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Let Ak*(n) be the number of positive integers a coprime to n such that the equa-
tion a�n=1�m1+ } } } +1�mk admits a solution in positive integers (m1 , ..., mk). We
prove that the sum of A2*(n) over n�x is both >>x log3 x and also <<x log3 x.
For the corresponding sum where the a's are counted with multiplicity of the
number of solutions we obtain the asymptotic formula. We also show that
Ak*(n)<<n:k+= where :k is defined recursively by :2=0 and :k=1&(1&:k&1)�
(2+:k&1). � 2000 Academic Press

1. INTRODUCTION

An ``Egyptian fraction representation'' of a given rational a�n is a solution
in positive integers of the equation

a
n

=
1

m1

+ } } } +
1

mk
. (1)
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In case k=2 we shall say it is a binary representation. A variety of ques-
tions about these representations have been posed and studied. Some of
these require the mi to be distinct but we shall not impose such a condition.
We mention only a few of the many references and refer to the book by
Guy [2] for a survey on this topic and a more extensive list of references.

As one example, a well-known conjecture of Erdo� s, Straus and Schinzel
which is concerned with the ``ternary'' case states that when k=3 and a=4
the equation (1) has a solution for every given natural number n>1. It is
easy to translate this into the problem of finding integer points on a family
of rational surfaces. Evidence for this conjecture was provided by Vaughan
[5], wherein, as an application of the large sieve it is shown that, if Ea(x)
counts the number of n�x for which the equation a�n=1�m1+1�m2+
1�m3 does not have a solution, then

Ea(x)<<x exp(&C(a) log2�3 x).

Here C(a) is a positive number depending at most on a. His result was
later extended by Viola [6] to the case of general k.

In this note we change the point of view and instead of considering a
fixed and n varying, we let n be fixed and vary a. To this purpose, let us
set

Ak(n)=*[a, equation (1) has a solution].

Ak*(n)=*[a, (a, n)=1, equation (1) has a solution].

In the binary case k=2 we shall suppress the subscript and simply write
A(n), A*(n). Let us note that trivially Ak*(n)�Ak(n)�kn and that

Ak(n)= :
d | n

Ak*(d ). (2)

Furthermore Ak(n)�Ak&1(n), since any representation of length k&1
gives rise to one of length k by means of the trivial identity

1
m

=
1

m+1
+

1
m(m+1)

. (3)

For the most part we shall concentrate on the binary case. Even in this
simplest case there does not seem to be very much known beyond two
easily proven criteria which we record for completeness. The first of these,
which is due to Bartos� [1], is not a very easily accessible reference.

Lemma 1. Given a, n # N, the equation a�n=1�m1+1�m2 has a solution
for integers m1 , m2 if and only if there exist positive integers k1 , k2 such that
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k1 k2=n2, a | n+k1 , and a | n+k2 . In such a case, the solutions are m1=
(n+k1)�a, m2=(n+k2)�a.

Proof. (O) Set ki=ami&n. It is clear that a | n+ki and also that

k1 k2=(am1&n)(am2&n)=n2+a(am1 m2&n(m1+m2))=n2.

(o) It is enough to check that

a
n+k1

+
a

n+k2

=a
2n+k1+k2

n2+k1 k2+n(k1+k2)
=

a
n

. K

We shall make repeated use of the second criterion, which has essentially
been discovered by a number of authors, for instance Rav [3].

Lemma 2. Consider fixed positive integers a, n such that (a, n)=1. Then
there is a one-to-one correspondence between the solutions (m1 , m2) # N2 of
the equation

a
n

=
1

m1

+
1

m2

(4)

and the pairs (u1 , u2) # N2 with (u1 , u2)=1, u1 u2 | n and a | u1+u2 . Further-
more if (a, n)>1 and such a pair (u1 , u2) exists then the equation has a
solution.

Proof of Lemma 2. Consider the map, say _, which takes the solution
(m1 , m2) to the pair (u1 , u2) defined by ui=mi �(m1 , m2) for i=1, 2. Thus
(u1 , u2)=1 and it is clear that this pair cannot occur as the image of any
other solution (for that fraction a�n). Moreover, we have

a
n

=
u1+u2

(m1 , m2) u1u2

.

