
ON THE EQUATION τ(λ(n)) = ω(n) + k
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Abstract. We investigate some properties of the positive integers
n that satisfy the equation τ(λ(n)) = ω(n)+k providing a complete
description for the solutions when k = 0, 1, 2, and giving some
properties of the solutions in the other cases.

1. Introduction

For every positive integer n, the function τ(n) counts the number of
divisors of n, the function ω(n) counts the number of distinct prime
divisors of n, while the Carmichael function λ(n) is the exponent of
the multiplicative group of the invertible congruence classes modulo n.
The value of the function λ(n) can be computed as follows:

λ(n) =



1 if n = 1;

2α−2 if n = 2α, α > 2;

pα−1(p− 1) if n = pα and
p ≥ 3 or

p = 2, α ≤ 2;

[λ(pα1
1 ), . . . , λ(pαs

s )] if n = pα1
1 . . . pαs

s .

In [?], Erdős, Pomerance and Schmutz proved a number of fun-
damental properties of λ. In the process of proving the lowerbound
λ(n) > (log n)c0 log log log n for all large n, provided c0 < 1/ log 2, they
proved the inequality

n ≤ (4λ(n))3τ(λ(n)).

Numerical calculations suggest that the stronger inequality

(1) n ≤ λ(n)τ(λ(n))

holds with the only exceptions of n = 2, 6, 8, 12, 24, 80, 120, 240. This
will be proved in Corollary ??. One of the tools for proving (??) is
the inequality τ(λ(n)) > ω(n) which holds with the only exceptions
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n = 2, 6, 12, 24, 30, 60, 120, 240 as we will prove in Proposition ?? and
Proposition ??.

This motivates us to compare τ(λ(n)) with ω(n). Since τ(λ(n)) ≥
ω(n) holds for all positive integers n (see Proposition ??), we can write
τ(λ(n)) = ω(n)+k, where k is some nonnegative integer depending on
n. We then fix k ≥ 0 and investigate the positive integers n such that
τ(λ(n)) = ω(n) + k.

Throughout this paper, we use x to denote a positive real number.
We also use the Landau symbols O and o and the Vinogradov symbols
� and � with their usual meanings. We write log x for the maximum
between 1 and the natural logarithm of x. For a set A of positive
integers we write A(x) = A∩ [1, x]. We write p and q with or without
subscripts for prime numbers.

Let us set

Ak = {n : τ(λ(n)) = ω(n) + k}.

We will show in Theorem ?? that if k is a positive integer and bk =
2(k + 1)2 + 3 + blog2(2(k + 1)2 + k + 1)c, then the upperbound

#Ak(x) �k
x(log log x)bk

(log x)2

holds as x → ∞. Furthermore, in Theorem ??, we will show that if
k > 4, then the lowerbound

#Ak(x) �k
x

(log x)2

holds as x → ∞. We will also give complete description on the sets
A0,A1 and A2 (Proposition ??, Proposition ?? and Proposition ??).
We will show that A0 contains 8 integers while the infiniteness of A1

and A2 would follow if it were known that there exist infinitely many
primes of the form 2q + 1 with q also prime. Finally, in Proposition ??
we deal with the cases k = 3, 4 proving that if either A3 or A4 are
infinite then there exists an even positive integer c such that the set of
primes of the form p = cqβ +1, with q prime and β ≤ 4 is infinite. This
explains the difficulty of proving the infiniteness of Ak for k = 1, 2, 3, 4.
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2. Determining Ak for small values of k

Proposition 1. For any positive integer n, we have that

τ(λ(n)) ≥ ω(n).

More precisely,

τ(λ(n)) ≥ ω(n/(2∞, n)) + τ(λo(n′)),

where n′ is the product of the primes dividing n, and λo(m) denote the
the odd part of λ(m). That is, λo(m) = λ(m)/(2∞, λ(m)).

Proof. Let us first note that if n | m, then λ(n) | λ(m), and therefore
τ(λ(n)) ≤ τ(λ(m)). Thus, we can assume that n is square-free (indeed,
if n′ is the product of the distinct primes dividing n, then ω(n) = ω(n′)
and τ(λ(n)) ≥ τ(λ(n′))).

Suppose that n is odd and n = p1p2 · · · pr, where p1 < · · · < pr are
primes. Let 2 < q2 < · · · < qs be all the odd prime factors of λ(n) and
write

p1 − 1 = 2α11qα12
2 · · · qα1s

s ;

p2 − 1 = 2α21qα22
2 . . . qα2s

s ;
...

pr − 1 = 2αr1qαr2
2 · · · qαrs

s .

If Ai = max{α1i, . . . , αri} for i = 1, . . . , s, then

τ(λ(n)) = τ([p1 − 1, . . . , pr − 1]) = (A1 + 1)(A2 + 1) · · · (As + 1).

Consider now the matrixα11 . . . α1s
...

...
αr1 . . . αrs

 .

We know that the entries of the matrix consist of nonnegative integers.
The elements in the first column are positive and less than or equal
than A1. For each i = 1, . . . , r, the elements of the i–th column are
nonnegative integers less than or equal to Ai.

Furthermore, for each fixed natural number s, we have that the num-
ber of rows r is less or equal than the maximum number of distinct
s–tuples (a1, . . . , as) with a1 ∈ [1, A1] and ai ∈ [0, Ai] for i = 2, . . . , s.

This follows from the fact that
(
2αi1

∏s
j=2 q

αij

j

)
i=1,...,s

are distinct pos-

itive integers. Hence,

r ≤ A1(A2 + 1) · · · (As + 1).
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From the above discussion, we deduce that

τ(λ(n)) = (A1 + 1)(A2 + 1) · · · (As + 1)

≥ r + τ(λo(n)) = ω(n) + τ(λo(n)),

where λo(n) = λ(n)/(2∞, λ(n)) is largest odd divisor of λ(n). So, if n
is square-free and odd, then

τ(λ(n)) ≥ ω(n) + 1,

while if n is square-free and even, then

τ(λ(n)) = τ(λ(n/2)) ≥ ω(n/2) + 1 = ω(n),

which concludes the proof. �

Lemma ?? is the main tool to determine the set Ak for k ≤ 2.

Proposition 2. A0 = {2, 6, 12, 24, 30, 60, 120, 240}.

Proof. Let n ∈ A0. We apply Lemma ?? and we obtain that if n is
odd, then τ(λ(n)) > ω(n), which is impossible.

If n is even, the condition τ(λ(n)) = ω(n), implies by Lemma ??
that

τ(λo(n′)) = 1.

This is only possible if λ(n′) = 2α for some α ∈ N. If n = 2γ and
τ(λ(2γ)) = 1, then γ = 1 so that n = 2.

