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Abstract. Let ’ðnÞ and �ðnÞ denote the Euler and Carmichael functions, respectively. In this paper,
we investigate the equation ’ðnÞr ¼ �ðnÞs

, where r 5 s5 1 are fixed positive integers. We also study
those positive integers n, not equal to a prime or twice a prime, such that ’ðnÞ ¼ p � 1 holds with some
prime p, as well as those positive integers n such that the equation ’ðnÞ ¼ f ðmÞ holds with some integer
m, where f is a fixed polynomial with integer coefficients and degree deg f > 1.
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1. Introduction

Let ’ðnÞ and �ðnÞ denote the Euler and Carmichael functions, respectively.
We recall that, for any positive integer n, ’ðnÞ is the cardinality of the multi-
plicative group Un ¼ ðZ=nZÞ� , while �ðnÞ is the maximal order of any element
in Un. There exists an extensive literature in which the distributional and arith-
metical properties of ’ðnÞ and �ðnÞ have been studied (for example, see [1, 3–6,
8, 9, 12–17, 24, 26, 28, 29]). Here, we list a few examples of properties and
interrelations between ’ðnÞ, �ðnÞ and n that have been investigated in those
works:

� The problem that has attracted perhaps the most attention, which directly
relates the arithmetic properties of �ðnÞ and n, is the question about the existence
of infinitely many Carmichael numbers, that is, composite numbers n for which
�ðnÞjn � 1 (see [1], as well as the recent improvement given in [2]).

� It is shown in [13] that a ‘‘typical’’ value ’ðnÞ has about 0:5ðlog log nÞ2

distinct prime divisors (it is useful to recall that a ‘‘typical’’ positive integer n has
only about log log n distinct prime divisors).



� The set of positive integers n for which the relation

’ðnÞ ¼
Y
pjn

p prime

p

0
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1
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k

holds, where k is a fixed positive integer, has been investigated in [8].
� Positive integers n such that ’ðnÞ is smooth, and those for which ’ðnÞ is a

perfect square, have been studied in [3].
� Bounds for exponential sums and the number of solutions of several con-

gruences with ’ðnÞ and �ðnÞ are given in [5].

In this paper, we consider several more problems with a similar flavor. In
particular, we study the set of positive integers n such that

’ðnÞk�1 ¼ �ðnÞk;

where k5 2 is an integer; for example,

’ð1729Þ ¼ �ð1729Þ2; ’ð666Þ2 ¼ �ð666Þ3; ’ð768Þ3 ¼ �ð768Þ4; . . . :

More precisely, for a fixed integer k5 2 and a real number x5 1, we define:

AkðxÞ ¼ fn4 x : ’ðnÞk�1 ¼ �ðnÞkg:
In Section 2, we establish a lower bound for the cardinality #AkðxÞ. Our bound is
constructive, and it allows us to generate elements of AkðxÞ in a regular fashion. In
Section 3, we present conditional proofs, under various widely believed conjec-
tures about the distribution of prime numbers (such as Dickson’s Prime k-tuplets
Conjecture and Schinzel’s Hypothesis H) of the fact that for fixed positive integers
r 5 s5 1 the set

Ar;s ¼ fn : ’ðnÞs ¼ �ðnÞrg
is infinite. We also give an unconditional proof of the fact that the set
flog’ðnÞ=log�ðnÞgn5 3 is dense in the interval ½1;1Þ.

In the special case k ¼ 2, an alternative (and more explicit) construction of
elements from A2ðxÞ arises from solutions to the equation

’ðnÞ ¼ p � 1; n 6¼ p or 2p;

where p is prime. Indeed, for any such n, one has gcdðn; pÞ ¼ 1, and therefore
’ðnpÞ ¼ ðp � 1Þ2 ¼ �ðnpÞ2

. Another motivation to consider such equations comes
from a very old problem due to Carmichael concerning the study of the equation
’ðnÞ ¼ ’ðmÞ with distinct positive integers n and m (see [34]). It is certainly inter-
esting to study the equation ’ðnÞ ¼ ’ðmÞ under various additional hypotheses, as in
this case where we insist that m ¼ p be a prime number. Accordingly, we define

LðxÞ ¼ fp4 x : p prime and ’ðnÞ ¼ p � 1 for some integer n 6¼ p or 2pg;
and in Section 4, we establish the upper bound

#LðxÞ4 x

log2þoð1Þx
: ð1Þ
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We also present heuristic arguments which suggest that this bound is tight, and the
term oð1Þ cannot be removed from the power of log x.

The estimate (1) has an interesting consequence. For each m5 1, let AðmÞ be
the number of preimages of m under the map ’ : N ! N; that is,

AðmÞ ¼ #ð’�1ðfmgÞÞ ¼ #fn : ’ðnÞ ¼ mg:
In view of Corollary 3 of [16], we know that for every fixed integer k5 2, the
equation AðmÞ ¼ k holds for a positive proportion of those integers m5 1 for
which AðmÞ 6¼ 0. Our result (1) shows that the function A behaves quite differently
when restricted to the sequence of shifted primes; in fact, by the prime number
theorem, we see that the equation Aðp � 1Þ ¼ 2 holds for almost all primes p (note
that Aðp � 1Þ5 2 for all primes p).

Also in Section 4, we use a similar method to study the cardinality of the related set

NðxÞ ¼ fn4 x : ’ðnÞ ¼ p � 1 for some prime p-ng;
and we present heuristic arguments which suggest that our upper bound is rather tight.

Finally, in Section 5 we show that similar arguments can be used to study the
values of the Euler function attained by polynomials and other sequences. More
precisely, for a polynomial f ðXÞ2Z½X�, we define

Nf ðxÞ ¼ fn4 x : ’ðnÞ ¼ f ðmÞ for some integer mg:
As we have remarked, in the special case f ðXÞ ¼ X2, this problem (and other
similar ones) has been studied in [3]. However, the underlying method of that
paper cannot be extended to work for general polynomials f . Here, we propose an
alternative approach that works for all polynomials of degree deg f > 1.

