{F}_q\). In particular, its genus \(g\) does not exceed \((d - 1)(d - 2)/2\). We denote by \(\mathbb{K} = \mathbb{F}_q(\mathcal{C})\) the function field of the curve \(\mathcal{C}\).

For a divisor \(D\) let us denote by \(\mathcal{O}_D\) the local ring of \(D\), namely

\[\mathcal{O}_D = \{f \in \mathbb{K} | f \text{ is regular on supp } D\}. \]

A rational function \(r(X) \in \mathbb{K}\) is said be a primitive root modulo a prime divisor \(\mathfrak{P}\) if all the powers

\[r(X)^i, \quad i = 0, 1, \ldots, \]

generate all the nonzero elements of the residue ring

\[\mathcal{O}_D/\mathfrak{P} \cong \mathbb{F}_q^n. \]

Let \(N(r, \mathbb{K}, n)\) denote the number of prime divisors \(\mathfrak{P}\) of \(\mathcal{C}\) of degree \(n\) such that \(r(X)\) is a primitive root modulo \(\mathfrak{P}\). Let \(\nu(k)\) and \(\varphi(k)\) denote the number of distinct prime divisors of an integer \(k\) and the Euler function, respectively.

\textbf{Theorem.} Let \(\mathbb{K} = \mathbb{F}_q(\mathcal{C})\) be the function field of a nonsingular irreducible curve \(\mathcal{C}\) of degree \(d\) over \(\mathbb{F}_q\) and let \(r(X) \in \mathbb{K}\) be a rational function of degree \(m > 0\). Suppose that for all integers \(k > 1, k|q^n - 1\), \(r(X)\) is not the \(k\)th power of a rational function from the function field on \(\mathcal{C}\) over the algebraic closure of \(\mathbb{F}_q\). Then, for all integers \(n\),

\[\left| N(r, \mathbb{K}, n) - \frac{\varphi(q^n - 1)}{n} \right| \leq 1.5(d + 1)(d + 2m)n^{-1/2}q^{(q^n - 1)/2}. \]

\textbf{Proof.} Let \(\mathbb{F}_q^n\) be a fixed field of \(q^n\) elements. It is known that, for any prime divisor \(\mathfrak{P}\) of degree \(n\),
and the isomorphism is given by $\Psi(X) \leftrightarrow \psi(Q)$, where $\Psi(X)$ is the image in C_ν / Ψ of a function $\psi(X) \in K$ and Q is a \mathbb{F}_{q^n}-rational point on \mathcal{C} corresponding to Ψ. Thus, $r(X)$ is a primitive root modulo Ψ if and only if $r(Q)$ is a primitive root of the field \mathbb{F}_{q^n}.

For every given prime divisor Ψ of degree n there are exactly n different \mathbb{F}_{q^n}-rational points corresponding to it, namely,

$$\text{Frob}^i(Q), \quad i = 0, \ldots, n - 1,$$

where Frob is the Frobenius isomorphism over \mathbb{F}_q. We deduce that $n N(r, \mathcal{C}, n)$ equals the number of \mathbb{F}_{q^n}-rational points Q on \mathcal{C} corresponding to at least one prime divisor of degree n for which $r(Q)$ is a primitive root of \mathbb{F}_{q^n}.

Moreover, we may count only \mathbb{F}_{q^n}-rational points Q because if Q corresponds to a divisor of degree less than n, then Q is a rational point in some proper subfield of \mathbb{F}_{q^n}; thus $r(Q)$ is an element of the same subfield and, therefore, it cannot be a primitive root of \mathbb{F}_{q^n}.

Hence, we have that

$$N(r, \mathcal{C}, n) = n^{-1} T(r, \mathcal{C}, n),$$

where $T(r, \mathcal{C}, n)$ is the total number of \mathbb{F}_{q^n}-rational points Q on \mathcal{C} for which $r(Q)$ is a primitive root of \mathbb{F}_{q^n}.

Let Ξ be the set of all multiplicative characters of \mathbb{F}_{q^n}. For $\chi \in \Xi$ define its order ord_χ as the least positive integer t such that χ^t is the trivial character. Further let \mathcal{R}_n denote the set of \mathbb{F}_{q^n}-rational points Q on \mathcal{C} which are neither poles nor zeros of $r(X)$. Applying the Weil estimate for the number of \mathbb{F}_{q^n}-rational points on \mathcal{C} (see for example the comments to Section 6.4 in [L-N]) and taking into account that $r(X)$ has a total of at most m poles and zeros, we find that

$$|\mathcal{R}_n| - q^n - 1| \leq 2gq^{n/2} + m \leq (d - 1)(d - 2)q^{n/2} + m.$$

Now, it is known (see Problem 5.14 of [L-N] or Proposition 2.2 of [N]) that, for any $\rho \in \mathbb{F}_{q^n}$,

$$\frac{\varphi(q^n-1)}{q^n-1} \sum_{\delta \mid q^n-1} \mu(\delta) \sum_{\chi \in \Xi} \chi(\rho) = \begin{cases} 1, & \text{if } \rho \text{ is a primitive root,} \\ 0, & \text{otherwise,} \end{cases}$$

where $\mu(k)$ is the Möbius function. Therefore, we have
\[T(r, \mathcal{E}, n) = \frac{\varphi(q^n - 1)}{q^n - 1} \sum_{Q \in \mathcal{E}} \sum_{s \in \mathbb{Z} \setminus q^n - 1} \mu(\delta) \sum_{\chi \in \Xi} \chi(r(Q)) \]

\[= \frac{\varphi(q^n - 1)}{q^n - 1} \sum_{s \in \mathbb{Z} \setminus q^n - 1} \mu(\delta) \sum_{\chi \in \Xi} \chi(r(\mathcal{Q})). \]

