AVERAGE FROBENIUS DISTRIBUTION FOR INERTS IN Q(i)

CHANTAL DAVID AND FRANCESCO PAPPALARDI

ABSTRACT. Given an integer r, we consider the problem of enumerating the
inert prime ideals p of Q(¢) for which a given elliptic curve E has trace of
Frobenius at p equal to r. We prove that on average the number of such prime
ideals up to z is asymptotic to ¢, loglogx where ¢, is an explicit constant
computed in terms of an Euler product. This result is in accordance with
the standard heuristics. This problem generalises naturally the classical Lang-
Trotter conjecture for elliptic curves over Q.

1. INTRODUCTION

Let E be an elliptic over a number field K/Q with a minimal model over the
ring of integers Ok. Let ®(E/K) be the discriminant of F/K, which is an ideal of
Ok . For each prime p of Ok not dividing D(E/K), E has good reduction modulo
p, and we consider the elliptic curve E}, over the finite field Ok /p with

|Ey(Ox /p)l = N(p) + 1 — ap(E)

where the norm N(p) = pf is the number of elements of the finite field O /p and
degy (p) = f. The trace of Frobenius a,(F) verifies the Hasse bound

lap(B)| < 20/N(p) = 2p7/2.

Note that E has supersingular reduction at p if and only if p | a,(E).
If f is a divisor of [K : Q], r is any integer, and
mpl (x) = #{p | N(p) <=, degg(p) = f, and ap(E) = r},
the classical heuristic argument of Lang—Trotter [13] suggests the following conjec-

ture

Conjecture 1.1. Let K be a number field, and E be an elliptic curve defined over
K without complex multiplication. Let f be a positive integer dividing [K : Q], and
let v be any integer. Then, there exists a constant cg 5 € R=9 such that

VT

if f=1
rf log
g (2) ~ cprg loglogz if f =2
1 otherwise

The constant cg s can be 0, and the asymptotic relation is then interpreted to
mean that there are only finitely many such primes.
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To obtain evidence for this generalised Lang—Trotter conjecture, it is natural to
consider average versions of the conjecture. One considers the function

1 r
LSS
EecC

where C is a suitable set of elliptic curves which may depend on z.
In this paper we will prove the following:

Theorem 1.2. Let r be a non zero integer. Let K = Q(i) and let C, denote the
set of elliptic curves E : Y? = X3 + aX + 8 with a = ay + azi, 8 = by + bai € Z]i]
and max{|a1], |az],|b1], |b2|} < xlogz. Then for r #0,

1

il Z 752 (x) ~ ¢, loglogx
EeCq
where
Lo -1 (—;2))
RS S Y e )
If r =0, then

ﬁ Z 79’ (z) < oo.

EeC,

It is easy to see that the product that defines ¢, converges. Furthermore,

J(EEEC N R C O A Y
11 (I-0i- () 11 <1 I (T))) ~ 1.07820

>2 >2

Let us review the classical case. Let E be an elliptic curve over Q with conductor
Ng. For all primes p of good reduction (i.e. pt Ng), E reduces to an elliptic curve
over [, with p + 1 — a,(E) points where |a,(E)| < 2,/p by Hasse’s Theorem. The
case a,(E) = 0 corresponds to supersingular reduction. Fixing any r € Z, let

Ter(x) =#{p<x:a,(E)=r}.

If E has complex multiplication, Deuring showed that a,(E) = 0 for half of the
primes. For all other cases, Lang and Trotter [13] conjectured that

(1.1) g2 (z) ~ Cp k)\{gi:

for some Cp, € R2%. To this date, no (non-trivial) case of the Lang—Trotter
conjecture is known; in fact, it is not even known if 7 . (z) is unbounded, except
for the case r = 0 where Elkies [5] obtained lower bounds for mgo(z). In [6],
Elkies extends his proof to show that for any number field K which is not totally
imaginary, any elliptic curve E/K has infinitely many supersingular primes. The
result is also believed to be true for number fields which are totally imaginary, but
the proof does not seem to generalise to this case.

