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Abstract

We obtain an asymptotic formula for the number of square-free values among p � 1; for
primes ppx; and we apply it to derive the following asymptotic formula for LðxÞ; the number
of square-free values of the Carmichael function lðnÞ for 1pnpx;

LðxÞ ¼ ðkþ oð1ÞÞ x

ln1�a x
;

where a ¼ 0:37395y is the Artin constant, and k ¼ 0:80328y is another absolute constant.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Recall that an integer sX1 is called square-free if it is not divisible by the square of
any prime number. We denote by S the set of square-free positive integers, and let
jðnÞ to be the number of positive mpn; coprime to n:

Clearly, if n has at least two odd prime divisors then 4jjðnÞ: The same way, if p3jn
for a prime p then p2jjðnÞ: Thus, for nX5; jðnÞAS if and only if n is of the form

n ¼ p2; 2p2; 2p or n ¼ p; where pX3 is a prime such that p � 1AS: Thus, denoting by
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FðxÞ the number of positive integers npx for which jðnÞAS; we obtain

FðxÞ ¼ psfðxÞ þ psfðx=2Þ þ Oðx1=2=ln xÞ; ð1Þ

where psfðxÞ is the number of primes ppx for which p � 1AS:
First, we recall the asymptotic formula psfðxÞBapðxÞ; see [15] and Lemma 3

below, which shows that the density of primes p with p � 1AS is given by the Artin
constant

a ¼
Y

p

1� 1

pð p � 1Þ

� �
¼ 0:37395y;

see [4,12]. Together with (1), this estimate immediately produces an asymptotic
formula for FðxÞ:
We recall that the Carmichael function lðnÞ is defined to be the largest possible

order of any element in the unit group of the residue ring modulo nX1: More
explicitly, for a prime power pn; we have

lð pnÞ ¼ pn�1ð p � 1Þ if pX3 or np2;

2n�2 if p ¼ 2 and nX3;

�

and for arbitrary nX2;

lðnÞ ¼ lcmðlð pn1
1 Þ;y; lð pns

n ÞÞ;

where n ¼ pn1
1 ypns

s is the prime factorization of n: One also has lð1Þ ¼ 1:

We use the asymptotic formula for FðxÞ in combination with a theorem of Wirsing

in order to derive that LðxÞBk x lna�1 x; for some constant k40; where LðxÞ is the
number of positive integers npx; for which lðnÞAS:
We remark that various arithmetic properties of jðnÞ and lðnÞ have been

considered in the literature, see [2,7–10,14] and references therein, but the question
about square-freeness appears to be new.
Throughout the paper, the implied constants in symbols ‘O’ and ‘5’ may depend,

where obvious, on a certain parameter A40; and are absolute otherwise (we recall
that U5V is equivalent to U ¼ OðVÞ). As usual, p always denotes a prime number,
and pðxÞ is the number of primes ppx:

2. Necessary tools

Our results depend on some analytic results.
We recall that an arithmetic function f ðnÞ is called multiplicative if f ðnmÞ ¼

f ðnÞf ðmÞ for any integers n and m with gcdðn;mÞ ¼ 1: Then the theorem of Wirsing
[20] can be formulated as follows.
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Lemma 1. Assume that a real-valued multiplicative function f ðnÞ satisfies the following

conditions:

* f ðnÞX0; n ¼ 1; 2;y;
* f ð pnÞpc1c

n
2; n ¼ 2; 3;y; for some constants c1; c2 with c2o2;

* there exists a constant t40 such that

X
ppx

f ð pÞ ¼ ðtþ oð1ÞÞ x

ln x
:

Then for any xX0;

X
npx

f ðnÞ ¼ 1

egtGðtÞ þ oð1Þ
� �

x

ln x

Y
ppx

XN
n¼0

f ð pnÞ
pn ;

where g is the Euler constant, and

GðsÞ ¼
Z

N

0

e�tts�1 dt

is the gamma function.

Finally, we use partial summation in the following form.

Lemma 2. For any function gðtÞ; having a continuous derivative in the interval ½1; n	;
and any sequence a1;y; an; we have

Xn

k¼1
akgðkÞ ¼ AðnÞgðnÞ �

Z n

1

AðtÞg0ðtÞ dt;

where

AðTÞ ¼
X

1pkpT

ak:

The following result has appeared already, without a proof, in [15]. A proof,
however, can easily be obtained from the representation

csfðxÞ ¼
X

1pmpx1=2

mðmÞcðx;m2; 1Þ

¼
X

1pmpx1=5

mðmÞcðx;m2; 1Þ þ
X

x1=5ompx1=2

mðmÞcðx;m2; 1Þ;
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where

csfðxÞ ¼
X

1pnpx
nAS

LðnÞ and cðx; k; lÞ ¼
X

1pnpx
n�l ðmod kÞ

LðnÞ

and LðnÞ is the von Mangoldt function, that is, LðnÞ ¼ ln p if n is a power of a prime
p and LðnÞ ¼ 0 otherwise. Now one can apply the Bombieri–Vinogradov theorem,

see [5] to the first sum and the trivial bound cðx; k; lÞpxk�1ln x to the second sum.
Finally, partial summation produces the following statement.

