
On Artin’s Conjecture for Primitive Roots

by

Francesco Pappalardi ∗

Department of Mathematics and Statistics

A thesis submitted in partial fulfillment

of the requirements of the degree of

Doctor of Philosophy at McGill University

February 1993

∗ c©Francesco Pappalardi - (1993)



ACKNOWLEDGMENTS

There are many people who I would like to thank at this point:

My Master thesis Supervisor Marco Fontana for having trusted me and supported

my choice to come to Canada. Professor Paulo Ribenboim for having always advised

me on my choices and his precious mathematical teaching.

Professors Jal Choksi, Ian Connell, Hershy Kisilevsky, John Labute, V. Seshadri

and Georg Schmidt, whose help and politeness made my time at McGill pleasant.

Raffaella Bruno who corrected the english of this thesis. None of my problems

were ever unsolvable for her.

Valerie McConnell, Elaine Tremblay for never having denied a smile and their

valuable help.

My friends Mark Fels and Djordje C̆ubrić, the first having shown me the human
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ABSTRACT

Various generalizations of the Artin’s Conjecture for primitive roots are consid-

ered. It is proven that for at least half of the primes p, the first log p primes generate

a primitive root. A uniform version of the Chebotarev Density Theorem for the field

Q(ζl, 2
1/l) valid for the range l < log x is proven. A uniform asymptotic formula for

the number of primes up to x for which there exists a primitive root less than s is

established. Lower bounds for the exponent of the class group of imaginary quadratic

fields valid for density one sets of discriminants are determined.

RESUMÉ

Nous considérons différentes généralisations de la conjecture d’Artin pour les

racines primitives. Nous démontrons que pour au moins la moitié des nombres pre-

miers p, les premiers log p nombres premiers engendrent une racine primitive. Nous

démontrons une version uniforme du Théorème de Densité de Chebotarev pour le

corps Q(ζl, 2
1/l) pour l’intervalle l < log x. On établit une formule asymptotique

uniforme pour les nombres de premiers plus petits que x tels qu’ il existe une racine

primitive plus petite que s. Nous déterminons des minorants pour l’exposant du

groupe de classe des corps quadratiques imaginaires valides pour ensembles de dis-

criminants de densité 1.
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INTRODUCTION

The famous Artin Conjecture for primitive roots states that any integer a 6= ±1 which

is not a perfect square is a primitive root for infinitely many primes. More precisely,

if Na(x) is the set of such primes up to x, then

Na(x) ∼ A(a)π(x)

where A(a) 6= 0.

Artin also gave an explicit formula for A(a) and his intuition was based on the

following heuristic argument (see [1]):

For any prime p less than x, let Pa(q) be the probability that the prime q divides the

index [F∗
p : 〈a〉]; then,by considering such instances independent, we have

A(a) =
∏
q

(1− Pa(q)).

In order to have q|[F∗
p : 〈a〉], the two necessary and sufficient conditions

p ≡ 1(modq) and a(p−1)/q ≡ 1(modp) (1)

must be satisfied.

Now consider the field Lq = Q(ζq, a
1/q), let p be a rational prime that splits

completely in Lq and let P be a prime over p. The residue field at P has p elements,

therefore (1) holds. Conversely if (1) holds for p, then p splits completely in Lq.

The Chebotarev Density Theorem indeed states that the probability that p splits

completely in a normal extension K, equals 1/[K : Q] and therefore the probability

Pa(q) is 1/q(q − 1) and

A(a) =
∏
q

(
1− 1

q(q − 1)

)
.
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Later, calculations made by D. H. Lehmer and E. Lehmer (see [35]) suggested that

in some cases the expression of A(a) was not correct and the factors of the product

expansion of A(a) corresponding to the prime divisors of a had to be replaced by

other expressions.

In 1965, C. Hooley (see [26]) used the linear sieve to prove that if the validity of

the Generalized Riemann Hypothesis is assumed for the Dedekind zeta function of

the fields Lq then the Artin’s Conjecture is true, with the corrections indicated by

Lehmer.

The main tool used by Hooley is the effective version of the Chebotarev density

Theorem valid under the assumption of the Riemann Hypothesis for the Dedekind

zeta function of K. That is

#{p ≤ x | p splits completely in K} =
1

nK

li(x) + O(x1/2(log x+ log d
1/nK

K )),

where nK = [K : Q] and dK is the discriminant.

This version of the Chebotarev Density Theorem has been for a long time the

only effective one available until 1977 when J. C. Lagarias and A. M. Odlyzko proved

a version of the Theorem valid with the condition (see [29]):√
log x

nK

� max
{
d

1/nK

K , log dK

}
.

For a Kummer’s extension of the type Lq, this is equivalent to q < log1/6 x.

Such a discovery, unfortunately, does not allow one to eliminate the use of the

Riemann Hypothesis on the proof of the Theorem of Hooley, however it gives a

uniform result for q < log1/6 x.

In 1984 R. Gupta and R. Murty (see [15]) published the first result in which the

validity of the Artin Conjecture is established for at least one value of a. Indeed,
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they constructed a set of 13 numbers for which at least one is primitive root for a

number of primes p up to x which is � x
log2 x

. This result was later sharpened by

Heath-Brown (see [21]) to a set of 3 elements.

The idea of Gupta and Murty also allowed them to deal with the analogous

statement of the Artin Conjecture for rational points on Elliptic Curves (see. [17]).

This is the Lang-Trotter Conjecture. From this they were led to consider a high-rank

version of the Artin Conjecture.