Throughout this paper, we use the symbols ‘O’, ‘�’, ‘�’, ‘�’ and ‘o’ with
their usual meaning (we recall that A�B and B�A are equivalent to A ¼ OðBÞ
and that A � B means that both A�B and B�A hold).

We also use �ðnÞ, !ðnÞ and �ðnÞ with their usual meanings: �ðnÞ denotes the
number of prime divisors of n> 1 counted with multiplicity, !ðnÞ is the number of
distinct prime factors of a positive integer n> 1, and �ðnÞ is the number of divisors
of n. We also use PðnÞ to denote the largest prime factor of n> 1, and we adopt the
convention that Pð1Þ ¼ 1.

Finally, for any real number x> 0 and any integer ‘5 1, we write log‘ x for the
function defined inductively by log1 x ¼ maxflog x; 1g (where log x is the natural
logarithm of x) and log‘ x ¼ log1 ðlog‘�1 xÞ for ‘> 1. When ‘ ¼ 1, we omit the
subscript in order to simplify the notation; however, we continue to assume that
log x5 1 for any x> 0.

2. Collisions Between Powers of the Euler
and Carmichael Functions

In this section, we establish a lower bound on the cardinality of the set AkðxÞ.
Theorem 2.1. For any fixed integer k5 2, the bound

#AkðxÞ5 x19=27k:

holds if x is sufficiently large.
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Proof. It is known [11] (more recent results can be found in [2] and [18]), that
there exists a positive constant � < 1 such that for all sufficiently large y, the set

P ¼ fp4 y : p prime and Pðp � 1Þ< y1��g ð2Þ
has cardinality

#P5 y expð�log1=2 yÞ: ð3Þ
Let

Q ¼ fq4 y1�� : q primeg ð4Þ
and observe that Q � P. Taking R ¼ PnQ, we have

#R ¼ #P�#Q5 y expð�log1=2 yÞ � �ðy1��Þ5 y expð�log2=3 yÞ ð5Þ
if y is sufficiently large. For any subset S of P, let mS be the positive squarefree
integer whose prime factors are precisely the elements of S, and for every q2Q,
let the nonnegative integers f�qðSÞ : q2Qg be defined by the relation

’ðmSÞ ¼
Y

p 2S

ðp � 1Þ ¼
Y
q 2 Q

q�qðSÞ:

From now on, T denotes an arbitrary subset of R. For any such subset T, let
S ¼ SðTÞ ¼ Q [T, and let nT be the positive integer given by

nT ¼ 2kþ1mS’ðmSÞk�1 ¼ 2ðk�1Þ�2ðSÞþkþ1
Y
q 2 Q

q 6¼ 2

qðk�1Þ�qðSÞþ1
Y

p 2T

p:

Note that, by unique factorization, different subsets T � R lead to distinct values
of the positive integer nT.

Let us first verify that every number n ¼ nT with T � R satisfies the relation
’ðnÞk�1 ¼ �ðnÞk

whenever y is sufficiently large. Since

’ðnTÞ ¼ ’ðmSÞ 	 2ðk�1Þ�2ðSÞþk
Y
q 2 Q

q 6¼ 2

qðk�1Þ�qðSÞ ¼ 2�2ðSÞþ1
Y
q 2 Q

q 6¼ 2

q�qðSÞ

0
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k

; ð6Þ

it suffices to show that

�ðnTÞ ¼ 2�2ðSÞþ1
Y
q 2 Q

q 6¼ 2

q�qðSÞ
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k�1

:

Now �ðnTÞ is the least common multiple of the numbers:

� �ð2ðk�1Þ�2ðSÞþkþ1Þ ¼ 2ðk�1Þð�2ðSÞþ1Þ,
� �ðqðk�1Þ�qðSÞþ1Þ ¼ qðk�1Þ�qðSÞðq � 1Þ with q2Q,
� �ðpÞ ¼ p � 1 with p2T.

Moreover, it is clear that the only primes q dividing �ðnTÞ are those that lie in Q.
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For a prime q and integers a5 0 and s5 1, we write, as usual, qaks if qajs but
qaþ1-s.

Fix an odd prime q2Q. Since

qðk�1Þ�qðSÞk�ðqðk�1Þ�qðSÞþ1Þ;

it follows that qðk�1Þ�qðSÞj�ðnTÞ. To see that qðk�1Þ�qðSÞk�ðnTÞ, let us assume that
this is not so. Then there exists � > ðk � 1Þ�qðSÞ5�qðSÞ and a prime p2S
such that q�jp � 1. But then q� must also divide

’ðmSÞ ¼
Y

p 2S

ðp � 1Þ ¼
Y
r 2 Q

r�rðSÞ;

which is clearly impossible. Now suppose that q ¼ 2. Since

2ðk�1Þð�2ðSÞþ1Þk�ð2ðk�1Þ�2ðSÞþkþ1Þ;
it follows that qðk�1Þð�2ðSÞþ1Þj�ðnTÞ. To show that qðk�1Þð�2ðSÞþ1Þk�ðnTÞ, we assume
that this is not the case and argue as before.

Thus, we have shown that

�ðnÞ ¼ 2ðk�1Þð�2ðSÞþ1Þ
Y
q 2 Q

q 6¼ 2

qðk�1Þ�qðSÞ ¼ 2�2ðSÞþ1
Y
q 2 Q

q 6¼ 2

q�qðSÞ

0
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k�1

;

and using (6), we derive the relation ’ðnTÞk�1 ¼ �ðnTÞk
.