To explain the obstruction from generalising his proof to totally imaginary fields,
Elkies studies the following example. Let E be an elliptic curve over K = Q(v/—3)
with K-rational 3-torsion. Let p be a rational prime which splits in K, say pOx =
p1p2. Then, p =1 mod 3, and for ¢ = 1,2, we have 3 | p+ 1 — ap, (E). Therefore,
ap, (E) cannot be 0, and there are no supersingular split primes. Let p be an
inert prime in K, say pOx = p. Then, |a,(E)| < 2p, and p is supersingular when
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ap(F) = 0,+p,+£2p. As p =2 mod 3 and 3 | p*> + 1 — a,(E), the only possible
values are ay(E) = p, —2p. One then expects the number of supersingular primes

to be proportional to
1
Z — ~ loglogx.
p

p<z

Then, the set of supersingular prime is much thinner than what is expected for
elliptic curves over @ in (1.1). Similar obstructions also arise for elliptic curves
over Q (for example, if F/Q has rational 3-torsion, then a similar argument shows
that ap(F) = 1 is impossible), but never for the supersingular case. This is one of
our motivations for studying the densities wEQ(x) averaging over all elliptic curves
defined over Q(¢). The cases r = 0, £p, +2p which are particularly relevant to the
example above are treated in Section 5.

Upper bounds were first obtained by Serre using the Cebotarev Density Theo-
rem [18]. Further improvements and generalisations were later obtained by Elkies,
Kaneko, K. Murty, R. Murty, Saradha and Wan [7, 15, 16, 22]. We refer the reader
to a recent paper of K. Murty [17] for a complete account.

The average problem, for K = Q and » = 0 (the supersingular case) has been
studied by Fouvry and Murty [8], and the general case (K = Q and r € Z) by
the authors [4]. They proved that if C, is the set of elliptic curves that admit a
Weierstrass model Y2 = X3 4 aX + b with |a| < zlog® z, |b| < zlog® z, then

1 . NG
(1.2) — Z g (T) ~cr as r — 00

ol & gz
where

2 I\ 'y W(2—1—1) 2y I| GLy(F)Tr="|
1. =TT (- = S N e B I i AS P A
0 o=2I(-g) Hasmen - -1 ém
lr ir l

and GT"=" denotes the set of elements of G with trace equal to r for G any subgroup
of GLy(FF;). Other averages were considered in [1, 9, 11].

It is natural to ask if the average constant of Theorem 1.2 has an interpretation in
terms of local densities as does the constant (1.3) for the average Lang—Trotter con-
jecture over Q. The authors have no such interpretation, but submit the following
observation. Let

G = {(_‘lb Z) la,beFpa? + 02 # 0} C GLao(Fy).
Then

.2
H['GlTr:r| l(l—l—( lr))
o -1
s 1G] e =1 (=)
Throughout the proof we will assume that r is odd and positive, since the other

cases are analogous. The case r = 0 is easier, and is treated separately in Section
5.

= 3mc,.

We follow the framework of [4], with rapidly decreasing functions and contour
integration as used in [1], where the authors also average over a “thin set”. The
proof of Theorem 1.2 follows immediately from the following two results. In all the
following, r is an odd positive integer.
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Theorem 1.3 (Analytic). With the above notations, we have

Z k +0(1)) log log x
|C =
where
acl [ a
w0 k=5, 2, ()G

ia a convergent double series, and
Cr(a,n, f) = #{b € (Z/4nf?Z)* | b= 3 mod 4,4b> = r* — af? mod 4nf?}.
Theorem 1.4 (Euler product). With the above notations, we have

e ()

"3 s (=D — ()"

2. STEP ONE - THE ANALYTIC NUMBER THEORY

The proof of Theorem 1.3 follows from two results. The average over all curves
in the box C, is related to an average of Kronecker class numbers of imaginary
quadratic orders using Deuring’s Theorem (Lemma 2.1), and this can be rewritten
as an average of special values of L-functions which can be evaluated (Lemma 2.2).