Given a1, . . . , ar ∈ Z, we say that a1, . . . , ar are multiplicatively independent

if, whenever there are integers n1, . . . , nr such that

an1
1 · · · anr

r = 1,

we have n1 = n2 = · · · = nr = 0.

It makes sense to ask if

〈a1, . . . , ar mod p〉 = F∗
p (2)

for infinitely many primes p and to speculate whether the density of such primes can

be calculated. It is necessary to express the condition for a prime q to divide the

index of the group generated by a1, . . . , ar in terms of splitting conditions on some

fields. The natural generalization of Artin’s original idea is in:

Theorem 1 Let 〈a1, . . . , ar〉 be the subgroup of F∗
p generated by the multiplicatively

independent a1, . . . , ar. For any prime q

q
∣∣∣[F∗

p : 〈a1, . . . , ar〉] ⇐⇒ p splits completely in Q
(
ζq, a

1/q
1 , . . . , a1/q

r

)
.2

This result and the consequent application of the Chebotarev Density Theorem

suggests that the density of primes for which (2) holds equals∏
q

(
1− 1

qr(q − 1)

)
. (3)
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In Chapter 1 we prove that if the Generalized Riemann Hypothesis holds for the

fields in Theorem 1, then

Na1,...,ar(x) = #
{
p ≤ x | 〈a1, . . . , ar〉 = F∗

p

}
∼ Aa1,...,arπ(x). (4)

where the constant Aa1,...,ar equals the product in (3), up to finitely many factors.

The complete formulas, with the analogous corrections of those suggested by Lehmer

for the Artin Conjecture, are worked out in Section 2.1 by the use of some properties

of Kummer’s extension.

The proof follows the original one of Hooley but now the estimate for the number

of primes for which there is a large prime divisor of the index is made using a Lemma

due to C.R. Matthews which is an application of the pigeon-hole principle.

The new parameter given by the rank, suggests to take r as a function of x and

try to adapt the proof to obtain a result independent of the Riemann Hypothesis.

This is done in Section 3.1 and the conclusion is that for a positive density of primes

p, F∗
p can be generated by about log p multiplicatively independent integers.

The main obstacle comes from those primes for which the index

[F∗
p : 〈a1, . . . , ar〉]

has some prime divisor in the interval [log1/6 x, log2 x].

The range [log1/6 x, log x] is dealt by using a version of Chebotarev Density Theo-

rem for the field Q(ζl, 2
1/l) valid for a range of l up to log x/(log log x)2 which is proven

in Chapter 2. Such a proof uses properties of the single non-Abelian L-function of

Q(ζl, 2
1/l), and is of course stronger than the one of Lagarias and Odlyzko of [29].

This establishes a Conjecture of H. Zassenhaus of 1969 (see [4]).

In Section 3.3, we work out the bound of r ≥ log2 p for a set of density one of

primes p for which F∗
p is generated by r elements. Such a result is stronger than
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the one that was known as a consequence of the work of Burgess and Elliot (see

Proposition 1.11) and uses the Large Sieve Inequality.

The Lemma of Matthews used in the proof of the asymptotic formula in (4) allows

one to conclude that for almost all primes p the index

[F∗
p : 〈a1, . . . , ar〉] ≥

pr/(r+1)

log p
.

In Appendix A, we improve such a lower bound to

[F∗
p : 〈a1, . . . , ar〉] ≥ pr/(r+1) exp{logδ p}. (5)

This is done by deducing an upper bound for the number of primes p for which p− 1

has a divisor in the range (xh, xh exp{logδ p}) which is due to Murty and Erdös (see

[14]) and proven here with the uniformity conditions that allow estimates of the type

(5) uniform with respect to r.

Next we take into consideration the problem of determining an asymptotic formula

for the number of primes for which two given numbers (or more in general s given

numbers) are simultaneously primitive roots. An heuristic argument similar to Artin’s

suggests a density

δ =
∏

q prime

(
1− 2q − 1

q2(q − 1)

)
,

and again this is proven to be the right one up to finitely many factors. Complete

formulas are worked out in the case where the given numbers are primes. We later

discovered that a general version of this statement has been proven by K. R. Matthews

in his Ph.D. Thesis (see [36]). However, our proof is different and by the use of a

Tauberian Theorem, we get a better uniform error term.

This result has, as an application, a uniform asymptotic formula for the number

of primes for which the least prime primitive root is less than a parameter y. Such a

formula has applications to the problem of the distribution of least primitive roots.
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In Appendix B, we consider the problem of the exponent of the class group of

imaginary quadratic fields.

If e(d) is the exponent of the ideal classgroup of the imaginary quadratic fields

Q(
√
−d), the Iwasawa Conjecture states that

lim
d→+∞

e(d) = +∞.

In 1972, D.W. Boyd and H. Kisilevsky (see [3]) proved that if the Extended Riemann

Hypothesis holds for certain Dirichlets L-functions, then the Iwasawa Conjecture is

true.

The proof consists on noticing a link between the least prime p for which −d is a

quadratic residue and e(d) (this is pe(d) � d) and then use the Riemann Hypothesis

to prove that p� log2 d. This argument establishes the bound

e(d) � log d

log log d
. (6)

We prove unconditionally that (6) holds for a set of discriminants of density one,

by calculating uniform asymptotic formulas for the number of integers (resp. square-

free integers) d < x for which the least prime p with
(
−d
p

)
= 1 is smaller than s.
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1 ON HOOLEY’S THEOREM

1.1 A generalization of Hooley’s Theorem

Suppose a1, . . . , ar are multiplicatively independent integers and let Γ be the subgroup

of Q× generated by a1, . . . , ar. For all but finitely many primes p, it makes sense to

consider the reduction of Γ modulo p which we indicate by Γp which can be viewed

as a subgroup of F∗
p.