Assume now that n is not a power of 2 and write

n = 2γ0(22α1 + 1)γ1 · · · (22αr
+ 1)γr ,

where γj ≥ 1 for j = 0, . . . , r, 0 ≤ α1 < · · · < αr, and the numbers
22αi +1 are primes for each i = 1, . . . , r. Plugging the expression above
for n in the identity τ(λ(n)) = ω(n), we obtain

max{τ(λ(2γ0)), 2αr + 1} · γ1 · · · γr = r + 1,

which is satisfied only for r = 1 or r = 2 since from the above we gather
that r + 1 ≥ 2αr + 1 ≥ 2r−1 + 1.

If r = 2, then necessary α2 = 1. This forces α1 = 0, γ1 = γ2 = 1,
and 1 ≤ γ0 ≤ 4, which correspond to the four values 30, 60, 120 and
240 for n. Finally, if r = 1, then α1 = 0, and this forces γ1 = 1 and
1 ≤ γ0 ≤ 3, which correspond to the three values 6, 12 and 24 for
n. �

We are now ready to prove the motivating inequality (??):
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Corollary 1. Let ϕ denote the Euler function. With the only excep-
tions n = 2, 6, 8, 12, 24, 80, 120, 240, we have

n ≤ λ(n)τ(λ(n)).

Furthermore, ϕ(n) ≤ λ(n)τ(λ(n)) with the only exception n = 24. Fi-
nally, the inequality ϕ(n) ≤ λ(n)ω(n) holds unless n is a power of 2
times a product of distinct Fermat primes.

Proof. Let vp(m) be the exponent of the prime p in the factorization of
the positive integer m. We know that λ(n) divides ϕ(n) and if p odd,
then

vp(ϕ(n)) =
∑
lβ‖n

vp(l
β−1(l − 1))

≤ ω(n)

(
max
lβ‖n

{vp(l
β−1(l − 1))}

)
≤ vp(λ(n)ω(n)),

while v2(ϕ(n)) = v2(n)− 1 +
∑

l|n v2(l − 1) ≤ 1 + ω(n)v2(λ(n)).

So, necessarily ϕ(n) | 2λ(n)ω(n). Furthermore, the only circum-
stances in which ϕ(n) = 2λ(n)ω(n) is when ϕ(n) is a power of 2. If
this happens, then n is necessarily a power of 2 times a product of
distinct Fermat primes. In all other cases, we have ϕ(n) ≤ λ(n)ω(n)

and this proves the third inequality.
In order to prove the second, it is enough to notice that τ(λ(n)) ≥

ω(n) by Proposition ??, therefore we only need to show that ϕ(n) ≤
λ(n)τ(λ(n)) when ϕ(n) = 2a and n 6= 24. Observe that the latter is
certainly true when n is a power of 2 since for α > 2, ϕ(2α) = 2α−1 ≤
2(α−2)(α−1) = λ(2α)τ(λ(2α)). In the other cases, if we write

n = 2α0 · (22α1 + 1) · · · (22αr
+ 1),

with α1 < · · · < αr, then

ϕ(n) = 22α1+···+2αr+max{α0−1,0}

≤ 22αr (1+1/2+···+1/2r−1)+max{α0−1,0} ≤ 23M+1,

where M = max{log2(λ(2α0), 2αr}. Here, we use log2 for the logarithm
in base 2. Similarly,

λ(n)τ(λ(n)) = 2M(M+1).

Finally 3M+1 ≤ M(M+1) for M > 2 while the case when M ≤ 2 leads
to r ≤ 2 so that n ∈ {3, 6, 12, 24, 48, 5, 10, 20, 40, 80, 15, 30, 60, 120, 240},
and the only value of n from the above set that does not satisfy the
inequality ϕ(n) ≤ λ(n)τ(λ(n)) is n = 24. This completes the proof of
the second statement.
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As for the first statement, note that if n ∈ A0 the statement holds
if and only if n ∈ {30, 60}. So, we can assume that n 6∈ A0 and thus
τ(λ(n)) ≥ ω(n) + 1. This implies that

λ(n)τ(λ(n)) ≥ λ(n)ϕ(n)

unless ϕ(n) is a power of 2. In order to conclude the proof we need to
verify that the statement holds when ϕ(n) is a power of 2 and n 6= 2, 8,
and we need to show that

λ(n)ϕ(n) ≥ n.

We claim that the inequality above holds unless n ∈ {2, 3, 6, 12, 24}
(values for which the statement is verified directly). Indeed, let p be
the greatest prime divisor of n. If p ≥ 5, then

n

ϕ(n)
=
∏
l|n

l

l − 1
≤ 3

4
p ≤ p− 1 ≤ λ(n).

Similarly, if p = 3, then n/ϕ(n) ≤ 3 ≤ λ(n) unless n ∈ {3, 6, 12, 24}.
Finally, if p = 2, then n/ϕ(n) = 2 ≤ λ(n) unless n = 2.

If ϕ(n) is a power of 2, then we proceed as in the proof of the
second inequality. Observe that if n = 2α0 , then n ≤ λ(n)τ(λ(n)) unless
α0 = 1, 3. If n = 2α0 · (22α1 + 1) · · · (22αr

+ 1) with α1 < · · · < αr and
if M = max{log2(λ(2α0), 2αr} so that 2M(M+1) = λ(n)τ(λ(n)), then

n ≤ 22(2α1+···+2αr )+α0 ≤ 25M+2.

Since 5M + 2 ≤ M(M + 1) for M > 5, we are left with checking the
statement for integers that divide 27 · 3 · 5 · 17 and this is done by a
short calculation. �

Proposition 3.

A1 = {1, 3, 4, 8, 10, 15, 20, 40, 48, 80, 126, 252, 480, 504,

510, 1020, 2040, 2730, 4080, 5460, 8160, 8190, 10920,

16320, 16380 , 21840, 32760, 65520, 6q, 12q, 24q},

where q = 2p + 1 is prime with p > 2 also prime.

Proof. We follow the same method as in the proof of Proposition ??.
If n > 1 is odd, then, from Lemma ??, we obtain that λo(n′) = 1.

This implies that λ(n′) = 2α for some α ≥ 0. Thus,

n = (22α1 + 1)γ1 · · · (22αr
+ 1)γr ,

where γj ≥ 1 for j = 1, . . . , r, 0 ≤ α1 < · · · < αr, and again 22αi + 1 is
prime for i = 1, . . . , r.
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The equation τ(λ(n)) = ω(n) + 1 is equivalent to

(2αr + 1)γ1 · · · γr = r + 1.

Since αr ≥ r − 1, the above is satisfied only if r = 1 or r = 2. In the
first case, we have necessarily α1 = 0 and γ1 = 1, so that n = 3. In the
second case, we have α1 = 0, α2 = 1 and γ1 = γ2 = 1, so that n = 15.