It now remains to count numbers of the form nT. Let N ¼ b�y1��c. Then, by
(5), the number of subsets T�R of cardinality N is�

#R

N

�
5
�
#R

N

�N

5
�

y expð�log2=3 yÞ
�y1��

��y1��þoð1Þ

¼ expðð1 þ oð1ÞÞ�2y1�� log yÞ
as y ! 1. On the other hand, each integer nT satisfies the bound

nT ¼ 2kþ1mS’ðmSÞk�1 < 2kþ1mk
S< 2kþ1

� Y
q 2 Q

q

�k

ykN

¼ expðð1 þ oð1ÞÞk�y1�� log yÞ
as y ! 1; here, we have used the estimateY

q 2 Q

q 
 expðy1��Þ

as y tends to infinity, which follows from the Prime Number Theorem.
Now let "> 0 be small and fixed, and put # ¼ k"=ð2� � k"Þ> 0. For all suffi-

ciently large x, define y by the relation

x ¼ expðð1 þ #Þk�y1�� log yÞ:
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Then if x is large enough, we see that nT4 x for every subset T�R of cardin-
ality N, and the number of such subsets is at least

expðð1 � #Þ�2y1�� log yÞ ¼ x�=k�":

According to Theorem 1 from [2], one can take � ¼ 0:7039. Choosing " suffi-
ciently small for any given value of k, we obtain the stated result. &

3. Further Collisions

We recall the statement of the Prime k-tuples Conjecture (see [10, 20, 32]),
which is due to Dickson.

Conjecture 3.1. For any k5 2, let a1; . . . ; ak and b1; . . . ; bk be integers with
ai > 0 and gcdðai; biÞ ¼ 1 for each i ¼ 1; . . . ; k. Suppose that for every prime
number p4 k there exists an integer n such that

Qk
i¼1ðain þ biÞ is not a multiple

of p. Then there exist infinitely many positive integers n such that pi ¼ ain þ bi is
prime for all i ¼ 1; . . . ; k.

Theorem 3.2. Assume that Conjecture 3.1 holds. Then for every positive inte-
ger r there exist infinitely many n such that ’ðnÞ ¼ �ðnÞr

.

Proof. The case r ¼ 1 is trivial since ’ðnÞ ¼ �ðnÞ for every prime n, so we may
assume that r 5 2. Let c1 > 	 	 	 > cr > 1 be positive integers such that D ¼

Qr
i¼1 ci

has the following properties:

� D þ 1 is a prime number,
� D=ci is a multiple of Mr ¼ lcm½1; . . . ; r� for i ¼ 1; . . . ; r.

To construct such a D, we can choose ci ¼ ðr þ 1 � iÞMr for i ¼ 2; . . . ; r
and then let c1 ¼ Mr�, where �� 1ðmod MrÞ is sufficiently large and D þ 1 ¼
Mrc2c3 	 	 	 cr�þ 1 is prime. Let us write ai ¼ D2=ci and bi ¼ D=ci þ 1 for
i ¼ 1; . . . ; r. Then it is easy to see that gcdðai; biÞ ¼ 1 for i ¼ 1; . . . ; r. Moreover,
if n is an arbitrary positive integer and p4 r is a prime, then p divides D=ci for all
i ¼ 1; . . . ; r, and thus ain þ bi ¼ ðD2=ciÞn þ ðD=ci þ 1Þ is coprime to p; in par-
ticular,

Qr
i¼1ðain þ biÞ is coprime to all primes p4 r. By Conjecture 3.1, there

exist infinitely many n such that pi ¼ ain þ bi is prime for all i ¼ 1; . . . ; r. Let n be
one such number. Write ‘ ¼ Dn þ 1, so that pi ¼ ðD=ciÞ‘þ 1 for i ¼ 1; . . . ; r. Put
also p0 ¼ D þ 1. Since c1 > 	 	 	 > cr > 1 it follows that p0 < p1 < 	 	 	 < pr. Let
m ¼

Qr
i¼0 pi. Then

’ðmÞ ¼
Yr

i¼0

ðpi � 1Þ ¼ D
Yr

i¼1

ðD=ciÞ‘ ¼ ðD‘Þr

We also have

�ðmÞ ¼ lcm½pi � 1 : i ¼ 0; . . . ; r� ¼ D‘;

since, on the one hand, �ðnÞjD‘, while on the other hand, D and ‘ are coprime,
Djðp0 � 1Þj�ðnÞ and ‘jðp1 � 1Þj�ðnÞ; thus D‘j�ðmÞ. This shows that the number
m satisfies ’ðmÞ ¼ �ðmÞr

, and the result follows. &
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Remark 3.3. A more precise version of Conjecture 3.1 (see [20, 32]) is that under
the given assumptions there exists a constant c, depending only on k, a1; . . . ; ak and
b1; . . . ; bk, such that the number of positive integers n4 x such that ain þ bi is prime
for all i ¼ 1; . . . ; k is asymptotic to ðc þ oð1ÞÞx=logk x. Under this stronger conjec-
ture, the construction in the proof of Theorem 3.2 implies the number of positive
integers n4 x for which ’ðnÞ ¼ �ðnÞr

is of order at least x1=r=logr x as x ! 1.

We now recall the statement of Schinzel’s Hypothesis H (see [32]).

Conjecture 3.4. Suppose that f1ðnÞ; . . . ; frðnÞ are irreducible, and integer
valued polynomials (for integral n) with positive leading coefficients. Also, sup-
pose that for every prime q there exists a positive integer n such that
q-f1ðnÞ 	 	 	 frðnÞ. Then the numbers f1ðnÞ; . . . ; frðnÞ are simultaneously prime for
infinitely many positive integers n.

Theorem 3.5. Assume that Conjecture 3.4 holds. Then for all positive integers
r 5 s there exist infinitely many n such that ’ðnÞs ¼ �ðnÞr

.