In the case r = 1, Hooley has shown that if the generalized Riemann Hypothesis

holds for the Dedekind zeta function of the fields Q(ζl, a
1/l
1 ), with l prime, then the

set of primes p for which F∗
p = Γp has non zero density (see [26]).

We will consider the following generalization first introduced by R. Gupta and R.

Murty in [15].

Theorem 1.1 Let Γ be as above, nm = [Q(ζm, a
1/m
1 , . . . , a1/m

r ) : Q] and let

δΓ =
∞∑

m=1

µ(m)

nm

if the Generalized Riemann Hypothesis holds for the Dedekind zeta function of the

fields Q(ζl, a
1/l
1 ), l prime, then

NΓ(x) = #{p ≤ x|F∗
p = Γp} ∼ δΓ

x

log x
.

Remark: a) Note that

nm ≥ [Q(ζm, a
1/m
1 ) : Q] � φ(m)m, (1)

therefore δΓ is a convergent series and thus a well defined number. We will prove in

the second section that δΓ 6= 0.
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b) Theorem 1.1 can also be proven on the weaker assumption that there exists a ∈ Γ

with the property that all the Dedekind zeta functions of the fields Q(ζl, a
1/l) (l large

prime) have no zeroes in the region

σ > 1− 1

r + 1
.

Proof: Let us assume r > 1. The first steps of the proof follow the original idea

of Hooley who considered the following functions:

NΓ(x, y) = #{p ≤ x | ∀l, l ≤ y, l 6 | [F∗
p : Γp]},

MΓ(x, y, z) = #{p ≤ x | ∃l, y ≤ l ≤ z, l| [F∗
p : Γp]},

MΓ(x, z) = #{p ≤ x | ∃l, l ≥ z, l| [F∗
p : Γp]},

where y = 1
6r+8

log log x and z = x1/(r+1) log x.

Clearly,

NΓ(x, y) ≥ NΓ(x) ≥ NΓ(x, y)−MΓ(x, y, z)−MΓ(x, z), (2)

and establishing the following:

a) NΓ(x, y) = δΓ
x

log x
+ o( x

log x
);

b) MΓ(x, y, z) = o( x
log x

);

c) MΓ(x, z) = o( x
log x

),

the Theorem would be proven.

In his original work, Hooley used the GRH to treat both the main term NΓ(x, y)

and the term MΓ(x, y, z). In this proof we will show that a choice of y = 1
6r+8

log log x

enables to remove the GRH from the treatment of the main term. This is a key

element for subsequent applications.
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a) By the inclusion-exclusion formula,

NΓ(x, y) =
∗∑
m

µ(m)πm(x)

where µ is the Möbius function, the upper ∗ means that the sum is extended to all

the integers m whose prime divisors are distinct and less than y (note that this forces

m ≤ ∏
q<y q = eθ(y) < e2y, the last inequality being implied by the Prime Number

Theorem) and

πm(x) = #{p ≤ x | ∀q, q|m, q| [F∗
p,Γp]}.

Now recall that

q | [F∗
p : Γp] ⇐⇒ p splits completely in Q(ζq, a

1/q
1 , . . . , a1/q

r ),

and if a prime splits completely in two fields then it does also in their compositum.

Hence if Lm = Q(ζm, a
1/m
1 , . . . , a1/m

r ), we have

πm(x) = #{p ≤ x | p splits completely in Lm}. (3)

The result that gives an asymptotic formula for (3) and makes possible to handle

this step without the use of the GRH is the Chebotarev Density Theorem, with the

error term described in page 243 of [39]:

Lemma 1.2 (Chebotarev Density Theorem): If L is a Galois extension of Q

with discriminant dL and degree nL, then there exists an absolute constant c such that

for √
log x ≥ c n

1/2
L max(log |dL|, |dL|1/nL),

one has

#{p ≤ x | p splits completely in L} =
1

nL

li(x) + O(x exp−An−1/2
L

√
log x)

where A is constant depending only on c.2
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Now, let dm be the discriminant of Lm and nm its degree. The Hensel inequality

(see. page. 259 of [42]) states that

log |dm| ≤ nm

∑
q|dm

log q, (4)

therefore

d1/nm
m ≤

∏
q|dm

q ≤ ma1 . . . ar ≤ nm ≤ log dm

since indeed in any field log d ≥ n. We can also prove the following.

Corollary 1.3 If m ≤ (log x)
1

3r+4 then

πm(x) =
li(x)

nm

+ O(x exp−A(log x)1/3)

for some absolute positive constant A.

Proof of Corollary 1.3: The inequality assumed form and the Hensel inequality

in (4), imply (nm ≤ mr+1):

c n1/2
m log dm ≤ c n3/2

m

∑
q|dm

log q ≤ m
3r+4

2 ≤ (log x)1/2.