Let D < 0 be the discriminant of a quadratic imaginary order. Then, the
Kronecker class number H (D) is defined as

(2.1) 722 D/f2

where h(d) and w(d) denote respectively the class number and the number of units
of the order of discriminant d.

Lemma 2.1. With the notation of Theorem 1.3

1 H(r? — 4p?
S ~ g ¥ o,
‘ a:l EeC, 2 3r<p<z p
p=3 mod 4
Lemma 2.2. With the notation above, suppose that f* | r? —4p?, set d = ds(p) =
(r* —4p®)/ f? and denote by xq, () the Kronecker symbol modulo dy(p) (asr is odd,
ds(p) =1 mod 4). Then for every ¢ > 0,

X
z S Lupoer ka0 ().
og‘x
L2z 3r<p<z
(f,2r)= p=3 mod 4
4p?=r? mod f2

where L(s, X, (p)) i the Dirichlet L-function of Xa,(p)

We will prove these lemmas in Section 4. We show here how to deduce the
analytic step from Lemma 2.1 and Lemma 2.2.
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Proof of Theorem 1.3. The definition of the Kronecker class number, the class num-
ber formula

1/2
DT ford<o
T

h(d) = 5
and Lemma 2.1 imply that

1 a1 N
Cs | > T (@)~ Gy > > ?TL(l»de(p))
z EeC, 3r<p<z f2|r2—4p?

p=3 mod 4

Since \/4p? —r2 =2p + O(%) and L(1, x4, (p)) < logp, the above equals

PYX g L mliolTE ¥ o
<2z
(f,2r)=1

=

srp<s p p<e P prppaape
p=3 mo

4p?=r? mod f2
The sum in the error term is bounded since ) £ 1 < p°. Now using

partial integration and Lemma 2.2, we deduce

1 L(L, X ()
>y el

<2z 3r<p<z
(f,2r)=1 p=3 mod 4
4p?=r? mod f2

1 1
Tloge > 7 > L(Lxa,p) logp

<2z 3r<p<lz

f

(f,2r)=1 p=3 mod 4
4p?=r? mod f2

z 1 d 1
— — L(1 ! — [ —— | dt =
Y5 2 ey ()

(f,2r)=1 p=3 mod 4
4p?=r? mod f2

v od 1 v dt
k| t—|—=——) dt+O / > =
/3r dt (tlogt) < o tlogttt

*odt
o 1) =k, logl 1).
k/3,,tlogt+0() krloglogx 4+ O(1)

r2—4p

This concludes the proof. O
3. STEP TWO - COMPUTING THE EULER PRODUCT
Proof of Theorem 1.4. Let w(k) be the number of distinct prime divisors of k € N.
Lemma 3.1. If ged(f,2r) # 1, then Cr(a,n, f) = 0. If ged(f,2r) = 1, then
da(n)22) =T, [1 + (Tﬁ“fz)} if ged(n,r2 — af?) =1

0 otherwise.

O?”(a”n7f) = {

Proof of Lemma 3.1. From the definition
Cr(a,n, f) = #{b € (Z/4nf?Z)* | b= 3 mod 4,4b*> = r? — af? mod 4nf?},

it is clear that Cy(a,n, f) = 0 when ged(f,2r) # 1. By the Chinese Remainder
Theorem, all solutions modulo 4nf? arise from solution modulo the prime power
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divisors of 4nf2. Furthermore, every solution modulo a prime [ lift uniquely to a
solution modulo [ (see [10, Theorem 123]). We write 4n = 2'n’ with n’ odd. Then

Cr(aanaf) :d2 H dl

l>|In"f?
where, if d; = d;(n) = {b € (Z/IZ)* | b*> = (r* — af?)/4 mod 1},
2_ 2 .
" {1+ (Z52) i@ —af?) =1

0 otherwise.

and if dy = dy(n) = # {b € (2)2'7)*

b=3 mod 4,
4b?=(r2—af?) mod 2¢ [

b — 2min{3,t72} if r2 — af2 = 4 mod 2min{t,5}
7o otherwise.