Since (a, n)=1, we clearly have a | u1+u2 . As (u1 , u2)=1, it follows that
(u1+u2 , u1u2)=1, and so u1 u2 | n. Thus the image of _ lies inside the
targeted set and it remains to show the map is surjective. Suppose then that
there exist u1 , u2 with the described properties. Write n=cu1u2 and
u1+u2=ab for suitable b, c # N. We have

a
n

=
u1+u2

bcu1u2

=
1

bcu1

+
1

bcu2

.

Since the last argument applies irrespective of whether (a, n)=1 this
completes the proof of the lemma. K
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From Lemma 2 we deduce:

Corollary 3. For any =>0 we have

A*(n)<<n= and A(n)<<n=. (5)

Indeed, denoting as usual by {(n) the number of positive integers dividing n,
and using the well-known bound {(n)<<n=, we have

A*(n)� :

(u1 , u2)=1
u1 | n, u2 | n

{(u1+u2)<<n={(n)2<<n3=.

Furthermore, the second bound of (5) follows from the first since, by (2),

A(n)= :
d | n

A*(d )<<n={(n)<<n2=.

Thus, the ``probability'' of a given proper fraction having a representa-
tion of length two is extremely small. In the final section we shall see that
a weaker statement of the same nature holds in the case that ``two'' is
replaced by any fixed k.

We remark that the above bounds can be sharpened slightly. Specifically,
since log {(n)<<log n�log log n, the above argument actually gives

log A*(n)�log A(n)<<log n�log log n.

In this form the bound is best possible apart from the implied constant.
Indeed, from the identity (3) it follows that every a dividing n+1 has a represen-
tation of type (4). Hence A*(n)�{(n+1) so log A*(n)=0(log n�log log n).

On average the above estimates can be further improved. We shall show
the following:

Theorem 4. We have the bounds

x log3 x<< :
n�x

A*(n)<<x log3 x.

Using the theorem together with (2) and a little partial summation it is
easy to give upper and lower bounds for the larger sum �n�x A(n) obtain-
ing in each case the bound x log4 x.

It is (apparently) easier to evaluate the corresponding sum �n�x B*(n)
where B*(n)=�a B*(a, n) counts the number of solutions as a varies
subject to (a, n)=1 rather than just the number of such a for which solu-
tions exist. This is because of Lemma 2 which reduces that problem to
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counting the pairs (u1 , u2). If we normalize by counting only those solu-
tions with m1�m2 the result is

Theorem 5.

:
n�x

B*(n)t
C
8

x log3 x,

where

C= `

p prime
p \1&

1
p+

2

\1+
2
p+ .

Throughout the paper p will always denote a prime. The proof we give
yields the asymptotic formula with an error term which saves a factor
log log x. By modifying the argument somewhat we could save a fixed
power of log x.

We remark that we were able to prove the upper and lower bounds of
Theorem 4 with the explicit constants C�8 and C�162 respectively. It is
obvious that Theorem 5 implies the upper bound in Theorem 4. Nevertheless,
in the next section we shall give a direct proof by a much easier argument.

Much of the early work on this paper was accomplished while D.D. and
J.F. were visiting the Department of Mathematics, Universita� Roma Tre
with partial support of G.N.S.A.G.A., Consiglio Nazionale delle Ricerche.
D.D. and A.H. were also supported in part by NSF�REU, and J.F. by
NSERC Canada.

2. PROOF OF THE UPPER BOUND

In this section we prove that

:
n�x

A*(n)<<x log3 x.

Interchanging the order of summation, we have by Lemma 2

:
n�x

A*(n)� :
a�2x

:

u1+u2#0 (mod a)

u1u2�x
(u1 , u2)=1,

:

n#0 (mod u1u2)

n�x
(n, a)=1,

1.

67BINARY EGYPTIAN FRACTIONS



Even after the condition (n, a)=1 is discarded the innermost sum is
�x�u1 u2 . Hence, discarding also the condition (u1 , u2)=1, we have

:
n�x

A*(n)�2x :
a�2x

:
u1�x

1
u1

:

u2#&u1 (mod a)
u1�u2�x�u1

1
u2

,

where we have labeled so that u1�u2 (doubling to compensate). Therefore,
since u1+u2 #0(mod a) and u2�u1 , we have u2�a�2.