Hence, Lemma 1.2 gives

πm(x)− li(x)

nm

= O

x exp

−A( log x

nm

)1/2


= O
(
x exp

(
−A(log x)

1
2
− r+1

2(3r+4)

))
= O

(
x exp

(
−A(log x)1/3

))
.2

The choice made for y allows us to apply Corollary 1.3 to all the m ≤ e2y =

(log x)
1

3r+4 . Using the estimate (1) for the degree nm, we get:

NΓ(x, y) =
∗∑
m

µ(m)
(

1

nm

li(x) + O(x exp−A(log x)1/3)
)

=
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=
∞∑

m=1

µ(m)

nm

li(x) + O

∑
m>y

1

mφ(m)
li(x)

+ O(eyx exp−A(log x)1/3)

=
∞∑

m=1

µ(m)

nm

x

log x
+ o(li(x)) + O((log x) x exp(−A(log x)1/3))

= δΓ
x

log x
+ o

(
x

log x

)
.

c) To deal with the last term, we will make use of the following result due to

Matthews (see [37]):

Lemma 1.4

#{p | |Γp| ≤ t} = O(t1+1/r
∑

i

log ai)

where the constants involved in the O symbol do not depend on t nor r, nor on

{a1, . . . , ar}.

Proof of Lemma 1.4: Consider the set S = {an1
1 · . . . · anr

r | 0 ≤ ni ≤ t1/r}. As

a1, . . . , ar are multiplicatively independent, the number of elements of S exceeds

([t1/r] + 1)r > t.

If p is prime such that |Γp| ≤ t, then two distinct elements of S are congruent

(modp). Hence, p divides the numerator N of

am1
1 · · · amr

r − 1

for some m1,m2, . . . ,mr satisfying |m1| ≤ t1/r, 1 ≤ i ≤ r.

For a fixed choice of m1,m2, . . . ,mr, the number of such primes is bounded by

logN ≤ t1/r
r∑

i=1

log ai

Taking in account the number of possibilities for m1,m2, . . . ,mr, the total number of

primes p cannot exceed

O(t1+1/r
r∑

i=1

log ai).
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This completes the proof of the Lemma.2

Now note that

MΓ(x, z) ≤ #

{
p ≤ x | ∃ l ≥ z, l|p− 1

|Γp|

}

≤ #
{
p ≤ x | |Γp| ≤

x

z

}
and applying Lemma 1.4 (no dependence on r is required here), we get

MΓ(x, z) = O

(
x(1−1/(r+1))(1+1/r)

(log x)1+1/r

)
= o

(
x

log x

)
.

b) For the middle term we assume the GRH which allows to state the following

version of the Chebotarev Density Theorem (a proof can be found in [26] or also in

[30]):

#{p ≤ x | p splits completely in Q(ζl, a
1/l
1 )} =

1

l(l − 1)
li(x) + O(x1/2 log xl) (5)

Now, as in the main term, l|[F∗
p : Γp] if and only if p splits completely in the

Kummer extension Q(ζl, a
1/l
1 , . . . , a1/l

r ) and thus, in particular, p splits completely in

Q(ζl, a
1/l
1 ). From this we get:

MΓ(x, y, z) ≤ #{p ≤ x | ∃ l, y ≤ l ≤ z, p splits completely in Q(ζl, a
1/l
1 )}

≤
∑

y≤l≤z

(
1

l(l − 1)
li(x) + O(x1/2 log xl)

)
.

As
∑

l≥y
1

l(l−1)
is the tail of a convergent sequence and

∑
l<z

x
1
2 log xl� x

1
2
+ 1

r+1 log x,

for r > 1 this yields to an estimate of the type:

MΓ(x, y, z) � 1

y
li(x) + O(x

1
2
+ 1

r+1 log x) (6)
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which is o(log x/x), and this completes the proof for r > 1.

For completeness we add the the proof of the remain case r = 1. Estimate (6)

has no meaning anymore. We have that

MΓ(x, y, x1/2 log x) ≤MΓ(x, y, x1/2/ log3 x) +MΓ(x, x1/2/ log3 x, x1/2 log x).

The first term is treated as the general case and leads to the coresponding estimate

of (6) that in this case is o
(

x
log x

)
. For the second term we proceed as Hooley and we

note that z = x1/2 log x and

MΓ(x, x1/2/ log3 x, x1/2 log x) �
∑

x1/2/ log3 x<l<x1/2 log x

π(x, l, 1)

� x

log x

∑
x1/2/ log3 x<l<x1/2 log x

1

l
= O

(
x log log x

log2 x

)
.

the last by the Brun-Titchmarsh Theorem and the Merten’s formula.2
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1.2 Computation of the Densities

The density δΓ can always be expressed as an Euler product. Doing so one can prove

that the density is not zero. In this section we will calculate δΓ in the case when

ai = pi is an odd prime for any i ≥ 1, we will also be able to prove that in this

particular case

lim
r→∞

δΓ = 1.

The first step is to calculate the degrees of Lm over Q.

Theorem 1.5 Let p1, . . . , pr be odd primes, m a square-free integer and let

nm = [Q(ζm, p
1/m
1 , . . . , p1/m

r ) : Q].

Suppose (m, p1 · · · pr) = pi1 · · · pit, then nm = φ(m)mr

2α , where

α =


0 m is odd or t = 0

t if pi1 ≡ pi2 ≡ · · · ≡ pit ≡ 1 (mod 4)

t− 1 otherwise.

Proof: Fix m > 1, we may assume without loss of generality that p1 · · · pt =

(p1 · · · pr,m), we let K = Q(ζm), A = K(p
1/m
1 , . . . , p

1/m
t ) and for any 1 ≤ i ≤ r − t,

let Bi = A(p
1/m
t+1 , . . . , p

1/m
t+i ). We have that

nm = [Br−t : Q] = [Br−t : A][A : K][K : Q]

and clearly [K : Q] = φ(m).