The formula for dy is showns as follows. If 2 <t < 5 it can be verified directly. If
a > 3, then the number of solutions of the quadratic equation z2 = ¢ mod 2% are
4 if ¢ = 1 mod 8 and 0 otherwise (see [10, p. 98]). Let us write b = —1 + 4u, so
that 4b% = 4+ 32(2u? —u) = r? — af? mod 2! implies 72 — af? = 4 mod 32. In such
a case, the 4 solutions of b? # mod 2¢72 lift to 16 solutions modulo 2¢ and
half of these are such that b = 3 mod 4. The lemma now follows by observing that
ifl] f, thend, =2as (r,f) =1. O

Using the lemma, we rewrite (1.4) as

24() p(ged(n, f))

(3.1) k= ) - e cr(n)

2 To(?) 2 ged(n, )220 mp(an)

ged(f,2r)=1
where
a r? —af?
cr(n) = 3 do(n) (ﬁ) I1 (1 + (z)) .
a€(Z/AnZ)*", ln’

ged(r?—af?n/)=1

Lemma 3.2. (1) ep(n) is a multiplicative function of n.

(ii) Let I be an odd prime. Then cs(I%) = cgeacs,ny(1%)-
(iii) Let 1 be an odd prime not dividing f. Then

1 ifa=0
=1\ (1 if 1
(3.2) a(l?) = l(all)(l ‘P(3)) Z? o|¢rz'5 even and {7

171 (=1—(3)) ifaisodd andlfr
(iv) Letl be an odd prime such thatl| f and ltr. Then

1 ifa=0
a(l®) =<22p(1%) if a>0 is even
0 if o is odd.

(v) e(2%) = (=2).
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The proof of Lemma 3.2 will be done in Section 4. Using the lemma, we have

e(ged(l®, f)) 1 c1(27)
JgN: fgo f2 gg)ng 1, f)29(ecd(™.0)) Jagp(1e) 7 (%) %2]@(2]4’2)
ged(f,2r)=
Using c¢(1%) = cgcd(lyf)(l"‘) and
a?) (=2
Z 2j(p(2j+2) - Z 22j+1 1/3’

JjEN €

<.
zZ

we obtain

1 2() T3 Z lQa (1)
a>1 C1
kr - 3 Z 2 H « H a el
3 2 T al | L & e
ged(f,2r)=1 (i)
1 @
1+ Z Cl(2 )
- (%) I o (%)
3052 ! zl(laa) pm e oo Lo )
= [ *e(l)
1 1 .
As Z (E s we obtain
B>1
1 c1(1%) (r2> 21
kr =3 H « [eY 7 3 L+ Z 2a ’
3l>2 aZOl o(lv) 1) (I-1-1 l
and it follows from Lemma 3.2 that
1 .
e if ] r
Ia(®)  P4+1+1 =(=)
1452 pa = g )
>1 >0 (F)+3 .
= = e T
Therefore
1 ! [(54) +3 2 )
=y I — = 1- -
3”1_[l>2 (1— (Tl)) Hr,l_l[>2 ( (-nez-1 (d-1F2-1)
g W=-1-(7)
3 1>2 (=10~ (Tl))
and this concludes the proof. 0

4. PROOFS OF THE LEMMAS

Proof of Lemma 3.2. (i) It is easy to check that cf(n) is multiplicative using the
Chinese Remainder Theorem.
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(iii) Let I be an odd prime not dividing f. We also assume « > 1 otherwise the
statement is clear. Let f* be the inverse of f modulo . Then,

= Y () (1 * (_zf»

a€(Z/A7)",
ged(r?—af?,1*)=1

and since dy(1) = 1 if @ = (rf*)? = 1 mod 4 and 0 otherwise, we have

=1 3 (9 (1 + ((rf);_a» .