Lemma 3. For any constant A40 we have

psfðxÞ ¼ apðxÞ þ O
x

lnA x

� �
:

In particular, from (1), Lemma 3 and the prime number theorem we conclude that

FðXÞ ¼ 3a
2
pðxÞ þ Oðx ln�2 xÞ:

Now we establish an analogue of the Mertens formula.

Lemma 4. There exists an absolute constant Z such that

Y
ppx

p�1AS

1þ 1

p
þ 1

p2

� �
¼ Z lna x þ Oðlna�1 xÞ: ð2Þ

Proof. In view of the fact that

ln 1þ 1

p
þ 1

p2

� �
¼ 1

p
þ O

1

p2

� �
;

it is equivalent to prove that there exists an absolute constant z such that

rsfðxÞ ¼
X
ppx

p�1AS

1

p
¼ a ln ln x þ zþ Oðln�1 xÞ:

Observe that

X
ppx

p�1AS

ln p

p
¼ psfðxÞ ln x

x
þ
Z x

2

ln t � 1

t2
psfðtÞ dt ¼ a

Z x

2

ln t � 1

t2
pðtÞ dt þ Oð1Þ:
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The same arguments also imply that

X
ppx

ln p

p
¼

Z x

2

ln t � 1

t2
pðtÞ dt þ Oð1Þ

and the Mertens theorem, see Theorem 3.1 of Chapter 1 in [19], yields

WsfðxÞ ¼
X
ppx

p�1AS

ln p

p
¼ a ln x þ rðxÞ;

where rðxÞ ¼ Oð1Þ: Applying Lemma 2 we derive

rsfðxÞ ¼
WsfðxÞ
ln x

þ
Z x

2

WsfðxÞ
t ln2 t

dt

¼ a ln x þ rðxÞ
ln x

þ
Z x

2

a ln t þ rðtÞ
t ln2 t

dt

¼ a ln ln x � a ln ln 2þ aþ
Z x

2

rðtÞ
t ln2 t

dt þ Oðln�1 xÞ

¼ a ln ln x � a ln ln 2þ aþ
Z

N

2

rðtÞ
t ln2 t

dt þ Oðln�1xÞ

(here the existence of the improper integral follows from rðtÞ ¼ Oð1Þ). &

3. Square-free values of the Carmichael function

We note that lðnÞAS if and only if lð pni

i ÞAS for every i ¼ 1;y; s; where n ¼
pn1
1 ypns

n is the prime factorization of n: Hence lðnÞAS if and only if n is not divisible

by 16 and is not divisible by p3 for pX3 and is composed of primes p with p � 1AS:
Thus Lemmas 1 and 3 imply an asymptotic result concerning LðxÞ:

Theorem 5. Let k ¼ 15Z=14egaGðaÞ where a is the Artin constant, g is the Euler

constant and Z is defined in Lemma 4. Then

LðxÞ ¼ ðkþ oð1ÞÞ x

ln1�a x
:

Proof. Let us consider the multiplicative function f ðnÞ for which f ð p2Þ ¼ f ð pÞ ¼ 1 if
p � 1AS and f ð pnÞ ¼ 0 if either nX3 or p � 1eS; for each odd prime p: We also
put f ð2Þ ¼ f ð4Þ ¼ f ð8Þ ¼ 1 and f ð2nÞ ¼ 0 if nX4:
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Therefore, for nX5; lðnÞAS if and only if f ðnÞ ¼ 1: From Lemma 3 we see that
the conditions of Lemma 1 are satisfied with t ¼ a; so we have

LðxÞ ¼
X
npx

f ðnÞ þ Oð1Þ ¼ 1

egaGðaÞ þ oð1Þ
� �

x

ln x

Y
ppx

XN
n¼0

f ð pnÞ
pn

¼ 1

egaGðaÞ þ oð1Þ
� �

15x

8 ln x

Y
3pppx
p�1AS

1þ 1

p
þ 1

p2

� �

¼ 1

egaGðaÞ þ oð1Þ
� �

15x

14 ln x

Y
2pppx
p�1AS

1þ 1

p
þ 1

p2

� �
:

Using (2) we derive the result. &

We now derive an upper bound for the number of square-free values of lðnÞ in a
short interval. Let Lðx; yÞ denote the number of positive integers x � ypnpx; for
which the Carmichael function lðnÞAS:

Theorem 6. For any x4y41 we have

Lðx; yÞ5 y

ln1�a y
:

Proof. We merely drop the condition that relevant values of n must not be divisible
by a cube of a prime and write Lðx; yÞpSðx; yÞ; where Sðx; yÞ is the number of
positive integers x � ypnpx such that gcdðn; pÞ ¼ 1 for any p with p � 1eS:
Combining the first bound of Corollary 4 with Corollary 2.3.1 in Section 2.6 of [11]
we finish the proof. &

4. Calculations

Unfortunately, it seems that there are no closed form analytic expressions for the
constants a; Z and k:
Using PARI [3], and Lemma 4 (with primes up to 4 � 108) we have obtained the

following approximation for Z:

*Z ¼ 1

ðln 4 � 108Þa
Y

pp4�108
p�1AS

1þ 1

p
þ 1

p2

� �
¼ 2:1171y

which implies

*k ¼ 15*Z
14egaGðaÞ ¼ 0:80328y : ð3Þ
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We have also computed (in a rather straightforward fashion, without any serious

efforts to optimize the calculations) *kðxÞ ¼ LðxÞx�1 ln1�a x which exhibits a rather
slow convergence to k:

Furthermore, we have also computed

*kðx; yÞ ¼ ðLðx þ yÞ � LðxÞÞððx þ yÞ lna�1ðx þ yÞ � x lna�1 xÞ�1;

where the convergence to the value (3) seems somewhat faster.

We remark that observing how calculations behave, we give much more trust to the
numerical value of k which follows from (3) rather than to the approximations from
the above tables.

5. k-Free values of the Carmichael function

We recall that an integer is said to be k–free if it is not divisible by the kth power of
any prime number.
The feature of the Carmichael function that allowed us to prove Theorem 5 is that

the arithmetic function m2ðlðnÞÞ is multiplicative. The same fact holds for k-free
values of lðnÞ: More precisely, if Sk is the set of integers which are k-free, then

lðnÞASk if and only if lð pk1
i ÞASk for every i ¼ 1;y; n where n ¼ pk1

1 ypkn
n :
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One observes that the same arguments which give Lemma 3, which has been
outlined in Section 2, gives for any A40;

#f ppx j pASkg ¼ akpðxÞ þ O
x

lnA x

� �
;

where

ak ¼
Y

p

1� 1

pk�1ð p � 1Þ

� �
: ð4Þ

Accordingly, we obtain

Y
ppx

p�1ASk

ln 1þ 1

p
þ?þ 1

pk

� �
¼ Zk ln

ak x þ O lnak�1 x
� �

: ð5Þ

Next one notices that, if p43; then lð pmÞASk if and only if mpk and p � 1ASk

while lð2mÞASk if and only if mok þ 3: Now the application of the Wirsing
theorem given in Lemma 1 yields:

Theorem 7. Let

kk ¼ 2kþ2 � 1

2kþ2 � 2
� Zk

egak GðakÞ
;

where ak is defined in (4) and Zk is defined by (5). Then

LkðxÞ ¼ ðkk þ oð1ÞÞx ln1�ak x:

Interestingly, the problem of enumerating the k-free values of the Euler function
for kX3 seems to be more involved than in the case k ¼ 2: For example, the
corresponding n may have a more complicated structure with up to k prime divisors
p; for which the arithmetic structure of p � 1 must be studied simultaneously.

6. Remarks

The proof of Lemma 3 which we have indicated uses only a fraction of the power
of the Bombieri–Vinogradov theorem because we estimate the sums over perfect
squares of a given interval by the sum over all integers of that interval. In fact, there
is a seemingly more suitable form of the Bombieri–Vinogradov theorem where the
summation is taken over any polynomial sequence of moduli, see [6]. Unfortunately,
it does not seem to improve the error terms in our results.
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On the other hand, it is clear that the Extended Riemann Hypothesis implies a
much better error in Lemma 3. Indeed, using the bound

cðx;m2; 1Þ ¼ x

jðm2Þ þ Oðx1=2 ln2 xÞ

(for example, see (1.32) in Chapter 1 of [4] or (5.12) in Chapter 7 of [19]) for mpx1=4;

and cðx; k; lÞpxk�1 ln x; for m4x1=4; we obtain an error term of order x3=4þe for
any e40:
It is also clear that the above method can be used to count square-free and, more

generally, k-free values among p þ a; for any integer a:
We remark that the regular behavior of *kðxÞ � k; exhibited in Section 4 may

suggest the existence of the second main term in the asymptotic formula for LðxÞ:
Maybe more detailed calculations, in a wide range, may help to clarify this matter.
Finally, it would be interesting to study how often the multiplicative order lgðnÞ of

a given integer gX2 is square-free. The number of prime divisors and the largest
prime divisor of lgðnÞ have been studied in [16,18,1,19], respectively. An asymptotic
formula for the number of primes ppx for which ð p � 1Þ=lgð pÞ is square-free is
given in [17]. Some arithmetic properties of lðnÞ=lgðnÞ have been studied in [13].
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