Step 1): We claim that [Br−t : A] = mr−t.

Since the polynomial xm − pt+1 splits completely in B1 = A(p
1/m
t+1 ), we know that

[B1 : A] = m
d
. Let q|d be a prime, then [A(p

1/q
t+1) : A] = 1 or q. If it was q, we would

have q = [A(p
1/q
t+1) : A]|[B1 : A] = m

d
, which is a contradiction since m is square-free.
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Therefore p
1/q
t+1 ∈ A, which implies that pt+1 ramifies in A/Q, but, from Kummer’s

Theory, we know that the only primes that ramify in A are p1, . . . , pt and those that

divide m, and since (pt+1,m) = 1, we conclude that d = 1. Now, by induction, we

have that

[Br−t : A] = [Br−t : Br−t−1][Br−t−1 : A] = [Br−t : Br−t−1]m
r−t−1,

and again, [Br−t : Br−t−1] = m
d

and since (pr,m) = 1, we conclude that d = 1. Hence

[Br−t : A] = mr−t.

Step 2) Let Ai = K(p
1/m
1 , . . . , p

1/m
i ), then Ai+1 = Ai(p

1/m
i+1 ), and for the same

reason as above, [Ai+1 : Ai] = m
e
. We claim that e = 1 or 2.

Let q|e be a prime divisor and consider Ai(p
1/q
i+1), since m is square-free, we have that

p
1/q
i+1 ∈ Ai. If p

1/q
i+1 ∈ K, then we would have a cyclic extension of prime degree (over

Q) Q(p
1/q
i+1) ⊂ K and this is only possible when q = 2. Therefore we may assume

that p
1/q
i+1 6∈ K, having extensions:

K ⊆ K(p
1/q
i+1) ⊆ Ai.

Note that Gal(Ai/K) is the direct product of cyclic groups and a general subgroup of

order q has as fixed field K((ps1 · · · psk
)1/q), with 1 ≤ s1 ≤ · · · ≤ sk ≤ i−1. Therefore,

K(p
1
q

i+1) = K((ps1 · · · psk
)1/q) and from Lemma 3 in page 160 of Cassels and Fröhlich

[7], we have that there exists 0 ≤ i ≤ q − 1 such that(
pi+1

(ps1 · · · psk
)i

)1/q

∈ K,

and again this implies that q = 2.

Therefore, if m is odd, [Ai+1 : Ai] = m for every i, and thus [At : K] = mt.

From the Theory of Cyclotomic Fields, we know that the general quadratic sub-

field of K has the form Q
(√(

−1
D

)
D
)
, where D is a positive divisor of m. We gather

that if pi ≡ 1 (mod 4), 1 ≤ i ≤ t, then
(
−1
pi

)
= 1, hence

√
pi ∈ K.
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Step 3) If p1 ≡ p2 ≡ · · · ≡ pt ≡ 1 (mod 4),

then let ζm be a primitive m-th root of unity, then Gal(A1/K) is generated by σ :

p
1/m
1 7→ ζ2

mp
1/m
1 , (Note that σ(

√
p1) = (σ(p

1/m
1 ))m/2 = (ζ2

m)m/2p
(1/m)(m/2)
1 =

√
p1) and

hence, |Gal(A1/K)| = [A1 : K] = m
2
.

Similarly Gal(Ai+1/Ai) is generated by σ : p
1/m
i+1 7→ ζ2

mp
1/m
i+1 , therefore [Ai+1 : Ai] = m

2

and [A : K] = mt

2t .

Step 4) If it exists 1 ≤ i ≤ t such that pi ≡ 3 (mod 4),

then we can suppose without loss of generality that p1 ≡ 3 (mod 4). Let us consider

Ai = K(p
1/m
1 ). We have that [A1 : K] = m (If not, we would have K(

√
p1) = K,

but this only happens when p1 ≡ 1 (mod 4), which is a contradiction). Now consider

i > 1, and Ai = Ai−1(p
1/m
i ). We claim that [Ai : Ai−1] = m

2
. Indeed either pi ≡ 1

(mod 4) or pi ≡ 3 (mod 4); in the first case
√
p1 ∈ K, in the second case

√
p1pi ∈ K.

In any case, Gal(Ai/Ai−1) is always generated by σ : p
1/m
i 7→ ζ2

mp
1/m
i . Finally we get

[Ai : Ai−1] = m
2

and [A : K] = mt

2t−1 .

This concludes the proof of the Theorem.2

Corollary 1.6 With the same notation of Theorem 1.5, we have

nm ≥ mrφ(m)/2min(r,ν(m)−1)

(where ν(m) is the number of distinct prime divisors of m), furthermore such a lower

bound is the best possible.2

We are now ready to express the density as an Euler product. The case r = 1 has

been dealt with by C. Hooley in [26]. He proved that:

Lemma 1.7 Let p be a prime, nm = [Q(ζm, p
1/m) : Q] and let

A =
∏

l prime

(
1− 1

l(l − 1)

)

18



be the Artin’s constant, then we have:

∞∑
m=1

µ(m)

nm

=

 A if p 6≡ 1 (mod 4),

A
(
1 + 1

p2−p−1

)
if p ≡ 1 (mod 4).

Proof: If p 6≡ 1 (mod 4), then nm = mφ(m) for every m and the result follows

from the definition of the Artin’s constant. We can therefore assume that p ≡ 1

(mod 4), having:
∞∑

m=1

µ(m)

nm

= Σo + Σe,

where Σo is the sum extended to the odd values of m and Σe to the even values.

