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Abstract. We study the distribution of the positive integers n which are

composite and whose average prime divisor is an integer and a prime divisor

of n.

Let p(n) denote the average prime divisor of an integer n. That is,

p(n) =
1

ω(n)

∑
p prime

p|n

p,

where ω(n) denotes the number of distinct prime divisors of n.
It is clear that if n is a prime power, then p(n) | n. In this paper we consider

the set

A = {n : ω(n) > 1, p(n) ∈ N, p(n) | n and p(n) is prime} .

It is obvious that n ∈ A if and only if the square-free part of n is in A.
The first few square-free elements of A are: 105, 231, 627, 897, 935, 1365, 1581,

1729, 2465, 2967, 4123, 4301, 4715, 5313, 5487, 6045, 7293, 7685, 7881, 7917, 9717,
10707, 10965, 11339, 12597, 14637, 14993, 16377, 16445, 17353, 18753, 20213,
20757, 20915, 21045, 23779, 25327, 26331, 26765, 26961, 28101, 28497, 29341,
29607.

It is clear that A contains only odd numbers. Here, we prove the following result:

Theorem 1. Let A(x) := A ∩ [1, x]. The estimates
x

exp
(
(2 + o(1))

√
log x log log x

) ≤ #A(x) ≤ x

exp
(
( 1√

2
+ o(1))

√
log x log log x

)
hold as x →∞.

Since the counting function of the prime powers n < x which are not primes is
O(
√

x/ log x), it follows that the same result is valid if we enlarge A to be the set
of all composite integers n whose average prime factor is an integer and is a prime
factor of n.

Our theorem complements the results from [1], where several results concerning
the function p(n) were obtained, such as the uniform distribution of the fractional
parts {p(n)} in the interval [0, 1) when n ranges in the set of all positive integers,
and the order of magnitude of the counting function of the set of positive integers
n such that p(n) is an integer.

Throughout, we use the Vinogradov symbols � and � and the Landau symbols
O and o with their regular meanings. We use log for the natural logarithm and b c
for the ‘integer part’ function.
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Proof of the upper-bound. Let us consider the following sets:

A1(x) = {n ≤ x | P (n) < y} ,

and
A2(x) =

{
n ≤ x | n 6∈ A1(x), P (n)2 | n

}
,

where y is a parameter which depends on x to be chosen later and which satisfies
exp((log log x)2) ≤ y ≤ x, and P (n) denotes the largest prime factor of n.

From standard estimates for smooth numbers [2], we know that if we set u =
log x/ log y, then

(1) #A1(x) � x

exp((1 + o(1))u log u)
(x →∞)

in our range for y versus x, while

(2) #A2(x) ≤
∑

p prime
p≥y

⌊
x

p2

⌋
≤ x

∑
n≥y

1
n2

� x

y
.

Let A3(x) = A(x) \ (A1(x) ∪ A2(x)). If n ∈ A3(x), then we can write n =
P (n)m, where m > 1 (because ω(n) > 1). Furthermore, since n 6∈ A2(x), P (n) - m,
and p(n) < P (n) since the average of at least 2 distinct integers is less then the
maximum of the integers. Thus, the condition that p(n) is prime and divides n
implies that p(n) | m, and so we can write

p(n) =
P (n) +

∑
q|m q

ω(m) + 1
,

which, solving for P (n), gives

P (n) = p(n)(ω(m) + 1)−
∑
q|m

q.

Hence, P (n) is uniquely determined by p(n) and by m. But since p(n) is a prime
divisor of m, it follows that for any fixed value of m, there are at most ω(m)
possible values of P (n). Furthermore, note that for the positive integers n under
consideration, we have that P (n) ≥ y, therefore m ≤ x/y, so

(3) #A3(x) ≤
∑

m≤x/y

ω(m) � x log log x

y
,

where we used the well known fact that∑
t≤x

ω(t) � log log x.

From estimates for (1), (2) and (3), we immediately deduce that

#A(x) ≤ #A1(x) + #A2(x) + #A3(x)

� x log log x

y
+

x

exp((1 + o(1))u log u)
.