Proof. We may clearly assume that r > s and that r and s are coprime. Put
t ¼ 2ðr � sÞ þ 15 3. Let a1; . . . ; at�1 > be squarefree positive integers that are
pairwise coprime and such that the product a1 	 	 	 at�1 is a multiple of
M ¼

Q
p4 rt p. Let �i ¼ i for i ¼ 1; . . . ; t � 1, and let �t ¼ ts. We define a collec-

tion of polynomials as follows. First, let

f1ðnÞ ¼ a�1

1 a�2

2 	 	 	 a�t�1

t�1 n�t þ 1:

Next, let f2ðnÞ; . . . ; ftðnÞ be obtained from f1ðnÞ by cyclically permuting the expo-
nents �1; . . . ; �t; that is,

fiðnÞ ¼ a�i

1 a
�iþ1

2 	 	 	 a�t

t�iþ1a�1

t�iþ2 	 	 	 a�i�2

t�1 n�i�1 þ 1

for i ¼ 2; . . . ; t. We claim that the polynomials f1ðnÞ; . . . ; ftðnÞ satisfy the conditions
of Conjecture 3.4. Indeed, note that each fiðnÞ is primitive (because its last coefficient
is 1), and it is irreducible because fiðnÞ ¼ Ain

�i þ 1 with some positive integers Ai

and �i, and such a polynomial is reducible if and only if there exists a prime number
p dividing �i such that Ai is the p-th power of a rational number. Since a1; . . . ; at�1

are pairwise coprime and squarefree, it follows that if such p exists, then it must
divide every �i for i ¼ 1; . . . ; t � 1, which is impossible because �1 ¼ 1. Finally, to
see that for every prime q there exists a positive integer n such that q-f ðnÞ, where

f ðnÞ ¼
Yt

i¼1

fiðnÞ;

note that f ðnÞ is a polynomial of degree tðt � 1Þ=2 þ st ¼ rt, which is constant
(and equal to 1) modulo every prime q4 rt since

M

����Yt�1

i¼1

ai:

In particular, f ðnÞ is nonzero modulo q for any n provided that q4 rt. If
q> rt ¼ deg f , then since f is primitive, it follows that f cannot have more than
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deg f < q roots n modulo q; in particular, there exists an integer n such that f ðnÞ is
nonzero modulo q. This proves the claim.

By Conjecture 3.4, there exist infinitely many positive integers n such that fiðnÞ is
prime for all i ¼ 1; . . . ; t. Moreover, we can assume that for infinitely many of these,
n is coprime to a1 	 	 	 at�1; indeed, assuming Conjecture 3.4, and replacing fiðnÞ by

giðnÞ ¼ fi

�Yt�1

i¼1

ain þ 1

�

for i ¼ 1; . . . ; t, one may check (as above) that the polynomials giðnÞ satisfy the
conditions of Conjecture 3.4 for i ¼ 1; . . . ; t as well.

Write pi ¼ fiðnÞ for i ¼ 1; . . . ; t, and let m ¼
Qt

i¼1 pi. Clearly,

’ðmÞ ¼
�

n
Yt�1

i¼1

ai

�Pt

i¼1
�i

¼
�

n
Yt�1

i¼1

ai

�tðt�1Þ=2þst

¼
�

n
Yt�1

i¼1

ai

�rt

:

On the other hand, since a1; . . . ; at�1; n are pairwise coprime and �t >�i for
i ¼ 1; . . . ; t � 1, we get that

�ðmÞ ¼
�

n
Yt�1

i¼1

ai

��t

¼
�

n
Yt�1

i¼1

ai

�st

:

From the above computations, it is seen that ’ðmÞs ¼ �ðmÞr
, and this finishes the

proof. &

As a consequence of Theorem 3.2, we see that the truth of Conjecture 3.1
implies that the function log’ðnÞ=log�ðnÞ contains in its range all positive inte-
gers. Similarly, by Theorem 3.5 we see that if Conjecture 3.4 is true, then this
function contains in its range all rational numbers greater than 1. We close this
section by giving an unconditional proof of the fact that the range of the above
function is dense in ½1;1Þ.

Theorem 3.6. The set flog’ðnÞ=log�ðnÞgn5 3 is dense in ½1;1Þ.
Proof. It suffices to show that if �> 1 is fixed but arbitrary, then � is a limit

point of the sequence flog’ðnÞ=log�ðnÞgn5 3. Let �2ð0; 1=2Þ and let y be suffi-
ciently large so that if P is the set defined by (2), then (3) holds. Let
� ¼ blog y=log 2c þ 1. Let Q be the set of primes defined by (4), and put

m ¼
� Y

q 2 Q

q

��

and n ¼ m
Y

p 2PnQ
p:

It is obvious that �ðnÞ ¼ �ðmÞ. Moreover,

log�ðnÞ ¼ ð� � 1Þ
X

q4 y1��

log q � y1�� log y ¼ y1��þoð1Þ;

while

log’ðnÞ ¼ log�ðnÞ þ
X
p 2P

logðp � 1Þ � #P 	 log y ¼ y1þoð1Þ:

8 W. D. Banks et al.



In particular, we see that

log’ðnÞ
log�ðnÞ ¼ y�þoð1Þ; ð7Þ

while

log’ðnÞ
log2 �ðnÞ

¼ y2��1þoð1Þ ¼ oð1Þ: ð8Þ

We now assume that y>�2��1

so that by (7) log’ðnÞ=log�ðnÞ>�. We construct
a finite sequence n1 < n2 < 	 	 	 < nt as follows: Let n1 ¼ n. If ni has been con-
structed, we then set niþ1 ¼ nipi, where pi is a prime in the interval J ¼ ðy5=2; y5Þ
which does not divide ni, such that further ðpi � 1Þ=2 has at most two prime
factors, none of which divides ’ðniÞ, and each one of which exceeds y5=4. If no
such pi exists, we stop.