Thus, the inner sum over u2 is

� :
0� j�x

1
(1�2) a+ja

<<
1
a

log x

and so

:
n�x

A*(n)<<x :
a�2x

1
a

:
u1�x

1
u1

log x<<x log3 x. K

3. PROOF OF THE LOWER BOUND

It is also very easy to give a lower bound but, unlike the previous argu-
ment, this one does not lead to the right order of magnitude. Specifically
we have

Proposition 6. �n�x A*(n)>>x log x.

Proof. Take u1= p prime, say with x1�3� p�x1�2. Consider those pairs
(u1 , u2) with u1u2=n and any a | u1+u2 (other than a=1). We have

:
n�x

A*(n)� :
x1�3� p�x 1�2

:

m�0 (mod p)
m�x�p

({( p+m)&1)

>>x log x :
x 1�3� p�x1�2

1
p

>>x log x. K

Alternatively this could be deduced by summing over n the lower bound
A*(n)�{(n+1). We were able to sharpen the bound to

:
n�x

A*(n)>>x
log2 x

log log x
,

using an elaboration of the above simple idea. However the proof is not so
brief, yet the result still falls short of the right order. Hence we do not give
it here.
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The problem with using Lemma 2 to find a lower bound is that some of
the pairs (a, n) give rise to more than one pair u1 , u2 . One might expect
that this multiplicity is, for a>n=, almost always 0 or 1 and therefore that

:
n�x

A*(n)t :
n�x

B*(n).

This would solve our problem in view of our result for the latter sum.
Perhaps this can be proven. Certainly if a is sufficiently large there is no

such multiplicity and this fact will lead us to our lower bound in Theorem 4.
Specifically, we have:

Lemma 7. Suppose (a, n)=1 and a>2n2�3. Then, there can be at most
one solution to

a
n

=
1

m1

+
1

m2

, (6)

where m1�m2 are positive integers.

Proof. First observe that any solution to (6) with m1�m2 must have
m1<n1�3 since

2
n1�3<

a
n

�
2

m1

.

But then we must have that m2>n2�3, since n divides m1m2 and hence is
no larger than it.

Now suppose there is another solution (m$1 , m$2) to (6). Then, m$1{m1 ,
m$1<n1�3 and m$2>n2�3, and so

1
n2�3<

1
m1 m$1

� } 1
m1

&
1

m$1 }= } 1
m2

&
1

m$2 }<
1

n2�3

which is impossible. Therefore there can be no second solution (m$1 , m$2 )
to (6). K

We shall also need several special cases of the following result.

Lemma 8. Suppose that f is a non-negative multiplicative function which
takes the form

f (n)=`
p | n \1+

c( p)
p

+
c( p2)

p2 + } } } + ,
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where

|c( pr)|�Br, (7)

for all but finitely many primes p. Then,

:

( j, b)=1
j� y

f ( ja)= f (a)
.(b)

b
`

p |3 ab \1+
f ( p)&1

p + y+O( f (a) {(b) logB y),

where the implied constant depends at most on f and B. We also have, for any
integer r�0,

:

( j, b)=1
j� y

f ( ja)
ja

(log ja)r=
f (a)

a
.(b)

b
`

p |3 ab \1+
f ( p)&1

p + |
ay

a
(log v)r dv

v

+O \ f (a)
a

((log ay)r+(log({(b) log y))r+1)+ ,

where now the implied constant may also depend on r.

Proof. It is possible to prove a result of this type using contour integra-
tion and this would enable us to sharpen some of our error terms. However
we give an elementary proof more in keeping with the spirit of this work.

Define the multiplicative function g(n)=> p | n ( f ( p)&1) so that

f (n)= :
s | n

+2(s) g(s)

and we have

:

( j, b)=1
j� y

f ( ja)= :

( j, b)=1
j� y

:
s | ja

+2(s) g(s)

= :

( j, b)=1
j� y

:
s | a

+2(s) g(s) :

(t, a)=1
t | j

+2(t) g(t)

= f (a) :

( j, b)=1
j� y

:

(t, a)=1
t | j

+2(t) g(t)

= f (a) :

(t, ab)=1
t� y

+2(t) g(t) :

( j, b)=1

j� y
t | j

1.

70 CROOT ET AL.



To the innermost sum we apply the well-known elementary formula

:

(n, b)=1
n� y

1= y
.(b)

b
+O(min({(b), y)), (8)

obtaining

:

( j, b)=1
j� y

f ( ja)= f (a)
.(b)

b
y :

(t, ab)=1
t� y

+2(t)
g(t)

t

+O \ f (a) {(b) :

(t, ab)=1
t� y

+2(t) g(t)+ . (9)

Let P denote the set of those exceptional primes not satisfying (7),
together with those primes for which p�B. Then P is a finite set and

:
p # P

log(1+| g( p)| )<<f, B 1.