Since \(r(X) \) is not a power of any other rational function, we can apply Perelmutter’s bound (see Theorem 2 in [P]),

\[\left| \sum_{\chi \in \Xi} \chi(r(Q)) \right| \leq (d^2 + 2dm - 3d)q^{n/2}, \]

to every non-trivial multiplicative character \(\chi \). Note that this is a particular case of the result of Perelmutter. In fact, Theorem 2 of [P] deals with general sums of additive and multiplicative characters along a curve and is a consequence of the famous Weil result on the Riemann Hypothesis over function fields.

The contribution to \(T(r, \mathcal{E}, n) \) of the trivial character (i.e., the character of order \(d = 1 \)) is

\[|R_n| \frac{\varphi(q^n - 1)}{q^n - 1} = \varphi(q^n - 1) + \Delta, \]

where

\[\Delta \leq \frac{\varphi(q^n - 1)}{q^n - 1} (2 + (d - 1)(d - 2)q^{n/2} + m) \leq (d - 1)(d - 2)q^{n/2} + m + 2. \]

Further, it is easy to see that

\[\sum_{\delta \in k} |\mu(\delta)| = 2^{|k|}. \]

Since \(\Xi \) is a cyclic group (see Corollary 5.9 of [L-N]), there are exactly \(\varphi(d) \) characters \(\chi \in \Xi \) with \(\text{ord } \chi = d \). Taking this into account, we obtain

\[|T(r, \mathcal{E}, n) - \varphi(q^n - 1)| \leq (d - 1)(d - 2)q^{n/2} + m + 2 \]

\[+ (d^2 + 2dm - 3d)q^{n/2} \sum_{s \in \mathbb{Z} \setminus q^n - 1} |\mu(\delta)| \]

\[\leq 2^{\varphi(q^n - 1)}q^{n/2}((d - 1)(d - 2)/2 + m/2 + 1 + d^2 + 2dm - 3d) \]

\[\leq 1.5(d + 1)(d + 2m)2^{\varphi(q^n - 1)}q^{n/2}. \]
which is the claimed estimate. ■

Corollary 1. For any \(\varepsilon > 0 \),

\[
N(r, \kappa, n) = \frac{\varphi(q^n - 1)}{n} (1 + O(d(d + m)q^{-n(1/2 - \varepsilon)})),
\]

where the implied constant depends only on \(\varepsilon \).

Proof. From the well-known inequalities

\[
\nu(k) = O(\log k/\log \log k), \quad k/\varphi(k) = O(\log \log k).
\]

we get

\[
2^{(q^n - 1)} = O(q^{n\varepsilon/2}), \quad (q^n - 1)/\varphi(q^n - 1) = O(q^{n\varepsilon/2}),
\]

and the estimate follows. ■

In the special case of the rational function field over a finite field, that is, when \(d = 1, \kappa = \mathbb{F}_q(x) \), \(N(r, \mathbb{F}_q, n) \) is the number of irreducible polynomials \(p(x) \) of degree \(n \) such that \(r(x) \) is a primitive root of \(\mathbb{F}_q[x]/p(x) \). Then, we get

\[
N(r, \mathbb{F}_q, n) = \frac{\varphi(q^n - 1)}{n} (1 + O(mq^{-n(1/2 - \varepsilon)}))
\]

for any given rational function \(r(x) \in \mathbb{F}_q(x) \) of degree \(m \).

Corollary 2. Given a rational function \(r(X) \in \kappa \) of degree \(m \), there is a prime divisor \(\wp \) of degree

\[
\deg \wp = O(\log_q (d + m) + 1)
\]

for which \(r(X) \) is a primitive root modulo \(\wp \).

Proof. It is easy to see that the least \(n \) such that \(N(r, \kappa, n) > 0 \) is of order \(O(\log_q (d + m) + 1) \). ■

We define the norm an integer divisor \(\mathcal{U} \) as

\[
Nm(\mathcal{U}) = q^{\deg \mathcal{U}}.
\]

We conclude with
Corollary 3. If q is fixed then, for any rational function $r(X) \in \mathbb{K}$ of degree m and for any $\varepsilon > 0$, there is a prime divisor \mathfrak{p} of norm

$$N_{\mathbb{K}}(\mathfrak{p}) = O((d(d + m))^{2 - \varepsilon})$$

for which $r(X)$ is a primitive root modulo \mathfrak{p}.

Proof. It is easy to see that for q fixed, the minimal n such that $N(r, \mathbb{K}, n) > 0$ is of order $(2 + \varepsilon) \log_q ((d + 1)(d + m)) + O(1)$. ■

Acknowledgments

The authors thank Steve Cohen and Pieter Moree for many valuable comments and critical remarks.

References