Let t be the maximal index for which pi exists. We claim that t> y5=4=log3 y.
Indeed, since Pðn1Þ< y1�� < y5=4, it suffices to find a lower bound on the positive
integer t giving the length of the longest chain of primes p1; . . . ; pt such that
pi 2J, ðpi � 1Þ=2 has at most two prime factors, each one exceeding y5=4, and
such that ðpiþ1 � 1Þ=2 is coprime to pj � 1 for all j4 i. By the Chen theorem (see
[22]), the set P0 of primes p in J such that ðp � 1Þ=2 has at most two prime
factors, each one exceeding y5=4, is of cardinality #P0 � y5=log2 y. If t denotes
the length of the longest such chain, it then follows that every such prime p in P0

has p � 1 divisible by some prime q> 2 dividing pi � 1 for some i4 t. The
number of such primes q is at most 2t. For each prime q, the number of primes
p4 y5 that are congruent to 1 modulo q does not exceed y5=q4 y15=4. Thus, the
total number of such primes p in P0 cannot exceed 2ty15=4, and, by the Chen
theorem, we get t � y5=4=log2 y. Thus, the inequality t> y5=4=log3 y holds once y
is large enough. Assume now that i4 t is such that

log’ðniÞ
log�ðniÞ

>�: ð9Þ

Note that i ¼ 1 is one such index. We then show that for sufficiently large y we have

log’ðniÞ
log�ðniÞ

>
log’ðniþ1Þ
log�ðniþ1Þ

:

Indeed, the above inequality is equivalent to

log’ðniÞ
log�ðniÞ

>
log’ðniÞ þ logðpi � 1Þ

log�ðniÞ þ logðpi � 1Þ � log 2
;

which in turn is equivalent to

log’ðniÞ
log�ðniÞ

> 1 þ log 2

logðpi � 1Þ � log 2

which is certainly true for sufficiently large y by (9) and the inequality �> 1.
Define t0 as the largest integer t0 4 t such that log’ðniÞ=log�ðniÞ>� holds
for all i ¼ 1; . . . ; t0 (but not for t0 þ 1). By the above argument, we have that

Values of the Euler Function in Various Sequences 9



log’ðniÞ=log�ðniÞ is decreasing for i ¼ 1; . . . ; t0. The difference between two
consecutive values is positive but upper bounded by

log’ðniÞ
log�ðniÞ

� log’ðniþ1Þ
log�ðniþ1Þ

¼ log’ðniÞ
log�ðniÞ

� log’ðniÞ þ logðpi � 1Þ
log�ðniÞ þ logðpi � 1Þ � log 2

� log’ðniÞ log pi

log2 �ðniÞ

� log’ðn1Þ log y

log2 �ðn1Þ
� y1�2�þoð1Þ ¼ oð1Þ;

because of (8). Finally, notice that when i ¼ t the inequality

log’ðntÞ
log�ðntÞ

<
log’ðn1Þ þ t logðy5Þ

log�ðn1Þ þ tðlogðy5=2Þ � log 2Þ ¼ 1 þ oð1Þ<�

holds if y is large enough. It is now clear that � is a limit point of the sequence
flog’ðnÞ=log�ðnÞgn5 3, and this completes the proof. &

4. Euler Function and Shifted Primes

Let

� ¼ 1

2 log 	�1
¼ 0:8178 . . . ;

where 	 ¼ 0:5425 . . . is the unique root of the equationX1
i¼1

ai	
i ¼ 1

with ai ¼ ði þ 1Þ logði þ 1Þ � i log i � 1, i ¼ 1; 2; . . . (see [15, 26] for more
details).

Theorem 4.1. The inequality

#LðxÞ � x

log2 x
expðð�þ oð1ÞÞðlog3 xÞ2Þ

holds as x ! 1.

Proof. Let x be a large positive real number and put

y ¼ max
’ðnÞþ1 2LðxÞ

n; u ¼ 4 log2 y and z ¼ y1=u:

From Theorem 328 of [21], we have ’ðnÞ � n=log2 n, therefore

y � x log2 x:

Let EðyÞ ¼ fn4 y : PðnÞ4 z or P2ðnÞjng. According to Theorem 1 in
Chapter III, Section 5.1 of [33] (see also [23]), we have

#fn4 x : PðnÞ4 yg � x exp

�
log x

2 log y

�
; x5 y5 2: ð10Þ

10 W. D. Banks et al.



Therefore,

#EðyÞ � y

log2 y
þ
X
q> z

y

q2
� y

log2 y
:

Next, let

~NNðyÞ ¼ NðyÞnEðyÞ:
Each n2 ~NNðyÞ leads to a solution ðp; ‘Þ to the equation ’ðmÞ‘� ð’ðmÞ � 1Þ ¼ p,
where the primes p; ‘ satisfy p4 x and ‘4 y=m. Note that ’ðmÞ> 1 since m5 3,
and we have m4 y=z.