Thus

log } :
t�x

+2(t) g(t) }�log `
p�x \1+

B
p

+
B2

p2 + } } } ++ :
p # P

log(1+| g( p)| )

= :
p�x

B
p

+O(1)=B log log x+O(1)

so we find, on exponentiating both sides, that

:
t�x

+2(t) g(t)<<logB x. (10)

Also, for t a positive squarefree integer,

| g(t)|� `
p # P

| g( p)| `
p | t, p � P \

B
p

+
B2

p2 + } } } +
<<B&(t) `

p | t, p � P

( p&B)&1<<B, =
1

t1&= ,

where &(t)=� p | t1. Thus,

:
�

t=1
(t, ab)=1

+2(t)
g(t)

t
converges,
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and so

:

(t, ab)=1
t� y

+2(t)
g(t)

t
= :

�

t=1
(t, ab)=1

+2(t)
g(t)

t
& :

(t, ab)=1
t> y

+2(t)
g(t)

t

= `
p |3 ab \1+

g( p)
p ++O \ :

t> y

+2(t)
g(t)

t + . (11)

From (10) and partial summation we have that

:
t> y

+2(t)
g(t)

t
<<

logB y
y

.

Combining this with (9) and (11), we find that

:

( j, b)=1
j� y

f ( ja)= f (a)
.(b)

b
`

p |3 ab \1+
g( p)

p + y+O( f (a) {(b) logB y)

giving the first result of the lemma.
The second statement follows from the first by partial summation. For

the smallest part of the range, say t�T, we first use the trivial upper
bound provided by

:

( j, b)=1
j�t

f ( ja)� :
j�t

f ( ja)

and then apply the first statement of the lemma and partial summation to
the latter sum. For the bulk of the range, T�t� y, we apply partial
summation in the usual fashion. Choosing T={(b) which is close to optimal
we obtain the result. K

We are now ready to prove the lower bound in Theorem 4. From
Lemma 7 we can see immediately that for any $>0

:
n�x

A*(n)� :
2x 2�3<a<x 1&3$

:

u1+u2#0 (mod a)

u1 u2<x 1&$, u1�u2
(u1 , u2 )=1

:

n#0 (mod u1u2)

n�x
(n, a)=1

1.

Actually the lemma implies the stronger statement with $=0 but it will
be convenient in what follows to take $ small and positive thus restricting
ourselves to a smaller range of the variables.
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We estimate the innermost sum using Lemma 8. We find that

:
n�x

A*(n)>>x :
2x 2�3<a<x1&3$

.(a)
a

:

(u1 , a)=1
u1�x 1&2$

1
u1

:

u2#&u1 (mod a)

u2�x1&$�u1
(u2 , u1)=1

1
u2

and, writing u1+u2=ma we have

:
n�x

A*(n)>>x :
2x 2�3<a<x1&3$

.(a)
a2 :

(u1 , a)=1
u1�x $

1
u1

:

(m, u1)=1
1�m�x $

1
m

. (12)

Using again Lemma 8 we may bound below the innermost sum in (12)
obtaining

:

(m, u1)=1
1�m�x $

1
m

>>$
.(u1)

u1

log x

and hence

:
n�x

A*(n)>>$ x log x :
2x 2�3<a<x1&3$

.(a)
a2 :

(u1 , a)=1
u1�x $

.(u1)
u2

1

.

For this sum we may again use Lemma 8 to obtain

:

(u1 , a)=1
u1�x$

.(u1)
u2

1

>>
.(a)

a
log y,

and thus,

:
n�x

A*(n)>>$ x log2 x :
2x2�3<a<x 1&3$

.2(a)
a3 .

To this last sum we again apply Lemma 8 to deduce that

:
2x2�3<a<x 1&3$

.2(a)
a3 >>$ log x,

and so, as claimed, that

:
n�x

A*(n)>>x log3 x.

73BINARY EGYPTIAN FRACTIONS



4. COUNTING WITH MULTIPLICITY

In this section we give the proof of Theorem 5. More precisely we prove
the following general result from which Theorem 5 follows as the special
case A=2x.