Assume now that n is even. If n = 2γ, then the equation τ(λ(n)) = 2
is only satisfied for n = 4 and for n = 8.

If n is not a power of 2, then, from Lemma ??, we get τ(λo(n′)) ≤ 2.
This can only happen if either λ(n′) = 2a, or λ(n′) = 2ap, with p an
odd prime. In the first case, we have that

n = 2γ0 · (22α1 + 1)γ1 · · · (22αr
+ 1)γr ,

where γj ≥ 1 for j = 0, . . . , r, 0 ≤ α1 < · · · < αr, and again 22αi + 1 is
prime for i = 1, . . . , r.

If we plug the above expression for n in the identity τ(λ(n)) = ω(n)+
1, we obtain

max{τ(λ(2γ0)), 2αr + 1} · γ1 · · · γr = r + 2,

which can only be satisfied for r ≤ 3 since r + 2 ≥ 2αr + 1 ≥ 2r−1 + 1.
A quick computation shows that γj = 1 for all j ≥ 1 and we have only
the following possibilities:

r (α1, . . . , αr) n
1 (0) 48

(1) 10, 20, 40, 80
2 − −
3 (0, 1, 2) 510, 1020, 2040, 4080, 8160, 16320

The next case to consider is when λ(n′) = 2ap so that each odd prime
dividing n is either of the form 22α

+ 1, or of the form 2βp + 1. Hence,

n = 2γ0 · (22α1 + 1)γ1 · · · (22αr
+ 1)γr · (2β1p + 1)γr+1 · · · (2βsp + 1)γr+s ,

where γj ≥ 1 for j = 0, . . . , r + s, 0 ≤ α1 < · · · < αr, 22αi + 1 is
prime for i = 1, . . . , r, 1 < β1 < · · · < βs, and 2βkp + 1 is prime for
k = 1, . . . , s.

We distinguish two more sub-cases: p2 | n and p2 - n.
If p2 | n, then the equation τ(λ(n)) = ω(n) + 1 translates into

(2) max{τ(λ(2γ0)), 2αr + 1, βs + 1} · γ1 · · · γr+s = r + s + 2.

In this case, there exists j ≤ r such that γj ≥ 2 and since max{a, b} ≥
(a + b)/2, we have that the left hand side (??) is greater or equal than
2αr + 1 + βs + 1. Using the fact that αr ≥ r − 1 and that βs ≥ s, we
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obtain once again that 2r−1 + 1 ≤ r + 1, which implies that r = 1 or
r = 2.

If r = 1, then necessarily α1 = 0, γ1 = 2, s = 1 and β1 = γ2 = 1.
This implies n = 2γ0 · 32 · 7 and γ0 = 1, 2, 3.

If r = 2, then necessarily α1 = 0, α2 = 1 and s ≤ 2 since the left
hand side of (??) is greater or equal of 2s+2. Checking all possibilities,
we find that n = 2γ0 · 32 · 5 · 7 · 13 and γ0 = 1, 2, 3, 4.

If p2 - n, then the equation τ(λ(n)) = ω(n) + 1 translates into

(3) 2 ·max{τ(λ(2γ0)), 2αr + 1, βs + 1} · γ1 · · · γr+s = r + s + 2.

For the same reason as above, we have r = 1 or r = 2 and s = 1 or
s = 2.

If r = s = 1, then we have the family of solutions n = 2γ0 ·3 ·(2p+1),
where γ0 = 1, 2, 3 and 2p + 1 is prime with p ≥ 3.

If r = s = 2, then we have the solutions n = 2γ0 · 3 · 5 · 7 · 13, where
γ0 = 1, 2, 3, 4. The remaining cases r = 1, s = 2 and r = 2, s = 1
produce a value of the right hand side of (??) equal to 5 and therefore
do not lead to any more solutions. �

Proposition 4. We have that A2 = F1 ∪ F2 ∪ F3 ∪ F4 ∪ I1 ∪ I2 ∪ I3,
where

F1 =

 5, 24, 25 · 3, 25 · 5, 2β · 32, 26 · 3 · 5,
2α · 3 · 17, 2α · 5 · 17, 3 · 5 · 17,
27 · 3 · 5 · 17

∣∣∣∣∣∣ 1 ≤ α ≤ 6,
1 ≤ β ≤ 3

 ;

F2 =

 2α · 3β · 5 · 7, 3β · 7, 3β · 5 · 7 · 13
2α · 3β · 5 · 13, 2α · 3β · 7 · 13,
2α · 5 · 7 · 13

∣∣∣∣∣∣ 1 ≤ α ≤ 4,
β = 1, 2

 ;

F3 =
{

2α · 3 · 52 · 11
∣∣ 1 ≤ α ≤ 4

}
;

F4 =

{
2δ · 3β · 7 · 19,
2α · 3β · 5 · 7 · 13 · 19 · 37

∣∣∣∣ 1 ≤ α ≤ 4,
1 ≤ β, δ ≤ 3

}
;

I1 = {2α · (2p + 1) | 2p + 1, p ≥ 3 primes, 1 ≤ α ≤ 3} ;

I2 = {3 · (2p + 1) | 2p + 1, p ≥ 3 primes};

I3 =

{
2α · 3 · 5 · (2βp + 1)

∣∣∣∣ 2βp + 1, p ≥ 3 primes,
1 ≤ α ≤ 4, β = 1, 2

}
.

Proof. Following the same approach as in the previous results, we ob-
tain that in order for n to satisfy τ(λ(n)) = ω(n) + 2, we need to have
λ(n′) = 2αpβ, where α ≥ 0 and β = 0, 1, 2. This implies that n should
be of the form

n = 2γ0 · A ·B · C,
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where A, B and C are either 1 or of the respective forms:

A = (22α1 + 1)γ1 · · · (22αr
+ 1)γr ,

B = (2β1p + 1)γr+1 · · · (2βsp + 1)γr+s ,

C = (2δ1p2 + 1)γr+s+1 · · · (2δtp2 + 1)γr+s+t ,

where we assume the following conditions: γj ≥ 1 for j = 0, . . . , r+s+t,
0 ≤ α1 < · · · < αr, 22αi + 1 is prime for i = 1, . . . , r, 1 < β1 < · · · < βs,
2βkp + 1 is prime for k = 1, . . . , s, 1 < δ1 < · · · < δt, and 2δlp2 + 1 is
prime for l = 1, . . . , t. Here, we allow either one of r, s, t, γ0 to be zero
with the obvious meaning.