Clearly Σo = 2A and Σe = −1
2
Σ′

e, with

Σ′
e =

∞∑
m=1

(m,2p)=1

µ(m)

mφ(m)
+ 2

∞∑
m=1

p|m,modd

µ(m)

mφ(m)
=

2A+
−1

p(p− 1)

∑
m=1

(m,2p)=1

µ(m)

mφ(m)
= 2A+

−1

p(p− 1)

2A(
1− 1

p(p−1)

) = 2A− 2A

p2 − p− 1
.

Finally Σo + Σe = A
(
1 + 1

p2−p−1

)
.2

The general case is similar but a little more complicated:

Theorem 1.8 Let p1, . . . , pr be odd primes, nm = [Q(ζm, p
1/m
1 , . . . , p1/m

r ) : Q], let

αi = pr
i (pi − 1)− 1 and define the r-dimensional incomplete Artin’s constant to be:

A(r) =
∏

l odd prime

(
1− 1

lr(l − 1)

)
,

then:

∞∑
m=1

µ(m)

nm

= A(r)

{
1− 1

2r+1

[
r∏

i=1

(
1−

(
−1

pi

)
1

αi

)
+

r∏
i=1

(
1− 1

αi

)]}
.
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Proof: As in the case r = 1, note that if m is odd, then nm = mrφ(m), thus we

can write:
∞∑

m=1

µ(m)

nm

= A(r)− Σ

where Σ is the sum extended to the even values of m.

Let P = p1 · · · pr and P̃ =
∏r

i=1, pi≡1(4) pi, if m is an odd positive integer and Q =

(m,P ) then, by Theorem 1.5, we have

n2m =

 2r mrφ(m)

2ν(Q) if Q|P̃

2r mrφ(m)

2ν(Q)−1 otherwise.

For any Q|P , let S(Q) = {m ∈ N| (m,P ) = Q}. We have that N =
⋃

Q|P S(Q), and

the union is disjoint. Therefore,

Σ =
∑
Q|P

∑
m∈S(Q)

µ(2m)

n2m

.

Now divide the set of divisors of P into two sets; the divisors of P̃ , and its complement.

It follows that

Σ =
∑
Q|P̃

∑
m∈S(Q)

µ(2m)2ν(Q)

2rmrφ(m)
+
∑
Q|P
Q|/P̃

∑
m∈S(Q)

µ(2m)2ν(Q)−1

2rmrφ(m)
=

1

2r+1


∑
Q|P̃

2ν(Q)
∑

m∈S(Q)

µ(2m)

mrφ(m)
+
∑
Q|P

2ν(Q)
∑

m∈S(Q)

µ(2m)

mrφ(m)

 .
The sum over m ∈ S(Q) is easy to evaluate,

∑
m∈S(Q)

µ(2m)

mrφ(m)
= −(−1)ν(Q)

Qrφ(Q)

∑
(m,2P )=1

µ(m)

mrφ(m)
= −(−1)ν(Q)

Qrφ(Q)
A(r)

r∏
i=1

(
1− 1

αi + 1

)−1

.

Substituting we get:

Σ =
−A(r)

2r+1

r∏
i=1

(
1− 1

αi + 1

)−1

∑
Q|P̃

(−2)ν(Q)

Qrφ(Q)
+
∑
Q|P

(−2)ν(Q)

Qrφ(Q)

 =
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−A(r)

2r+1

r∏
i=1

(
αi + 1

αi

) r∏
i=1

pi≡1(4)

(
1− 2

αi + 1

)
+

r∏
i=1

(
1− 2

αi + 1

) =

−A(r)

2r+1

 r∏
i=1

pi≡1(4)

(
1− 1

αi

) r∏
i=1

pi≡3(4)

(
1 +

1

αi

)
+

r∏
i=1

(
1− 1

αi

) .
The claim is therefore deduced.2

Corollary 1.9 Let {ai}i>1 be a sequence of odd primes and let δr be the density of

the set of primes p for which F∗
p is generated by a1, . . . , ar, then

lim
r→∞

δr = 1.2

Remark:

The method just exposed can be easily extended to any set of r multiplicatively

independent numbers which are pairwise coprime. The first step of the induction

in the general form is in [26]. It is also conceivable that for any infinite sequence of

multiplicatively independent integers (that is a sequence of integers such that ai < ai+1

and for any r, a1, . . . , ar are multiplicatively independent), one has that limr→∞ δr =

1. Not being able to provide a proof of this property here, we will include it in the

hypothesis when ever needed.
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1.3 The Main Problem

Suppose f(p) is a monotone function of p that tends to infinity with p and let {an}n∈N

be an infinite sequence of multiplicatively independent integers. Let

Γf,p = 〈ai (mod p)| 1 ≤ i ≤ f(p)〉.

Question:

Does a function exist f such that, Γf,p = F∗
p for almost all primes p ?

Using Theorem 1.1, we can prove:

Theorem 1.10 Let {ai}i∈N be a sequence of multiplicatively independent integers

such that

lim
r→∞

δΓ = 1

(We noticed in the last section that when the ai’s are all primes this is true) sup-

pose the Generalized Riemann Hypothesis holds for the Dedekind function of the field

Q(ζl, a
1/l
1 ), l prime, then for any monotone function f(p) that tends to infinity, we

have that

#{p ≤ | Γf,p = F∗
p} ∼ π(x).

Proof: Let us fix r ∈ N. For all but finitely many primes p, we have:

Γf,p ⊃ Γp = 〈a1, . . . , ar〉.