Proposition 9. If A�- 2x, then

:
n�x

:

(a, n)=1
a�A

B*(a, n)=
C
2

x \1
2

log2 x log A&
1
3

log3 A++O \x
log3 x

log log x+ ,

(13)

and if - 2x�A�2x, then

:
n�x

:

(a, n)=1
a�A

B*(a, n)=
C
2

x \&
log3 x

12
+log x log A log(x�A)+

log3 A
3 +

+O \x
log3 x

log log x+ . (14)

Here C is, as stated earlier, given by

C=`
p \1&

1
p+

2

\1+
2
p+ ,

and the result can be refined to give an error term O(x logM x) for some
M<3, perhaps M=2.

Proof. First suppose A�- 2x. To prove (13) we shall estimate

:
n�x

:

(a, n)=1
a�A

B*(a, n)= :
a�A

:

u1+u2#0 (mod a)

u1 u2�x, u1�u2
(u1 , u2)=1

:

(n, a)=1

n�x
u1u2 | n

1.

The inner sum is equal to

x
u1u2

.(a)
a

+O(min({(a), x�(u1 u2)).
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A little calculation shows that this error term, when summed over a, u1 ,
and u2 , contributes O(x log2 x). Thus,

:
n�x

:

(a, n)=1
a�A

B*(a, n)=x :
a�A

.(a)
a

:

u1+u2#0 (mod a)

u1u2�x, u1�u2
(u1 , u2)=1

1
u1u2

+O(x log2 x).

We make the change of variable from u2 to j where u2= ja&u1 and then
split the range of j, obtaining for the inner sum over u1 , u2

:
- 2x�a< j�x�a

:

(u1 , ja)=1
u1( ja&u1)�x

1
u1( ja&u1)

+ :
1� j�- 2x�a

:

(u1 , ja)=1
u1� ja�2

1
u1( ja&u1)

+O \1
a+ .

In these sums we replace ja&u1 by ja, estimate the error so obtained when
summed over the variables; it is O(x log2 x). This gives

:
n�x

:

(a, n)=1
a�A

B*(a, n)=xS1+xS2+O(x log2 x), (15)

where

S1= :
a�A

.(a)
a

:
- 2x�a< j�x�a

1
ja

:

(u1 , ja)=1
u1�x�( ja)

1
u1

(16)

and

S2= :
a�A

.(a)
a

:
1� j�- 2x�a

1
ja

:

(u1 , ja)=1
u1� ja�2

1
u1

. (17)

From Eq. (8), supplemented by a trivial bound, one deduces using
partial summation that

:

(u1 , ja)=1
u1� y

1
u1

=
.( ja)

ja
log y+O(1+log {( ja)). (18)

We use this to estimate the inner sum in both S1 and S2 . In both instances
the contribution of the error terms, when summed over j and a, is bounded
by

<<x :
a�A

.(a)
a

:
j�x�a

log({( ja))
ja

<<x
log3 x

log log x
.
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We remark that in this last step we have used the trivial bound for the
divisor function log({(m))<<log m�log log m whereas we really need only a
bound for this on average. It is this step which in the current argument sets
the limit for the error term in the proposition (and the theorem).

We are now left to estimate

S$1+S$2= :
a�A

.(a)
a

:
- 2x�a< j�x�a

1
ja

.( ja)
ja

log(x�ja)

+ :
a�A

.(a)
a

:
1� j�- 2x�a

1
ja

.( ja)
ja

log( ja�2).

By Lemma 8 we obtain that

:
- 2x�a< j�x�a

1
ja

.( ja)
ja

log(x� ja)=
ca

8a
log2 x+O \ log2 x

a log log x+ , (19)

where

ca=
6
?2 `

p | a \1+
1
p+

&1

,

and also that

:
1� j�- 2x�a

1
ja

.( ja)
ja

log( ja�2)=
ca

2a \
log2 x

4
&log2 a++O \ log2 x

a log log x+ .

Thus, making these substitutions above, we have

:
n�x

:

(a, n)=1
a�A

B*(a, n)=x :
a�A

ca
.(a)

a2 \log2 x
4

&
log2 a

2 ++O \x
log3 x

log log x+ .