The equation τ(λ(n)) = ω(n) + 2 is equivalent to

(4) Θ · Λ · γ1 · · · γr+s+t = r + s + t + min{1, γ0}+ 2,

where

Θ =



1 if either (s + t > 0 and p3 | n) or (s + t = 0)

or (t = 0, s > 0 and p2‖n);

3/2 if t > 0 and p2‖n;

2 if t = 0, s > 0 and p2 - n;

3 if t > 0 and p2 - n;

and Λ = max{τ(λ(2γ0)), 2αr + 1, βs + 1, δt + 1}. Here, the terms βs + 1
(resp. δt + 1) are to be omitted if s = 0 (resp. t = 0).

If s = t = 0, the above implies that r ≤ 3 and

n = 2δ0 · 3δ1 · 5δ2 · 17δ3 .

In this case, all possible solutions of τ(λ(n)) = ω(n) + 2 are:

r (δ0, δ1, δ2, δ3) n
0 (4,0,0,0) 24

1 (0,0,1,0) 5
(δ, 2, 0, 0), δ = 1, 2, 3 2 · 32, 22 · 32, 23 · 32

(5, 1, 0, 0) 25 · 3
(5, 0, 1, 0) 25 · 5

2 (6, 1, 1, 0) 26 · 3 · 5
(δ, 1, 0, 1), 1 ≤ δ ≤ 6 2δ · 3 · 17, 1 ≤ δ ≤ 6
(δ, 0, 1, 1), 1 ≤ δ ≤ 6 2δ · 5 · 17, 1 ≤ δ ≤ 6

3 (0, 1, 1, 1) 3 · 5 · 17
(7, 1, 1, 1) 27 · 3 · 5 · 17

which are exactly the 22 elements of F1.
When t = 0, s 6= 0, the equation (??) simplifies to

(5) Θ · Λ · γ1 · · · γr+s = r + s + min{1, γ0}+ 2,
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where

Θ =

{
1 if p2|n;

2 if p2 - n;
Λ = max{τ(λ(2γ0)), 2αr + 1, βs + 1},

and the middle term is omitted if r = 0. In such a case, we have that
p - n and s ≤ βs ≤ (s + min{1, γ0})/2. This is only possible for n even
and s = βs = 1. This implies that n = 2γ0(2p + 1) with γ0 = 1, 2, 3,
which are exactly the elements of I1.

Assuming r > 0, the left hand side of (??) is greater than or equal
to 2αr + βs + 2, which implies that 2αr ≤ r + min{1, γ0}. From the last
inequality, it follows that r ≤ 2 + min{1, γ0}.

We distinguish the two sub-cases p = 3 and p > 3. In the first sub-
case, s ≤ r + min{1, γ0} and βs ≤ (r + s + min{1, γ0})/2. This implies
that

n = 2δ0 · 3δ1 · 5δ2 · 7δ3 · 13δ4 .

In this sub-case, all possible solutions of τ(λ(n)) = ω(n) + 2 are:

(r, s) (δ0, δ1, δ2, δ3, δ4) n
(1, 1) (0, δ, 0, 1, 0), δ = 1, 2 3 · 7, 32 · 7
(1, 2) (δ, 1, 0, 1, 1), 1 ≤ δ ≤ 4 2δ · 3 · 7 · 13

(δ, 2, 0, 1, 1), 1 ≤ δ ≤ 4 2δ · 32 · 7 · 13
(δ, 0, 1, 1, 1), 1 ≤ δ ≤ 4 2δ · 5 · 7 · 13

(2, 2) (0, 1, 1, 1, 1) 3 · 5 · 7 · 13
(0, 2, 1, 1, 1) 32 · 5 · 7 · 13

(2, 1) (δ, 1, 1, 1, 0), 1 ≤ δ ≤ 4 2δ · 3 · 5 · 7
(δ, 2, 1, 1, 0), 1 ≤ δ ≤ 4 2δ · 32 · 5 · 7
(δ, 1, 1, 0, 1), 1 ≤ δ ≤ 4 2δ · 3 · 5 · 13
(δ, 2, 1, 0, 1), 1 ≤ δ ≤ 4 2δ · 32 · 5 · 13

which are exactly the 32 elements of F2.
In the sub-case r > 0, s > 0, t = 0, p > 3, we have βs ≥ 2s − 1.

Thus,

2αr + 2s + 1 ≤ 2αr + βs + 2 ≤ r + s + min{γ0, 1}+ 2,

and s ≤ r + 1 + min{γ0, 1} − 2αr ≤ 1, which implies that s = 1 and
β1 ≤ 2.

Note also that αr ≤ 1 and r cannot be 3 since this would imply
s = 1, 2αr + 1 ≥ 5, τ(λ(n)) ≥ 10, and ω(n) ≥ 8, which is impossible
because ω(n) ≤ r + s + 3 ≤ 7.

Therefore,

n = 2δ0 · 3δ1 · 5δ2 · (2β1p + 1)δ3 ,
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with p > 3. If 52 | n, then we have the solutions n = 2α · 3 · 52 · 11, α =
1, 2, 3, 4, which are exactly the elements of F3, while if 52 - n, then
we have the solutions n = 3 · (2p + 1), which are elements of I2, and
n = 2α · 3 · 5 · (2β + 1), α = 1, 2, 3, 4, and β = 1, 2, which are elements
of I3.

The last case to consider is when t > 0, so that there is a prime
dividing n of the form 2β · p2 + 1. Now equation τ(λ(n)) = ω(n) + 2 is
equivalent to

(6) Θ · Λ · γ1 · · · γr+s+t = r + s + t + min{1, γ0}+ 2,

where

Θ =


1 if p3 | n;

3/2 if p2‖n;

3 if p2 - n;

and Λ = max{τ(λ(2γ0)), 2αr +1, βs +1, δt +1}. Here, the terms 2αr +1
(resp. βs + 1) are to be omitted if r = 0 (resp. s = 0).

We claim that r, s 6= 0, and we will show this later. Therefore, from
(??), we deduce that

2αr + βs + δt + 3 ≤ r + s + t + min{1, γ0}+ 2.

On one side, the above implies that 2αr ≤ r − 1 + min{1, γ0}, so that
γ0 ≥ 1 and either r = 1, α1 = 0 or r = 2, α2 = 1, α1 = 0. On another
side, the above implies that s + t ≤ βs + δt ≤ 2r.

If r = 1, then s = t = βs = δt = 1, and since 2p2 + 1 is prime, we
necessarily have p = 3. Hence,

n = 2γ0 · 3γ1 · 7γ2 · 19γ3 ,

and the only solutions of τ(λ(n)) = 6 of the above form are the first 9
elements of F4.

If r = 2, then 4 ≤ s + t ≤ βs + δt ≤ 4. This implies that s = t = 2
and (β1, β2, δ1, δ2) = (1, 2, 1, 2), so that again p = 3,

n = 2γ0 · 3γ1 · 5γ2 · 7γ3 · 13γ3 · 19γ4 · 37γ5 ,

and the only solutions of τ(λ(n)) = 9 of the above form are the last 12
elements of F4.