ac(Z/1z)*
aZ(rf*)? mod [

If ais even, 3° ¢ (z/17)- (%) = 0 and therefore

2 2
a\ _ ja—1 r c _ ja—1 r
(1) =1 1—1—<l>+ > (7) =1 <1—1—2<l>>.
c€(Z)1Z)*

cZ(rf*)? mod |

If o is odd, we have

RSN CR =)

a€(Z/12)*
aZ(rf*)? mod I

o (-(5) (e

Since that affine conic X2+ Y? — (rf*)2X = 0 has [ — (5}) points, we deduce that

() (3) (e ()

and therefore

o= ( () (1) (D)o (7))

o o je—1 17172< )) if o is even
cr(I%) = (1%) = jo—1 (ll)( )l (f)((—Tl)H-l)) if a is odd.

Finally

(iv) We now suppose that I | f and [ {r. Then

o 2 o
o= g, w0 (e (7)) = 3 6
ac(Z/4°T)*, ac(Z/1Z)*
ged(r?,)=1
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(v) If @ > 3, then

a 2 X 542
PN e

a€(Z/2°727),
a=r?—4 mod 2°

24 -3
and <r 5 > =5 )= —1 since r is odd. The remaining cases a < 2 are done
in a similar way and this concludes the proof. O

Proof of Lemma 2.1. Let t be a parameter to be chosen later, and let C; be the set
of elliptic curves F over Z[i| that admit a Weierstrass equation of the form

E:Y?’=X3+aX+3.

with & = a1 + aqi, 8 = by + bai € Z[i] and max{|a1], |az],|b1], |b2|} < t. Tt is easy to
see that
IC:| = 16t* + O(t?),

1 1 1
e w0 ()

For any prime p = 3 mod 4, let us denote with > the field with p? elements. If E

is a curve defined over F2, let C;(£) denotes the set

so that

Ct(E):{E€Ct|Ep:E},

i.e. the set of elliptic curves E in C; which reduce to E over Fpe. If t > p, we have

. 16t* 3 tt

since every element of F2 can be written as A + B where A, B € F,, and 6> = 1.
The last term of (4.1) accounts for non-minimal models at p.

Let T},2(r) denotes the number of elliptic curves over F,» with p®+ 1 —r rational
points. We have the following classical result

Lemma 4.1 (Deuring’s Theorem [14, 19]). Let r be an integer such that r? —4p? <
0. Then,

-1
H(r? — 4p2)T when p1r;
O (pz) when r = 0;
Tp2 (’I“) =
(0] (p2) when r = +p;
PP
o +0 (pz) when r = +2p.

Remark. There are several standard definitions for the Kronecker class number.
We are using in this paper the “weighted” Kronecker class number defined by (2.1),
as in [14], but unlike [19].
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‘We now write

1 2 1 1
@ZWE@)*@Z > L@Z > o1+ 00)

EeCy EeCy p<z EecCy 3r<p<lz
p=3 mod 4 p=3 mod 4
ap(E)=r ap(E)=r

where the condition 37 < p < z insures that p > 3, that 72 — 4p? < 0 and that r #
p,2p. Reversing summations, and using Deuring’s Theorem with r # 0, +p, £2p,
we then have

1 2 [ 1 1 16t 3

— E g () = E —+ 0| = — 4+ 0| =+ = T2 (1)

ICy| 2 . | 16¢4 <t5)] [ pt p3  p20 P
pec p;3<£§(f4

+o(1)
- ¥ 10° — 4p7) +O<10g2p+pl2>] + 0(1)

2p? t
3r<p<lz P
p=3 mod 4

Z W+O(1)

| =

3r<p<zx
p=3 mod 4

if t = zlogx. This completes the proof. O

Proof of Lemma 2.2. Let us introduce a parameter U and start from the identity
_ dr(p)\ 1 _ dy(p)\ e s (p)| "/
(4.20(1, x4, (p)) = 7% ( )= % " —+ @) TRV

which follows from standard contour integration. More precisely, one starts from
the integral identity

ds(p)\ e ™Y
> (f ) — = L(1,xa;(») +/
neN n n R(s)=—1/2

and apply the Burgess’ bound L(1/2 + it, x4, (p)) < It]|ds(p)|7/32 [2] to estimate
the integral.