By the Brun method (see, for example, Theorem 2.3 in [19]), we see that for
any integers a5 1 and b5 � a with gcdða; bÞ ¼ 1 and b 6¼ 0, the linear form
a‘þ b takes prime values for at most

O

�
yjbj

’ðaÞ’ðjbjÞ log2ðy=aÞ

�
¼ O

�
y log2ð5aÞ log2ð5jbjÞ

a log2ðy=aÞ

�
ð11Þ

primes ‘4 y=a.
Let VðtÞ be the set of values of the Euler function up to t; that is,

VðtÞ ¼ fa4 t : a ¼ ’ðmÞ for some m2Zg:
Let

w ¼ max
m4 y=z

’ðmÞ:

We have

w4 yz�1:

Using (11) with a running through the set VðwÞnf1g and b ¼ 1 � a, and taking
into account that

logðy=aÞ5 logðy=wÞ � log z ¼ log y

u
� log x

log2 x
;

we obtain

#LðyÞ � #EðyÞ þ
X

a 2VðwÞ
a> 1

yðlog2ð5aÞÞ2

a log2ðy=aÞ
� xðlog2 xÞ4

log2 x

X
a 2VðwÞ

1

a
:

Using the inequality

#VðtÞ ¼ t

log t
expðð�þ oð1ÞÞðlog3 tÞ2Þ ð12Þ

given in [26] (see also [15] for a more precise statement), and partial summation,
we derive that X

a 2VðwÞ

1

a
¼ expðð�þ oð1ÞÞðlog3 wÞ2Þ;

and the result follows. &
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Remark 4.2. Clearly, if q> 3 is a Sophie Germain prime (that is, p ¼ 2q þ 1 is
also prime), then ’ð3qÞ ¼ 2q ¼ ’ðpÞ, which together with the effective version of
Conjecture 3.1 from [20, 32] seems to imply that LðxÞ � x=log2 x. Heuristic
considerations suggest that

lim
x!1

#LðxÞ log2 x

x
¼ 1:

This is based on considering, as in the previous proof, integers of the form
n ¼ m‘4 x with m4 y and such that p ¼ ’ðmÞ‘þ 1 is prime, where y is some
slowly growing function of x. For example, if the density of such primes p is of
order x=ð’ðmÞ log2 xÞ uniformly for m4 y, then the bound (12) implies

#LðxÞ � log2 x

x

X
a 2VðyÞ

1

a
� log2 x

x
expðð�þ oð1ÞÞðlog3 yÞ2Þ

(it is useful to notice that log3 y ¼ ð1 þ oð1ÞÞ log3 x even when y is very small
compared to x). However, it seems that a proof of the above relations requires a
very strong quantitative form of Conjecture 3.1.

Next, we show that the method of Theorem 4.1 can also be used to derive an
upper on #NðxÞ.

Theorem 4.3. We have

#NðxÞ � x log3 x

log x
:

Proof. Let y ¼ x1=4 log2 x and set

E1ðxÞ ¼ fn4 x : PðnÞ4 y or PðnÞ2jng:

As in the proof of Theorem 4.1, using (10) gives #E1ðxÞ � x=log x. We now
define the sets

E2ðxÞ ¼ NðxÞnE1ðxÞ

and

MðxÞ ¼ f34m4 x=y : PðmÞ4 x=mg:

Therefore, every n2E2ðxÞ can be written as n ¼ ‘m, where ‘ ¼ PðnÞ>PðmÞ, and
m2MðxÞ.

Fix m2MðxÞ. Then the equation ’ðnÞ ¼ ð‘� 1Þ’ðmÞ ¼ p � 1 holds for some
prime p. In particular, ’ðmÞ‘� ð’ðmÞ � 1Þ ¼ p. Since ’ðmÞ � 1> 0 and
gcdð’ðmÞ,’ðmÞ � 1Þ ¼ 1, by the Brun method (see Theorem 2.3 in [19] and
(11)), the number of primes ‘4 x=m for which the same equation holds with a
different prime p is

O

�
x

’ð’ðmÞÞ logðx=’ðmÞÞ2

’ðmÞ � 1

’ð’ðmÞ � 1Þ

�
:
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Summing up the above inequality over all the possible values of m, we get

#E2ðxÞ � x
X

m 2MðxÞ

1

’ð’ðmÞÞ log2ðx=mÞ
’ðmÞ � 1

’ð’ðmÞ � 1Þ : ð13Þ

We now recall the estimate X
m4 t

pj’ðmÞ

1 � t log2 t

p

(see Theorem 3.5 in [12], for example). Let us define the functions

z0ð
Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
log2 


p
; z1ð
Þ ¼ ðlog2 
Þ

10; z2ð
Þ ¼ log
;

and let us also define for m5 3,

hðmÞ ¼
X

pj’ðmÞ
p> z1ðmÞ

1

p � 1
; gðmÞ ¼

X
pjð’ðmÞ�1Þ

z1ðmÞ< p4 z2ðmÞ

1

p � 1
:

Clearly, by changing the order of summation, we haveX
t <m4 2t

hðmÞ4
X

m4 2t

X
pj’ðmÞ

p> z1ðtÞ

1

p � 1
�

X
z1ðtÞ< p4 t

1

p

X
m4 2t

pj’ðmÞ

1

� t log2 t
X

p> z1ðtÞ

1

p2
� t

ðlog2 tÞ9
: ð14Þ

Next, suppose p is prime and t5 expð4 log2 pÞ. Put u ¼ 2 log p and note that
p4 t1=2u. By (10),

#fm4 t : PðmÞ4 t1=u or P2ðmÞjmg � te�u=2 þ t1�1=u � t=p:

Now suppose that m4 t, q ¼ PðmÞ> t1=u, q2-m and pjð’ðmÞ � 1Þ. Writing
m ¼ qs, we see that p-’ðsÞ and that

ðq � 1Þ’ðsÞ� 1 ðmod pÞ:

Since p4 t1=2u, by the Brun-Titchmarsh theorem (see for example Theorem 3.7 in
Chapter 3 of [19]), for a given s, the number Qs of such q is

Qs �
t

sp logðt=ðspÞÞ �
t

sp logðt1=u=pÞ �
tu

sp log t
:

Upon summing over s4 t1�1=u, we conclude that for t5 expð4 log2 pÞ the follow-
ing bound holds X

m4 t

pjð’ðmÞ�1Þ

14
X

s4 t1�1=u

Qs þ Oðt=pÞ � t log p

p
:
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Therefore,X
t<m4 2t

gðmÞ4
X

z1ðtÞ< p4 z2ð2tÞ

1

p � 1

X
m4 2t

pjð’ðmÞ�1Þ

1 � t
X

p> z1ðtÞ

log p

p2
� t

ðlog2 tÞ10
:

ð15Þ

We also need the following estimate, which is a variant of Lemma 2 of [24] and
can be obtained by the same arguments:

#fm4 t : 9 p4 z0ðmÞ; p-’ðmÞg � t

ðlog2 tÞ10
; ð16Þ

Using (14), (15) and (16), and taking

HðtÞ ¼ fm4 t : hðmÞ> 1 or gðmÞ> 1 or 9p4 z0ðmÞ; p-’ðmÞg;

we obtain

#HðtÞ4 t

ðlog2 tÞ10
þ
X
m4 t

ðhðmÞ þ gðmÞÞ

� t

ðlog2 tÞ10
þ
X

2j 4 2t

2j

log9 j
� t

ðlog2 tÞ9
: ð17Þ

For m2Hðx=yÞ, we use the fact that

1

’ð’ðmÞÞ ¼
1

m
	 m

’ðmÞ 	
’ðmÞ

’ð’ðmÞÞ �
ðlog2 xÞ2

m
;

together with the fact that

1

log2ðx=mÞ
4

1

log2 y
� log2

2 x

log2 x
:

Hence, by inequality (17) and partial summation, we get that

X
m 2Hðx=yÞ

1

’ð’ðmÞÞ log2ðx=mÞ
� log4

2 x

log2 x

X
m 2Hðx=yÞ

1

m

¼ log4
2 x

log2 x

�ðx=y

3

1

t
dð#HðtÞÞ þ Oð1Þ

�

� log4
2 x

log2 x

�ðx

3

#HðtÞ
t2

dt þ 1

�

� log4
2 x

log2 x

�ðx

3

dt

tðlog2 tÞ9
þ 1

�

� log4
2 x

log2 x

�
1 þ log x

ðlog2 xÞ9

�
� 1

log x log2 x
:
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We now estimate the contribution to the sum in (13) from m 2=Hðx=yÞ. By the
Mertens formula, we deduce that if m 2=Hðx=yÞ, then

1

’ð’ðmÞÞ ¼
1

’ðmÞ
’ðmÞ

’ð’ðmÞÞ ¼
1

’ðmÞ
Y

pj’ðmÞ

�
1 þ 1

p � 1

�

4
1

’ðmÞ
Y

p< z1ðmÞ

�
1 þ 1

p � 1

� Y
p> z1ðmÞ

pj’ðmÞ

�
1 þ 1

p � 1

�

� expðhðmÞÞ log z1ðmÞ
’ðmÞ � log z1ðmÞ

’ðmÞ � log3 x

’ðmÞ :

Also, since there are Oðlog mÞ prime divisors of ’ðmÞ � 1, for m 2=Hðx=yÞ we
have

’ðmÞ � 1

’ð’ðmÞ � 1Þ ¼
Y

pjð’ðmÞ�1Þ

�
1 þ 1

p � 1

�

4 egðmÞ
Y

z0ðmÞ< p4 z1ðmÞ

�
1 þ 1

p � 1

� Y
p> z2ðmÞ

pjð’ðmÞ�1Þ

�
1 þ 1

p � 1

�
� 1:

Therefore, it now suffices to show thatX
m 2MðxÞ

1

’ðmÞ log2ðx=mÞ
� 1

log x
: ð18Þ

From the Landau bound on the sum of reciprocals of the Euler function (see [27]),
we derive thatX

m4 x1=2

1

’ðmÞ log2ðx=mÞ
� 1

log2 x

X
m4 x1=2

1

’ðmÞ �
1

log x
:

Let w ¼ blog2 xc þ 1. For an integer k in the interval 24 k4w, we define
the set

FkðxÞ ¼ fm2MðxÞ : x1�1=k <m4 x1�1=ðkþ1Þg
Clearly, each m2FkðxÞ is x1=k-smooth, and 1=logðx=mÞ � k=log x. Thus,X

m 2FkðxÞ

1

’ðmÞ log2ðx=mÞ
� k2

log2 x

X
x1�1=k <m4 x1�1=ðkþ1Þ

PðmÞ< x1=k

1

’ðmÞ :

From Lemma 1 of [30], one derives, via partial summation (see also the proof of
Theorem 2 of [30]), that X

x1�1=k <m4 x1�1=ðkþ1Þ

PðmÞ< x1=k

1

’ðmÞ 4 k�kþoðkÞ log x:
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Thus,

X
m 2FkðxÞ

1

’ðmÞ log2ðx=mÞ
� k�kþoðkÞ

log x
;

and summing up over k we get (18), thus completing the proof. &

Remark 4.4. Heuristically, for each m (say, up to x1=10) the number of primes
x1=2 4 ‘4 x=’ðmÞ for which p ¼ ð‘� 1Þ’ðmÞ þ 1 is prime is likely to be of order

x=ð’ð’ðmÞÞ log2 xÞ. In particular, those primes ‘ are at least as large as x1=2 once x
is large enough. Summing over m4 x1=10, we conclude that apparently

#NðxÞ � x

log2 x

X
m< x1=10

1

’ð’ðmÞÞ ð19Þ

(since ‘> x1=2, each such n ¼ m‘4 x is counted only once). By Lemma 2 of [24],
we know that as t tends to infinity, the set GðtÞ of positive integers m4 t such
that ’ðmÞ is divisible by all primes p< log2 t=ðlog3 tÞ2

is of cardinality
#GðtÞ ¼ ð1 þ oð1ÞÞt. By the Mertens formula, we see that the inequality

1

’ð’ðmÞÞ ¼
1

’ðmÞ
’ðmÞ

’ð’ðmÞÞ 5
1

’ðmÞ
Y

p< log2 t=ðlog3 tÞ2

�
1 þ 1

p � 1

�
� log3 t

m

holds for all m2GðtÞ. Putting z ¼ expðlog1=2 xÞ, by partial summation, we deduce

X
m< x1=10

1

’ð’ðmÞÞ � log3 x
X

m 2Gðx1=10Þ

1

m
¼ log3 x

�ðx1=10

1

1

t
dð#GðtÞÞ þ Oð1Þ

�

> log3 x

�ðx1=10

z

#GðtÞ
t2

dt þ Oð1Þ
�

� log3 x log x;

which together with (19) suggests that the bound of Theorem 4.3 is of the correct
order of magnitude. Again, a rigorous proof depends on a quantitative form of
Conjecture 3.1.