Finally, we need to prove the claim r, s 6= 0. If r = 0, s 6= 0, then
from (??) we deduce that

3(s + t + 2)/2 ≤ 3(βs + δt + 2)/2 ≤ s + t + 3,

which implies s + t ≤ 0, which is a contradiction. A similar argument
rules out the possibility r = 0 and s = 0. Lastly, if r 6= 0 and s = 0,
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then from (??) and from δt ≥ t we deduce that

3(2αr + t + 2)/2 ≤ r + t + 3,

which is again a contradiction and ends the proof of the proposition.
�

3. Lower bounds on the counting functions of Ak

Theorem 1. Ak is nonempty for all nonnegative integers k.

Proof. Let p1 = 3, p2 = 5, p3 = 13 and p4 = 31. Then, for each m ≥ 3
and for each t ∈ {4, 5, 6, 7} the number n = 2m+1 · 7 · 11 · p1 · · · pt−3

verifies ω(n) = t and τ(λ(n)) = τ(2m−1 · 3 · 5) = 4m.
Hence, τ(λ(n))− ω(n) = 4(m− 1)− (t− 4) can assume all possible

values greater than or equal to 8.
Finally, 3 ∈ A0, 4 ∈ A1, 5 ∈ A2, 7 ∈ A3, 17 ∈ A4, 13 ∈ A5,

62 ∈ A6, and 31 ∈ A7, which completes the proof. �

In what follows, we show that if k is sufficiently large, then Ak con-
tains “many” elements.

Theorem 2. For all k 6= 0, 1, 2, 3, 4, we have the lowerbound

#Ak(x) �k
x

(log x)2
as x →∞.

Proof. The proof uses the famous Theorem of Chen that we state in
the following form (see [?], or Lemma 1.2 in [?], or Chapter 11 in [?]).

Lemma 1. Let a ∈ N be an even number. There exists a constant
c = c(a) such that if x > x0(a), then the number of primes p ∈ [x/2, x]
such that p ≡ 1 (mod a) and (p− 1)/a has at most two prime factors
each of which exceeds x1/10 is at least cax/(log x)2.

We write k = 4s + r, with s ≥ 1, r ∈ {0, 1, 2, 3} and distinguish the
two cases:

• Case 1. r 6= 3;
• Case 2. r = 3.

In Case 1, we apply Chen’s Theorem with the choice a = 2s and
obtain that there are either at least Ma �a x/(log x)2 primes p ≤ x/42
with p − 1 = 2s+2q and q prime, or at least Na �a x/(log x)2 primes
p ≤ x/42 with p−1 = 2sq1q2, where q1 and q2 are distinct primes which
exceed x1/10.
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Assume that we are in the first instance. Then consider the Ma

integers n ≤ x of the form n = 7pT , where

T =


1 if r = 2;

2 if r = 1;

6 if r = 0.

With these choices, we have that ω(n) = 4 − r, λ(n) = 2s · 3 · q and
τ(λ(n)) = 4(s + 1), therefore τ(λ(n))− ω(n) = 4s + r = k.

Assume now that we are in the second instance. Then consider the
Na integers n ≤ x of the form n = 2pT where

T =


1 if r = 2;

3 if r = 1;

15 if r = 0.

For s ≥ 2 and for (s = 1 and r 6= 0), we have that ω(n) = 4−r, λ(n) =
2s · q1 · q2 and τ(λ(n)) = 4(s + 1), so that again τ(λ(n))− ω(n) = k.

In Case 2, we apply Chen’s Theorem with the choice a = 2s+1 and
obtain that either there are at least Ma �a x/(log x)2 primes p ≤ x/510
with p − 1 = 2s+1q and q prime, or at least Na �a x/(log x)2 primes
p ≤ x/510 with p− 1 = 2s+1q1q2, and q1 and q2 distinct primes which
exceed x1/10.

Assume that we are in the first instance. Then consider the Ma

integers n ≤ x of the form n = 210p. For s ≥ 1, we have that ω(n) = 5
and τ(λ(n)) = 4(s + 2), so that τ(λ(n))− ω(n) = 4s + 3 = k.

Assume that we are in the second instance. Then consider the Na

integers n ≤ x of the form n = 510p. For s ≥ 3, we have that ω(n) = 5
and τ(λ(n)) = 4(s + 2), so that again τ(λ(n))− ω(n) = 4s + 3 = k.

Next assume that k = 7. Then we apply Chen’s Theorem with the
choice a = 2 and obtain that either there are at least Ma �a x/(log x)2

primes p ≤ x/192 with p − 1 = 2q and q prime, or at least Na �a

x/(log x)2 primes p ≤ x/192 with p− 1 = 2q1q2, and q1 and q2 distinct
primes which exceed x1/10.

Assume that we are in the first instance. Then consider the Ma

integers n ≤ x of the form n = 263p. We have that ω(n) = 3 and
τ(λ(n)) = τ(24p), so that τ(λ(n))− ω(n) = 10− 3 = 7.

Assume that we are in the second instance. Then consider the Na

integers n ≤ x of the form n = p = (2q1q2 +1). We have that ω(n) = 1
and τ(λ(n)) = 8, so that again τ(λ(n))− ω(n) = 8− 1 = 7.

Finally, we treat the case k = 11. Here, we apply Chen’s Theo-
rem with the choice a = 4 and deduce that either there exist M �
x/(log x)2 primes p ≤ x/4510, such that p − 1 = 4q, with q prime, or
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there exist N � x/(log x)2 primes p ≤ x/4510, such that p−1 = 4q1q2,
where q1 and q2 are distinct primes which exceed x1/10.

If we are in the instance when M � x/(log x)2, then we note that
for large x the M positive integers n = 2 · 5 · 11 · 41 · p = 4510p,
where p ≤ x is of the form 4q + 1, are all ≤ x, have ω(n) = 5 and
λ(n) = 23 · 5 · q, therefore τ(λ(n)) = 16 = ω(n) + 11. If we are in the
instance when N � x/(log x)2, then for large x the N positive integers
n = p, where p ≤ x is such that p− 1 = 4q1q2, with distinct primes q1

and q2 which exceed x1/10, have the property that τ(λ(n)) = τ(4q1q2) =
12 = ω(n) + 11. Thus, #A11(x) ≥ max{M, N} � x/(log x)2, which
completes the proof of this theorem. �

The remaining cases are k = 0, 1, 2, 3, 4, need to be treated sep-
arately. Propositions ??, ?? and ?? address the first three cases and
certainly there is no hope even to show that Ak is infinite for k = 0, 1, 2.
While the next result is not such a precise characterization of Ak for
k = 3, 4 as Propositions ??, ?? and ?? for the smaller values of k, its
aim is to show that it is beyond our reach to show that either one of
these two sets is infinite.