US
L(s + 1, Xa; ()T (s + 1)?ds

Summing (4.2) and noticing that |ds(p

(4.3) > 7 > L(, x4, ) logp

<2z 3r<p<z

f

(f,2r)=1 p=3 mod 4
4p?=r? mod f2

—n/U 23/16
= Z %Zen Z (df;(bm>logp+0(mUl/2>.

~

-39 7/16
|7/32 <« (?) , it follows that

| —

<2z neN 3r<p<lz
(f,2r)=1 p=3 mod 4
4p?=r? mod f?
Choosing
(4.4) U > 27/ log* x,

the error term above is

2£23/16 z
o) -0 ()
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We now deal with the values of f with V < f < 2z, and note that

—n/U d
S Ares Y (U)o <
V<f<21; neN 3r<p<z
(f,2r)=1 p=3 mod 4

4p2 =r2 mod f2

DD S
neN f>v m<z
(£:2)=1 4m 2=r% mod 12

heZ/f?|4h? = M ¢
logxz Z #{heZ/f |f r? (f )}f2

<

neN >V
(f,2r)=1

—n/U Qw(f)

(4.5) rlogx Z Z

neN >V

using the fact that 4X? = 72 mod f? has at most 2°(/) solutions X modulo f?
when f is odd (this follows from [10, Theorem 123] and the Chinese Remainder
Theorem). From the standard formula [21, Exercise 2, p.53]

> 2t = —TlogT+O( )
m<T

and partial summation, we obtain

Z 2“’(f logV.

5%
As )y cn # < logU, it follows that (4.5) is O (ngcx> when

(4.6) V > (logz)c+3)/2,

Therefore (4.3) equals

—n/U d
E E E (f(p>>10gp+0( xc )
n log® z
f<v neN 3r<p<lz

(f,2r)=1 p=3 mod 4

4p?=r? mod f?

We estimate the terms with n > UlogU by observing that since

—n/U 1
€ e Vdr <«

1
> < 7
n>UlogU n UIOgU UlogU UlOgU

we have
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e /U d
E E E (ﬁp)) logp <
f<v n>U10gU 3r<p<z
(f,2r)=1 p=3 mod 4

4p?=r? mod f?

log z 1
- 1
Ulog U Z f mz;z <
(f 2?”) 1 4m?=r? mod 2
zlogx x

UlogU — logx

(4.7)

as U is chosen according to (4.4).
We finally deal with the main term of (4.3). As the Kronecker symbol is periodic

modulo 4n, we write

>y (df( ))1 ogp

Y G X e

3r<p<m a€(Z/4nZ)* " ir<p§z
=3 mod 4 p=3 mod 4
4p2:r2 mod f? 4p?=r? mod f?
(r?—4p?)/f%>=a mod 4n
a
- ¥ (ﬁ) 3 by (z, Anf?,b)
a€(Z/AnZ)* be(Z/Anf27)*
b=3 m0d4
4b%>=r?—af? mod 4nf?
gw(nf)
" o ()

where as usual

1 (w, dnf?,b) = Z logp
2<p<z
p=b mod 4n f?
and the O(2¢(/) / 2) term comes from the primes p < 3r.

If we write
T

Eqi(z,4nf?,b) = i1 (z,4nf?,b) — o(4nf2)’

then (4.8) equals

(4.9) z Z <g> Zn7}2f _|_Z (E) Z El(x74nf2’b)

n n
a€(Z/4nL)* a€(Z/4nL)* be(Z/4nf?7)"
b=3 mod 4
4b%>=r?—af? mod 4nf?
ow(nf)
o ()
with

Cr(a,n, f) = #{b e (Z/4nf?Z)* | b= 3 mod 4,4b*> = r? — af? mod 4nf?}.