To minimize the right hand side above we choose y = exp(u log u), which amounts
to

log2 y = log x log
(

log x

log y

)
.
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Thus, we get that y = (1 + o(1))
√

log x log log x as x →∞, and with this choice of
y versus x we obtain

#A(x) � x

exp
(
( 1√

2
+ o(1))

√
log x log log x

)
as x →∞. �

Proof of the lower-bound. Let y be a parameter depending on x (different from the
one from the proof of the upper bound) and k an even positive integer depending
also on x, both tending to infinity with x which we will choose later. For the
moment we assume that k > 5 and y > k4. Suppose that P, Q, p1, . . . , pk are
prime numbers which lie in the respective intervals:

P ∈ (y/2, y], Q ∈ (y/4, y/2], and p1, . . . , pk ∈ (y/2k2, y/k2].

It is clear that all the above primes are distinct and odd. Furthermore, the integer

N = (k + 4)Q− P − (p1 + · · ·+ pk)

is odd, positive, and lies in the interval (ky/4, ky]. By Vinogradov’s Three Primes
Theorem [3], we have that the equation

N = q1 + q2 + q3

admits � N2/ log3 N solution in primes q1 < q2 < q3 as N → ∞. It is also clear
that, at the cost of reducing the constant implied by the above �, we can assume
that q1 > c1N , where c1 is some absolute positive constant, and that the three
primes above are distinct. Note that with these choices, min{q1, q2, q3} > c1ky/4 >
k3y/4 > y, therefore the primes q1, q2 and q3 are different from P, Q, p1, . . . , pk.

Consider the integer

n = p1 · · · pk · q1 · q2 · q3 · P ·Q.

We claim the n ∈ A. Indeed, ω(n) = k + 5, and

1
k + 5

(p1 + · · ·+ pk + q1 + q2 + q3 + P + Q) = Q

is a prime factor of n. We are therefore only left with the task of counting the
number integers up to a fixed upper bound x which can be constructed by the
above method with suitable choices of y and k versus x.

For given y and k, the number of choices for P , Q and (p1, . . . , pk) are respec-
tively:

π(y)− π(y/2), π(y/2)− π(y/4) and
(

π(y/k2)− π(y/2k2)
k

)
.

Therefore the number of possible n’s, when k4 < y and k is large, is

(4) � y

2 log y
· y

4 log y
·
(

y

6k3 log(y/k2)

)k

· c1(ky/4)2

(log ky)3
,

where in the above estimates we used the Prime Number Theorem and the fact
that if a > 2b, then (

a

b

)
�

(
a− b

b

)b

>
( a

2b

)b
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with the choices a = π(y/k2)− π(y/2k2) > y/(3k2 log(y/k2)) > 2k and b = k (the
first estimate above holds for large k by the Prime Number Theorem, while the
second holds for large k by the fact that y > k4).

A further calculation shows that the expression appearing at (4) above is

(5) � yk+4

4kk3k−3(log y)k+5
.

We now need to find a lower bound on the above expression under the constraint
that

(6) n = p1 · · · pk · q1 · q2 · q3 · P ·Q ≤
( y

k2

)k

(ky)3y2 := x.

We will do this by choosing k =
⌊
c
√

log x/log log x
⌋

+ ν, where ν ∈ {0, 1} is such
that k even and c is a constant to be determined later. Then, by estimate (5), we
get

#A(x) ≥ x

exp (k log 4k + log y + (k + 5) log log y)

= x exp
(
−c/2

√
log x log log x− log y c

√
log x/log log x log log y

− O(k + log log y)) .

Estimate (6) together with the choice of k leads to the conclusion that log y =
c−1(1 + o(1))

√
log x log log x as x →∞, which, in turn, leads to the lower-bound

#A(x) � x

exp
(
(c + c−1 + o(1))

√
log x log log x)

) .

The minimum of the function c 7→ c + c−1 is attained at c = 1. Hence, choosing
c = 1, we get the lower bound of the statement. �
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