5. Euler Function and Polynomials

Theorem 5.1. Let f ðXÞ2Z½X� be a polynomial with integer coefficients of
degree d > 1. Then the bound

#Nf ðxÞ �f x expð�ð�d þ oð1ÞÞ log1=2 xÞ
holds for sufficiently large values of x, where �d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 � 2=dÞ log 2

p
.

Proof. We let x be a sufficiently large positive real number. Let y be a real
number to be chosen later.

We define the set

E1ðxÞ ¼ fn4 x : �ðnÞ5 2y=2g:
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By the well known upper bound (see Theorem 5.4 of Chapter 1 of [31])X
n4 x

�ðnÞ2 � x log3 x

we derive that

#E1ðxÞ � x2�y log3 x: ð20Þ
We now define the set

E2ðxÞ ¼ fn4 x : �ð’ðnÞÞ5 2yg:
By a result of [35] which asserts that the estimate

X
n< x

�ð’ðnÞÞ � x exp

 
O

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
log x

log2 x

s !!

holds, we derive that

#E2ðxÞ � x2�y exp

 
O

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
log x

log2 x

s !!
: ð21Þ

We denote ~NNf ðxÞ ¼ Nf ðxÞnðE1ðxÞ [ E2ðxÞÞ.
We now consider the set MðxÞ of positive integers m such that jf ðmÞj ¼ ’ðnÞ

for some n2 ~NNf ðxÞ.
It is clear that for every n2 ~NNf ðxÞ we have

2!ðnÞ 4 �ðnÞ< 2y=2 and 2!ð’ðnÞÞ 4 �ð’ðnÞÞ< 2y: ð22Þ
Consider the prime number factorization of n2 ~NNf ðxÞ given by n ¼ p�1

1 	 	 	 p�k

k .
If jf ðmÞj ¼ ’ðnÞ, then

jf ðmÞj ¼ p�1�1
1 ðp1 � 1Þ 	 	 	 p�k�1

k ðpk � 1Þ:
It is easy to verify that for any integer a there are at most two solutions of the
equation p�ðp � 1Þ ¼ a in prime p and positive integer �. By (22), we have
k< y=2. Therefore each representation jf ðmÞj ¼ a1a2 	 	 	 ak of jf ðmÞj as a product
of k positive integers leads to at most 2k < 2y=2 possible values of n with
jf ðmÞj ¼ ’ðnÞ. As usual, we denote by �kðsÞ the number of representations of a
positive integer s as a product of s integers, s ¼ a1a2 	 	 	 ak. Therefore

# ~NNf ðxÞ4#MðxÞ2y=2 maxf�kðjf ðmÞjÞ : m2MðxÞ; k< y=2g:
Since jf ðmÞj5 0:5jmjd holds for all but finitely many values of m, it follows

that #MðxÞ �f x1=d.
Let s ¼ q

�1

1 	 	 	 q�r
r be the prime number factorization of s> 1. Then,

�kðsÞ ¼
Yr

j¼1

�
�j þ k � 1

k � 1

�
4
Yr

j¼1

ð�j þ 1Þk�1 ¼ �ðsÞk�1:

Thus, if m2MðxÞ, then, from (22), we derive

�kðjf ðmÞjÞ4 �ðjf ðmÞjÞk�1 4 �ðjf ðmÞjÞy=2 4 2y2=2:
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Hence,

# ~NNf ðxÞ �f x1=d2y2=2þy=2: ð23Þ
Thus, combining (20), (21) and (23), we derive

#Nf ðxÞ �f x2�y log3 x þ x2�y exp

 
O

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
log x

log2 x

s !!
þ x1=d2y2=2þy=2:

Choosing

y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2 � 2

d

�
log x

log 2

s
� 2;

we obtain

2y2=2þy=2 4 2ðyþ2Þ2=2�y ¼ x1�1=d2�y;

which completes the proof. &

Remark 5.2. We note that if d ¼ 1 and f ðXÞ ¼ cðaX þ bÞ, where abc 6¼ 0, a and
b are coprime, and jaj5 2, then the inequality

#Nf ðxÞ �f

x

log�a x
ð24Þ

holds for sufficiently large values of x, with some positive constant �a depending
only on a. Indeed, taking p to be any prime factor of a, it follows that if p�pk f ðmÞ,
then �p � 1. In particular, if n4 x is such that ’ðnÞ ¼ f ðmÞ holds for some integer
m, then n has Oð1Þ prime factors q which are congruent to 1 modulo p, and the
Wirsing theorem (see [33]) now easily implies that the inequality [24] holds for
sufficiently large x with �a ¼ 1=ðp � 1Þ.

Remark 5.3. It is natural to expect that the factorization structure of the poly-
nomial f should affect #Nf ðxÞ in a rather dramatic way. For example, it is reason-
able to expect that #Nf ðxÞ is much smaller for f ðXÞ ¼ X2 þ 1 than for f ðXÞ ¼ X2.
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