Proposition 5. Assume that A3 ∪ A4 is infinite. Then there exists
an even positive integer c such that the set of primes of the form p =
cqβ + 1, with q prime and β ≤ 4 is infinite.

Proof. Assume that n ∈ A3 ∪ A4. Then τ(λ(n)) ≤ ω(n) + 4. Write
m = λ(n) and note that ω(n) is at most the number of divisors of m
of the form p − 1 for some prime p. Hence, m can have at most four
divisors d such that d+1 is composite. Write m = 2α`, where ` is odd.
If α ≥ 9, then 23, 25, 26, 27 and 29 are five divisors of m none of the
form p− 1 for some prime p. Thus, α ≤ 8. If τ(`) ≥ 6, then ` (hence,
m) has at least five odd divisors > 1, and certainly none of them is of
the form p − 1 for some prime p. Thus, τ(`) ≤ 5, which shows that
either ` = qβ for some prime q and some β ≤ 4, or ` = q1q2, where q1

and q2 are distinct primes.
Assume that ` = qβ holds for infinitely many n. Then there exist

infinitely many primes p of the form p − 1 = 2α0qβ for some α0 ∈
{1, . . . , 9}, and β ∈ {1, . . . , 4}, which implies the conclusion of the
proposition.

Assume now that ` = q1q2 holds for infinitely many n. Suppose
further that q1 < q2. We then distinguish two cases. The first case is
when q1 remains bounded for infinitely many such n. Then 2αq1 can
take only finitely many values. Since we have infinitely many values for
n, there must exist some fixed even positive integer c (an even divisor
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of a number of the form 29q1 over all the finitely many possibilities for
q1), such that p − 1 = cq2 holds for infinitely many primes p, which
implies the conclusion of the proposition. The second case is when q1

tends to infinity as n tends to infinity in A3∪A4. If for infinitely many
such n we have that either 2q1 + 1 or 2q2 + 1 is prime, then we get the
conclusion of the proposition with c = 2. Assuming that this is not
the case, we show that we get a contradiction. Note first that α ≤ 3,
for if not 23, q1, q2, 2q1 and 2q2 are five divisors of n none of which
is of the form p − 1 for some odd prime p. Assume now that α = 1.
Then τ(λ(n)) = τ(2q1q2) = 8, therefore ω(n) ≥ 4. Since the only prime
factors of n are in {2, 3, 2q1+1, 2q2+1, 2q1q2+1}, we deduct that one
of 2q1 +1 and 2q2 +1 must be prime, which is a contradiction. Finally,
if α = 2, then τ(λ(n)) = τ(4q1q2) = 12, therefore ω(n) ≥ 8. Since all
the prime factors of n belong to {2, 3, 5, 2q1 + 1, 2q2 + 1, 4q1 + 1, 4q2 +
1, 2q1q2 +1, 4q1q2 +1}, we get again that one of 2q1 +1 or 2q2 +1 must
be a prime, which is the final contradiction. �

4. Upper bounds on the counting functions of Ak

Our first result here shows that numbers n ∈ Ak have ω(n) bounded
in terms of k.

Proposition 6. If n ∈ Ak, then ω(n) ≤ 2(k + 1)2 + 1.

Proof. We use the same idea and notations as in the proof of Proposi-
tion ??. Let n ∈ Ak, and put m = λ(n) = 2α`, where α is a nonnegative
integer and ` is odd. If α ≥ 2k + 3, then 23, 25, . . . , 22k+3 are k + 1
divisors of m none of which is of the form p − 1 for some prime p,
which is a contradiction. If τ(`) ≥ k + 2, then ` (hence, m) has k + 1
odd divisors > 1, and obviously none of them is of the form p − 1 for
some prime p, which is again a contradiction. Hence, α ≤ 2k + 2 and
τ(`) ≤ k + 1, therefore

ω(n) = τ(λ(n))− k = τ(2α`)− k = (α + 1)τ(`)− k

≤ (2k + 3)(k + 1)− k = 2(k + 1)2 + 1.

�

An upperbound for the counting function #Ak(x) of Ak follows from
Proposition ?? with a little extra work. Let us set

bk = 2(k + 1)2 + 3 + blog2(2(k + 1)2 + k + 1)c.

We then have the following result.
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Theorem 3. For all nonnegative integers k we have the upper bound

#Ak(x) �k
x(log log x)bk

(log x)2
as x →∞.

Proof. Let K ≥ 2 be any fixed positive integer. Let πK(x) be the
number of primes p ≤ x such that ω(p − 1) ≤ K. We begin with the
following lemma.

Lemma 2. There exists an absolute constant c0 such that the following
estimate holds

πK(x) � x(log log x + c0)
K+1

(K − 1)!(log x)2
as x →∞.

Proof. Let P(x) = {p ≤ x : ω(p − 1) ≤ K}. Put y = x1/ log log x and
u = log x/ log y = log log x. For a positive integer n we write P (n) for
the largest prime factor of n. Let

Ψ(x, y) = {n ≤ x : P (n) ≤ y}.

By a result of de Bruijn (see [?], as well as Corollary 1.3 of [?], [?] and
Chapter III.5 of [?]), the bound

(7) #Ψ(x, y) ≤ x exp(−(1 + o(1))u log u) <
x

(log x)2

holds as u →∞, where u = log x/ log y, provided that u ≤ y1/2, which
is satisfied for the above choice of y.

Therefore, if P1(x) = P(x) ∩Ψ(x, y), then we have that

#P1(x) � x

(log x)2
.

Now let P2(x) = {p ≤ x : q2 | p− 1 for some q ≥ y}. For a fixed q ≥ y,
the number of 1 < n ≤ x such that q2 | n− 1 and is ≤ x/q2. Thus,

#P2(x) ≤
∑
q≥y

x

q2
� x

∫ ∞

y

dt

t2
� x

y
= o

(
x

(log x)2

)
.

Put P3(x) = P(x)\ (P1(x) ∪ P2(x)). Write p − 1 = Pm, where P =
P (p−1). Since P > y and p 6∈ P2(x), we deduce that P (m) < P . Thus,
ω(m) ≤ K−1. Fix m. By Brun’s sieve (see, for example, Theorem 2.3
in [?]), we have that the number of primes p ≤ x such that p−1 = mP
for some prime P is

� x

ϕ(m)

1

(log x/m)2
� x

ϕ(m)(log y)2
� x(log log x)2

ϕ(m)(log x)2
.