Therefore

A = #{p ≤ x | Γf,p = F∗
p} ≥ #{p ≤ x | Γp = F∗

p}+ O(1).

From Theorem 1.1, we get:

lim
x→∞

A
x

log x

≥ δΓ.
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Now let r tend to infinity and prove the statement.2

Our intention in the following Chapters is to prove statements of the type of

Theorem 1.10, restricting our assumptions only on the rate of growth of f . For

example it is not difficult to prove:

Proposition 1.11 Let f(p) = log2+ε p then there exists a sequence of multiplicatively

independent integers such that, for almost all primes p, Γf,p = F∗
p.

Proof: This is a consequence of a Theorem of Burgess and Elliott (see [5]) on

the average of the least primitive root. They proved that if g(p) is the least primitive

root, then for large x,

π(x)−1
∑
p≤x

g(p) � log2 x(log log x)2.

If U is the number of primes up to x for which g(p) ≥ f(p), we get that:

U log2+ε x�
∑

x
log x

≤p≤x

g(p) + o
(
π(x) log2+ε x

)
� π(x) log2 x(log log x)2

which is equivalent to saying that for almost all primes g(p) ≤ f(p).

Now let ai = pi be the i-th prime number, since g(p) ≤ log2+ε p, every prime that

divide g(p) is also less than f(p), therefore Γf,p contains a primitive root for almost

all primes p.2
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2 ON THE ARTIN L-FUNCTIONS OF Q(ζl, 2
1/l)

2.1 Introduction

Let L = Q(ζl, 2
1/l) and G = Gal(L/Q). If

τ : L −→ L and ν : L −→ L

21/l 7→ ζl2
1/l 21/l 7→ 21/l

ζl 7→ ζl ζl 7→ ζg
l

(where g is a primitive root modulo p), then G is generated by τ and ν, more precisely,

G =< τ, ν | τ l = νl−1 = 1, ν−1τν = τ g∗ >

is a presentation (here g∗ is any integer such that gg∗ ≡ 1 mod p).

Hence G is the semidirect product of a cyclic group of order l by a cyclic group of

order l−1. Note also that τ generates the Galois group of L/Q(ζl) and the subgroup

generated by ν has as fixed field, the non-Galois field K = Q(21/l).

For any t = 1, . . . , l − 1, the map

χt : G→ G, τ 7→ 1, ν 7→ e
2πit
l−1

is clearly a character and a quick computation shows that G has l conjugate classes

and the remaining character of G can be calculated via the orthogonality relations.

That is

χl(τ
aνb) =


(l − 1) If a = b = 0

0 If b 6= 0

−1 If b = 0, and a 6= 0.

Note also that χl is induced by any non-trivial character of the normal subgroup

generated by τ and if φt : ν 7→ e2πit/(l−1), t < l− 1 is a character of the subgroup 〈ν〉,
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then indG
〈ν〉φt = χt + χl.

Hence χ1, . . . , χl is a complete list of the irreducible characters of G.

Let us now take a step back and describe the concept of non-Abelian Artin L-

function. Let E/F be a Galois extension and ρ a representation of Gal(E/F ), we

define the Artin L-function of ρ to be

L(s, ρ, E/F ) =
∏
℘

L℘(s)

where, if ℘ does not ramify, the Artin symbol σ℘ is the conjugacy class in

Gal(E/F ) determined by the Frobenius automorphism of the residue field of any

prime of E over ℘ (note also that, if ℘ does not ramify in E, then σ℘ = {1} if and

only if ℘ splits completely in E) and L℘(s) is the characteristic polynomial of σ℘

evaluated at N(℘)−s, i.e.

L℘(s) = det(I −N(℘)−sρ(σ℘))−1

and, if ℘ is ramified, L℘(s) is the characteristic polynomial of the Frobenius element

at ℘ acting on the subspace fixed by the inertia group I℘ evaluated at N(℘)−s.

Simple arguments on the bounds of the eigenvalues of the representation show

that L(s, ρ, E/F ) converges absolutely for <(s) > 1. Since the determinant of a

matrix is the product of its eigenvalues, we also have that:

logL(s, ρ, E/F ) =
∑
℘, m

tr(ρ(σ℘)m)

m℘ms

Sometimes, we might indicate L(s, ρ, E/F ) by L(s, χ, E/F ) where χ is the character

of ρ.

We describe here the basic properties of L-functions. For a more complete picture,

see [33] Chapter XII.
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PROPERTIES:

A) If ZF (s) is the usual Dedekind zeta function of the field F , then

ZF (s) = L(s, 1, E/F );

B) If χ1, χ2 are two characters of Gal(E/F ), then

L(s, χ1 + χ2, E/F ) = L(s, χ1, E/F ) + L(s, χ2, E/F );

C) If E ′ ⊃ E ⊃ F , where E ′/F is also Galois, then any character of Gal(E/F ) can

be viewed as a character of Gal(E ′/F ) (by composing Gal(E ′/F ) −→→ Gal(E/F )
χ−→

C), and we have

L(s, χ, E/F ) = L(s, χ, E ′/F );

D) If E ⊃ E ′ ⊃ F then Gal(E/E ′) ⊂ Gal(E/F ), therefore any character χ of

Gal(E/E ′) induces a character Ind(χ) of Gal(E/F ) and one has:

L(s, Ind(χ), E/F ) = L(s, χ, E/E ′);

E) If E/F is an abelian extension then for every character χ, L(s, χ, E/F ) has an

extension to an entire function and verifies a functional equation;

F) If χreg is the character of the regular representation of Gal(E/F ), then

L(s, χreg, E/F ) = ZE(s).