Let us look at the middle term of (4.8) and note that if we interchange the
summation over b € (Z/4nf%7Z)* and that over a € (Z/4nZ)*, for every fixed b
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there is at most 1 value of a € (Z/4nZ)* with f?a = r? — 4b? mod 4n f2. Therefore

a
4.10 (7> Ei(z,4nf?b) < Ei(z,4nf? b)|.
) Y (%) X W Anf?h) <Y B dnf )
a€(Z/AnZ)* be(Z/Anf37)* be(Z/Anf27)*
b=3 mod 4
4b?=r?—af? mod 4nf?

Substituting (4.9), (4.10) and (4.7) in (4.3), we obtain

1
(4.11) Yo7 > Lixaw)legp =
L2z 3r<p<z
(f,2r)=1 p=3 mod 4
4p%=r? mod f?
v Cr(a,n, f)
e a a,n
- = Ey(z,4nf? b
oSl X )y X 1B
r<v a€(Z/anZ)* be(Z/4n f27)*
n<UlogU
(f,2r)=1
()
log® z
taking into account that
—n/Ugw(nf)
e x
Z Z T < UlOgU < 175
f<v n<UlogU n 08 T
(f,2r)=1
when
(4.12) U< —0
' log“™ta”
Now apply Cauchy—Schwarz to the middle term of (4.11) and obtain
1 efn/U )
(4.13) > 7 X > Bz dnft ) <
f<v n<U log U be(Z/Anf27)*
(f,2r)=1
1/2 1/2
1 p(4nf?) 2 732
< .Z? Z e Z Z Ey(x,4nf%,b) <
<v n<UlogU n<UlogU be(Z/4An f2Z)*

1/2
<logU > f > > Ei(x,m,b)?
f<v m<4V2UlogU be(Z/mZ)*

Now the Barban, Davenport, Halberstam Theorem (see [3, page 169]) asserts that
forz > Q > m/logkx

Z Z Ey(xz,m,b)* < Qrlog .

m<Q be(Z/mZ)*

Therefore if 2 > 4V2U logU > z/log" z, (4.13) is < V3\/U log U+/zIog z which is
O(z/log®z) if U and V satisfy (4.4), (4.6) and (4.12). A possible choice is

(4.14) U= 15% and V =1log“+3/2 g,
og T
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Replacing in (4.11), we have proved that

<2z f 3r<p<lz
(f,2r)= p=3 mod 4

4p?=r? mod f2

L(1, X4, (p)) logp

where we set

crn) =Y
a€(Z/4nZ)*
We claim that
Y crab
< =
1<t nfednf?) =
n<UlogU (f,2r)=1
(f,2r)=1

Using Lemma 3.1,
cg(n) < d(n)#C(a,

and therefore

CHANTAL DAVID AND FRANCESCO PAPPALARDI

efn/U

cr(n) ( x
x 0] -
T S
n<UlogU
(f,2r)=1

a

(ﬁ) Cr(a,n, f).

w7etiny ()

n, f) < ¢(n)2°"),

3 “Yep(n) _ -y ¥ e Vep(n) n
2 2
f<v nfgo 4nf feN n<UlogU f@(4ﬂf )
n<U logU (f,2r)=1
(f,2r)=1
O Z gn/U@(n)gw(nf)
I nfe(dnf?)
n<U logU
(f2r)=1
ow(f) logV
Since p(4nf?) > 2p(f%)p(n) and ,
(4 %) = 20(f)g(m) and Y = < <
>V
log V' e~n/Ugw(n) log Vlog? U 1
< V2 Z n < V2 =0 log®
n<U log U

as U and V are chosen according to (4.14).
Furthermore

—n/U c n/U
> Y (4nff2 -y et 7 4nf2
feN n<UlogU ® feN n=1 SD
(f,2r)=1 (f,2r)=1
Z ow(f) Z e—n/Ugw(n)
2
feN f99 f )n>UlogU n

and since 2¢(" < /n, the error term above is

1 /°°
L ——
VUlogU UlogU

ear—0(—_).
log®

)

the error term above is
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The last identity we need to conclude the proof is

f
= + 0
X = T L O ()
(f,2r)=1 (f 2r)=1

Consider the Dirichlet series

that converges for R(s) > 0. We have the identity

=~ cf(n)e /Y _ Us
2 olinf?) ‘Af(”*/m( oy, e DA D) ds.