THE EQUATION τ(λ(n)) = ω(n) + k 17

Summing up over all the acceptable values of m, we get

#P3(x) � x(log log x)2

(log x)2

∑
m≤x

ω(m)≤K−1

1

ϕ(m)

≤ x(log log x)2

(log x)2

K−1∑
k=1

∑
m≤x

ω(m)=k

1

ϕ(m)

≤ x(log log x)2

(log x)2

K−1∑
k=1

1

k!

(∑
pα≤x

1

pα−1(p− 1)

)k

� x(log log x)2

(log x)2

K−1∑
k=1

1

k!

(∑
p≤x

1

p− 1
+ O(1)

)k

� x(log log x)2

(log x)2

K−1∑
k=1

1

k!
(log log x + c0)

k−1.

It remains to note that in the above sum the last term dominates as x
tends to infinity. �

We are now ready to prove Theorem ??. Assume that k ≥ 3, since
otherwise the result follows immediately from Propositions ??, ??, ??
and Brun’s sieve even with a smaller bk (i.e., b0 = 0, b1 = 1 and b2 = 1).

Now note that if p | n and n ∈ Ak, then

2ω(p−1) ≤ τ(p− 1) ≤ τ(λ(n)) = ω(n) + k ≤ 2(k + 1)2 + k + 1,

(by Proposition ??), therefore ω(p−1) ≤ K = blog2(2(k+1)2+k+1)c.
Lemma ?? shows that

(8) #{p ≤ x : ω(p− 1) ≤ K} �K
x(log log x)K+1

(log x)2
.

We put Ak,1(x) for the set of n ∈ Ak(x) such that either P ≤ y =
x1/ log log x, or P 2 divides n. As in the proof of Lemma ??,

(9) #Ak,1 �
x

(log x)2
.

Let Ak,2(x) stand for the complement of Ak,1(x) in Ak(x). Now write
n ∈ Ak,1(x) as n = Pm, where P = P (n). So, P > y = x1/ log log x, P 2

does not divide n, and ω(m) = ω(n) − 1 ≤ 2(k + 1)2. Fixing m, the
number of values for P ≤ x/m such that ω(P − 1) ≤ K is, by estimate
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(??),

πK(x/m) �k
x(log log(x/m))K+1

m(log(x/m))2
�k

x(log log x)K+1

m(log y)2

�k
x(log log x)K+3

m(log x)2
.

Summing up the above inequality over all the values of m ≤ x with
ω(m) ≤ 2(k + 1)2, we get that the number of possibilities is

#Ak,2(x) � k
x(log log x)K+3

(log x)2

∑
m≤x

ω(m)≤2(k+1)2

1

m

�k
x(log log x)K+3

(log x)2

2(k+1)2∑
`=0

1

`!

(∑
pα≤x

1

pα

)`

�k
x(log log x)K+3+2(k+1)2

(log x)2
,

which together with (??) completes the proof of this theorem. �

A more careful analysis (along the lines of the proof of Theorem
4.1 in [?]) shows that Theorem ?? holds with a somewhat smaller bk.
Furthermore, it is clear that one can write down a formula for the
implied constant in terms of k. We do not enter into such details.

5. A more general Statement

Let f(x) ≥ 1 be any function which tends to infinity with n and
which is monotonically decreasing for x > x0. Let

(10) Bf = {n : τ(λ(n))− ω(n) < exp((log log n)/f(n))}.
We then show the following result.

Theorem 4. If Bf is the set appearing at (??), then the following
estimate holds

#Bf (x) ≤ x

(log x)2+o(1)
as x →∞.

We start by proving the following lemma:

Lemma 3. Let Pf = {p : ω(p) < 2(log log p)/
√

f(p)}. Then the fol-
lowing estimate holds

(11) #Pf (x) ≤ x

(log x)2+o(1)
as x →∞.
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Proof. Let x be large, put y = x1/ log log x and let

P2(x) = {p ∈ Pf (x) : p− 1 6∈ Ψ(x, y)}.
If p ∈ P2(x), then p− 1 = Qm, where Q = P (p− 1) > y and m ≤ x/y.
Fix m. By Brun’s method, the number of primes Q ≤ x/m such that
p = Qm + 1 is also prime is

� x

ϕ(m)(log(x/m))2
≤ x

ϕ(m)(log y)2
≤ x(log log x)2

ϕ(m)(log x)2
.

Using the minimal order ϕ(m)/m � 1/ log log x of the Euler function
in the interval [1, x], we get that if m is fixed, then the number of
acceptable primes p ∈ P2(x) with (p− 1)/P (p− 1) = m is

� x(log log log x)3

m(log x)2
.

Let M(x) be the set of acceptable values for m. Since ω(p − 1) ≤
2(log log p)/

√
f(p), f is increasing for large x and p > y for all p ∈

P2(x), it follows that

z = max{2(log log p)/
√

f(p) : p ∈ P2(x)} ≤ 2 log log x√
f(y)

= o(log log x)

as x →∞. Furthermore, M(x) ⊆ {m ≤ x : ω(m) ≤ z}. We then get

(12) #P2(x) � x(log log x)3

(log x)2

∑
m∈M(x)

1

m
� x(log log x)3

(log x)2

∑
k≤z

∑
m≤x

ω(m)=k

1

m
.

Put

Sk(x) =
∑
m≤x

ω(m)=k

1

m
.

Clearly, by unique factorization, the multinomial formula and Stirling’s
formula,

(13) Sk(x) ≤ 1

k!

(∑
p≤x

∑
α≥1

1

pα

)k

≤
(

e log log x + O(1)

k

)k

,

where we also used the obvious fact that∑
p≥2

∑
α≥2

1

pα
= O(1),

together with Mertens’s formula∑
p≤x

1

p
= log log x + O(1).
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Since for every fixed value of A > 1 the function (eA/t)t is increasing
for t < A, it follows that

Sk(x) ≤
(

e log log x + O(1)

z

)z

= exp (z log(e(log log x + O(1))/z))

≤ exp

(
2 log log x√

f(y)
log(O(

√
f(y)))

)
= exp(o(log log x))

= (log x)o(1), for k ≤ z.(14)

Hence, by inequalities (??) and (??) and estimate (??), we get

#P2(x) � x(log log x)3

(log x)2

∑
k≤z

Sk(x)

≤ x(log log x)4

(log x)2
max{Sk(x) : k ≤ z} =

x

(log x)2+o(1)
,

which together with estimate (??) implies inequality (??) and com-
pletes the proof of the lemma. �

By partial summation, we immediately get

Corollary 2. If Pf is the set of primes appearing in Lemma ??, then∑
p∈Pf

1

p
= O(1).

Proof of Theorem ??. Let again y = x1/ log log x, w = x/(log x)2 and

B1(x) = {n ≤ w} ∪Ψ(x, y).