(20)

Applying again Lemma 8 we have

:
a�A

ca
.(a)

a2 logr a=C
logr+1 A

r+1
+O \ logr+1 x

log log x+ , (21)

where C is as before. Applying this for the cases r=0 and r=2 we deduce
from (20) that

:
n�x

:

(a, n)=1
a�A

B*(a, n)=
C
2

x \1
2

log2 x log A&
1
3

log3 A++O \x
log3 x

log log x+ .
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Now suppose that - 2x<A�2x. To prove the propositon in this case
we must estimate

:
n�x

:

(a, n)=1
a�A

B*(a, n)= :
n�x

:

(a, n)=1
1�a�- 2x

B*(a, n)+ :
n�x

:

(a, n)=1
- 2x<a�A

B*(a, n).

For the former of these we have

:
n�x

:

(a, n)=1
1�a�- 2x

B*(a, n)=
5C
48

x log3 x+O \x
log3 x

log log x+ (22)

by the result for the earlier case and it remains to treat the sum

:
n�x

:

(a, n)=1
- 2x<a�A

B*(a, n)= :
- 2x<a�A

:

u1+u2#0 (mod a)

u1 u2�x, u1�u2
(u1 , u2)=1

:

(n, a)=1

n�x
u1u2 | n

1.

We can estimate this in a way analogous to the previous case, and here it
is somewhat simpler since the sum

:
1� j�- 2x�a

:

(u1 , ja)=1
u1� ja�2

1
u1( ja&u1)

,

which appeared earlier, vanishes when a>- 2x. One can show, in exactly
the same way as before, that

:
n�x

:

(a, n)=1
- 2x<a<A

B*(a, n)

=x :
- 2x<a�A

.(a)
a

:
1� j�x�a

1
ja

:

(u1 , ja)=1
u1�x�( ja)

1
u1

+O(x log2 x).

Here the inner sum was estimated in Eq. (18). From this we obtain that the
right side above is

=x :
- 2x<a�A

.(a)
a

:
1� j�x�a

.( ja)
( ja)2 log(x�( ja))+O \x

log3 x
log log x+ .

The inner sum here is similar to (19) and by Lemma 8 is equal to

ca

2a
log2(x�a)+O \ log2 x

a log log x+ ,
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where ca is as defined earlier. Thus we have

:
n�x

:

(a, n)=1
- 2x<a�A

B*(a, n)=x :
- 2x<a�A

ca

2
.(a)

a2 log2(x�a)+O \x
log3 x

log log x+ ,

which by (21) is equal to

C
2

x \&
7
24

log3 x+
log3 A

3
+log x log A log(x�A)++O \x

log3 x
log log x+ .

By combining this with (22) we complete the proof of the proposition.

5. THE CASE k>2

Lacking in this case a characterization comparable to that given in
Lemma 2 we were not even able to prove that Ak*(n)<<n= for k>2
although it is reasonable to suspect that this might be the right estimate.
We can prove the following much weaker result:

Proposition 10. Let k>1 be an integer and let :k be the sequence
defined recursively by :2=0, :k=1&(1&:k&1) �(2+:k&1) so that :3=1�2,
:4=4�5, :5=13�14, ... . Then for every =>0,

Ak(n)<<n:k+=

where the implied constant depends on k and =.

Proof. We have already proven the result for k=2 in (5), so we next
assume that the conclusion holds for k&1. If a # N is such that a�n=
1�m1+ } } } +1�mk where, without loss of generality, m1�m2� } } } �mk

then it is easy to verify that n�a<m1�kn�a.
Let us fix some ;>0 to be determined and consider an integer a>n;. By

the preceding argument, we have that m1�kn1&;. Therefore, applying the
inductive hypothesis to (m1a&n)�m1n=1�m2+ } } } +1�mk , we obtain

Ak(n)� :
m1�kn1&;

Ak&1(nm1)+n;

<<k, = n:k&1+=�2 :
m1�kn1&;

m:k&1+=�2
1 +n;

<<k, = n:k&1+=�2 } n(1&;)(1+:k&1+=�2)+n;.
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We can arrange that the right-hand side is <<k, = n:k+= by choosing

:k=;=:k&1+(1&;)(1+:k&1),

that is :k=(1+2:k&1 )�(2+:k&1) . The assertion follows. K

We remark that it would not be difficult to adapt the proof of the upper
bound to show that

:
n�x

Ak*(n)<<x1+:k log;k x

with an appropriate value ;k . However this is still rather far from the
expected order of magnitude.
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