n=1
Estimating the integral we obtain
1
U

Summing over f we have the claim. O

US
/ s+ 1)Af(s+1)—ds <
R(s)=—1/2 s

5. CONCLUSION

We now study the average of 7T%’2 (x) to complete the proof of Theorem 1.2. This
is also related to the special curves which should have far fewer supersingular primes
than general curves over Q(7) presented in the introduction. Consider an elliptic
curve E over K = Q(4¢) with a K-rational 4 torsion point, or full 2-torsion defined
over K. Let p be a prime of good reduction not dividing 2. Then by hypothesis,
4] N(p)+1—ap(E). If p|pis asplit prime, p=1 mod 4 and 4| p+1—a,(E),
which implies that a,(E) =2 mod 4, and there are no supersingular split primes.
If p | p is a supersingular inert prime, then a, (E) is either 0, £p, £2p. We also have

=3 mod 4 and 4 | p?> + 1 — ay(E), which implies that a,(E) = 2 mod 4, and
the supersingular inert primes are such that a,(E) = +2p.

We then define, for any elliptic curve E over K = Q(4),

mp(@) = #{p | N(p) <z, degg(p) =2, and ay(E) =p or ap(E) = —p}
mp(@) = #{p | N(p) <z, degr(p) =2, and ay(E) = 2p or ay(E) = —2p}
() = #{p | N(p) <z, degy(p) =2, and p is a supersingular prime} .

We now compute the average of those densities over all elliptic curves E over
K = Q(i). Unlike the average of Theorem 1.2 for r # 0 which requires delicate
computations, those averages are trivial as Deuring’s Theorem does not involve
Kronecker class numbers in those cases. The curves of the example above are part
of a special family, but there are reasons to believe that averages over families would
lead to similar results as indicated in the recent work of James [11].

Theorem 5.1. Let K = Q(i) and let C,, (respectively C)) denote the set of elliptic
curves B : Y2 = X2 + aX + B with a = ay + azi,8 = by + byi € Z[i] and



16 CHANTAL DAVID AND FRANCESCO PAPPALARDI

max{|a1], |az|, |b1], |b2|} <loglogx (respectively x/logx ). Then,

1
i Z i (r) < oo

EeC,,
1 !/
il Z mg(r) < o
zl Eec,
1 I 1
— ~ —logl
‘C;” E;// 71-E'(‘CU) 24 og logx
1 <s 1
I Z mh(x) ~ ﬂloglogo:
zl pecy

Proof of Theorem 5.1. Following the proof of Lemma 2.1, and using 7},2 (0) = O(p?),
we have

1 1
@ZW%2($) = @Z Z 1

EeCy EecCy p<z
p=3 mod 4
ap(E)=0
1 1 16t* 3t
= > +o<>} {+o<+)] T,2(0)
4 5 4 3 20 p
ot LGt ¢ p P> p
p=3 mod 4
1 1
= X 0 <2 + t)
<z p p
p=3 mod 4

= 0(1) if t = loglog x.

The proof for 7', (x) is exactly the same. For 7 (), we have T)2(2p) + T2 (—2p) =
p3/12 4+ O(p?) from Lemma 4.1, and working as above

1 1 1 1

E€Cy p<z p<z
p=3 mod 4 p=3 mod 4
1 z
= —logl o1 if t = .
24 ogloge +O(1) ! log

The average result for 755 (z) now follows by summing the first three estimates. O
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