It follows by inequality (??) that

(15) #B1(x) ≤ 2x

(log x)2

once x is large. Let B2(x) = {n ≤ x : ω(n) > 10 log log x}. It follows
from results of Norton [?] that

#B2(x) � x

(log x)λ
,

where λ = 1 + 10 log(10/e) > 2, therefore

(16) #B2(x) <
x

(log x)2
.

Now put

B3(x) = Bf (x)\(B1(x) ∪ B2(x)),
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and assume that n ∈ B3(x). Replacing f(x) by min{f(x), log log log x},
we may assume that f(x) ≤ log log log x. Then p−1 | λ(n) for all prime
factors p of n, therefore

2ω(p−1) ≤ τ(λ(n)) ≤ ω(n) + exp((log log n)/f(n))

< 10 log log x + exp((log log x)/f(w))

< exp

(
1.1(log log x)

f(w)

)
,

so

(17) ω(p− 1) <
1.6(log log x)√

f(w)
,

where we used the fact that 1.1/ log 2 < 1.6. Let B4(x) = {n ∈ B3(x) :
P (n) > w}. Since w ≥ p/(log p)2 holds for all p ∈ [w, x] once x is large,
it follows that if p = P (n) for n ∈ B4(x), then the inequality

ω(p− 1) <
1.6(log log x)

f(p/(log p)2)
<

2(log log p)√
g(p)

,

holds for large x, where g is the function g(t) = (f(t/(log t)2))2, which
is increasing for large t. Thus, p ∈ Pg. Let us now write n = Pm,
where m < x/p < (log x)2, and let us fix m. Then p ∈ Pg(x/m) and,
by Lemma ??, the number of such choices for p is

#Pg(x/m) ≤ x

m(log x/m)2+o(1)
=

x

m(log x)2+o(1)
.

Summing up the above inequality for m ≤ (log x)2, we get

#B4(x) ≤
∑

m≤(log x)2

#Pg(x/m)

≤ x

(log x)2+o(1)

∑
m≤(log x)2

1

m

=
x

(log x)2+o(1)
,(18)

because ∑
m≤(log x)2

1

m
� log log x = (log x)o(1).

From now on, we are assuming that n ∈ B5(x) = B3(x)\B4(x). Let
n = Pm, where P = P (n) ∈ [y, w]. Since 1.6 log log x < 2 log log y ≤
2 log log P for large x, and f(w) ≥ f(P ), we get that

ω(P − 1) <
1.6(log log x)

f(w)
<

2(log log P )

f(P )
.
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In particular, P ∈ Pf2 . By Lemma ??, we get that if m ≤ x/y is fixed,
then the number of choices for P is at most

#Pf2(x/m) ≤ x

m(log(x/m))2+o(1)
≤ x

m(log y)2+o(1)
≤ x

m(log x)2+o(1)
,

where we used the facts that x/m ≥ y and log y = log x/ log log x =
(log x)1+o(1). Let M(x) be the set of acceptable values of m. Then

(19) #B5(x) ≤
∑

m∈M(x)

x

m(log x)2+o(1)
≤ x

(log x)2+o(1)

∑
m∈M(x)

1

m
.

Let Q(x) be the set of primes dividing some m ∈ M(x). Note that
Q(x) consists primes q ≤ x satisfying the inequality (??). We put
v = exp(exp((log log x)/f(w))) and split the primes in Q into two
subsets as follows:

• Q1 = {q ≤ v} ∩ Q.
• Q2 = Q∩ [v, w].

Note that if q ∈ Q2, then

2 log log q√
f(q)

≥ 2 log log x√
f(q)f(w)

≥ 2 log log x

f(w)
> ω(q − 1),

therefore Q2 ⊂ Pf . This argument shows that

∑
m∈M(x)

1

m
≤

∏
q∈Q1∪Q2

(∑
α≥0

1

qα

)

≤ exp

(∑
q∈Q1

1

q
+
∑
q∈Q2

1

q
+ O

(∑
q≥2

∑
α≥2

1

qα

))
.(20)

Since ∑
q∈Q1

1

q
≤
∑
q≤v

1

v
= log log v + O(1) = o(log log x)

(by Mertens’s formula),∑
q∈Q2

1

q
≤
∑
q∈Pf

1

q
= O(1)

(by Corollary ??), and ∑
q≥2

∑
α≥2

1

qα
= O(1),
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we get from estimate (??) that∑
m∈M(x)

1

m
≤ exp(o(log log x)) = (log x)o(1),

which together with (??) gives

(21) #B5(x) ≤ x

(log x)2+o(1)
.

Since B3(x) ⊆ B4(x) ∪ B5(x), we get, by estimates (??) and (??), that

(22) #B3(x) <
x

(log x)2+o(1)
,

which together with estimates (??) and (??) completes the proof of
this theorem. �

6. Average and normal orders of τ(λ(n))− ω(n)

Our last result addresses average and normal orders of the function

h(n) = τ(λ(n))− ω(n).

Theorem 5. (i) There exist positive constants c0, c1 such that the
inequalities

(23) exp

(
c0

√
log x

log log x

)
≤ 1

x

∑
n≤x

h(n) ≤ exp

(
c1

√
log x

log log x

)
hold for all x ≥ 1.

(ii) The inequality

h(n) = 20.5(1+o(1))(log log n)2

holds for almost all positive integers n.

Proof. (i) In [?], it is shown that inequalities (??) hold with some con-
stants c0 and c1 for the function τ(λ(n)) = h(n) + ω(n). Since the

average value of ω(n) is log log x = exp(o(
√

log x/ log log x)), the re-
quired inequality follows.
(ii) In [?], it is shown that the normal order of both ω(ϕ(n)) and
Ω(ϕ(n)) is 0.5(log log n)2. Since ω(λ(n)) = ω(ϕ(n)), while Ω(λ(n)) ≤
Ω(ϕ(n)), it follows that the normal order of both ω(λ(n)) and Ω(λ(n))
is also 0.5(log log n)2. Finally, since

2ω(λ(n)) ≤ τ(λ(n)) ≤ 2Ω(λ(n)),

and since the normal order of ω(n) is log log n = 2o((log log n)2), the de-
sired inequalities follow. �
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7. Comments and Remarks

We suspect that for every k ≥ 1 there exist constants ak > 0 and
ck ≥ 0 such that

(24) #Ak(x) = ak(1 + o(1))
x(log log x)ck

(log x)2
as x →∞.

Widely believed conjectures concerning the distribution of Sophie Ger-
main primes p together with Proposition ?? seem to support the above
conjecture (??) at k = 1 (with c1 = 0 and some a1 > 0). Note that an
upper bound of the above shape is given in Theorem ??.

We would like to leave this conjecture as an open problem.
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