(This is a consequence of the fact that the regular representation is induced by the

trivial character on the trivial identity subgroup which is the Galois group of L/L

therefore, D) and A) give this claim);

G) The Brauer Theorem for characters, states that any character is equal to a

sum with integer coefficients of characters induced from elementary subgroups (see
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[46] Chapter X). By properties B), C), and D) this implies that any Artin L-function

can be written as product of powers with integer exponents of entire functions, and

therefore, any such a function is certainly meromorphic. Artin had actually conjec-

tured that these functions are always entire whenever χ does not contain the trivial

character;

H) Whenever the Galois group of an extension has the property that every char-

acter is induced by the character of an abelian subgroups (such characters are called

monomials) then the Artin Conjecture holds for such an extension. This is the case

of nilpotent extensions (as well as supersolvable extensions).

2.2 Artin L-functions of L/Q

The Galois group G of L/Q is certainly supersolvable. Thus all the Artin L-functions

of G are entire and by the properties F), D) and A), we have the following factoriza-

tion:

ZL(s) = ζ(s)

(
l−2∏
t=1

L(s, χt, L/Q)

)
L(s, χl, L/Q)l−1.

On the other hand, if K = Q(21/l),

ZL(s) = L(s, χreg, L/K) = ZK(s)
l−2∏
t=1

L(s, φt, L/K) =

ZK(s)
l−2∏
t=1

L(s, χt, L/Q)L(s, χl, L/Q),

the last identity being obtained noticing that Ind(φt) = χt + χl and applying prop-

erties B) and D). Putting the two together, we get

ZK(s) =
ZL(s)(∏l−2

t=1 L(s, χt, L/Q)
)
L(s, χl, L/Q)l−2

=
ζ(s)

(∏l−2
t=1 L(s, χt, L/Q)

)
L(s, χl, L/Q)l−1(∏l−2

t=1 L(s, χt, L/Q)
)
L(s, χl, L/Q)l−2

= ζ(s)L(s, χl, L/Q).
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Therefore the zeroes of L(s, χl, L/Q) are in particular zeroes of ZK(s) and

L(1, χl, L/Q) = Ress=1ZK(s) 6= 0

The identity also allows us to compute the functional equation for L(s, χl, L/Q).

It is indeed a classical result that if K is any number field, and

FK(s) = AsΓ
(
s

2

)r1

Γ(s)r2ZK(s) (1)

(where A = 2−r2d
1/2
K π−nK/2, r1 and r2 are respectively the number of real and complex

embeddings of K, dK is the absolute value of the discriminant of K and nK its degree

over Q) then FK(s) = FK(1− s).

In our case dK = 2l−1ll, nK = l, r1 = 1, r2 = (l − 1)/2, and

ZK(s) = ζ(s)L(s, χl, L/Q),

so we get:

FK(s) =

(
l

π

)(l/2)s

Γ
(
s

2

)
Γ(s)(l−1)/2ζ(s)L(s, χl, L/Q).

Using the fact that the value of πs/2Γ
(

s
2

)
ζ(s) does not change if we substitute s

with 1− s, we get that if

G(s) =

(
l

π

)(l/2)s

πs/2Γ(s)
l−1
2 L(s, χl, L/Q) (2)

then G(s) = G(1− s), which is the functional equation.

An asymmetric functional equation can also be deduced using the formula:

Γ(s)Γ(1− s) =
π

sin πs
;

which is

L(1− s, χl, L/Q) =
ll(s−1/2)

π(l−1)s
(sin πs)(l−1)/2Γ(s)l−1L(s, χl, L/Q) (3)
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These results can be used to determine all the zeroes of L(s, χl, L/Q) outside of the

critical strip. Indeed L(s, χl, L/Q) has just a zero of order l−1
2

for s = 0,−1,−2, . . .

and is non-vanishing elsewhere (outside the critical strip).

We conclude this Section with a classical general result that we will use later (this

result can be found in [31], in that version, though, are missing all the uniformity

conditions which are necessary for subsequent applications).

Lemma 2.1 Let K be a number field, n = [K : Q], d the absolute value of the

discriminant and let ZK(s) be its Dedekind zeta function. There exists a positive

absolute numerical constant c1 such that in the region

σ ≥ 1− c1
log d(t+ 2)n

, t ≥ 0

ZK(s) has no zeroes.

Proof of Lemma 2.1: We will follow the classical proof for the Riemann Zeta

function (See. [6] §13). Let HK(s) = 1
2
s(s − 1)FK(s) where FK(s) has been defined

in (1). HK(s) is an integral function of order 1, verifies HK(1− s) = HK(s) = HK(s̄)

and admits the following Weierstrass product expansion:

HK(s) = ea+bs
∏
ρ

(
1− s

ρ

)
es/ρ (4)

where the product is extended to all the non-trivial zeroes of ZK(s).

Taking the logarithmic derivative and using the functional equation, we get

H ′
K

HK

(s) = b+
∑
ρ

(
1

s− ρ
+

1

ρ

)
= −b−

∑
ρ

(
1

1− s− ρ̄
+

1

ρ̄

)
= −H

′
K

HK

(1− s̄).

Since, if ρ is a root then also 1− ρ̄ is, we deduce that

<
(
b+

1

2

∑
ρ

(
1

ρ
+

1

ρ̄

))
= 0,
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therefore

<
(
H ′

K

HK

(s)

)
=
∑
ρ

<
(

1

s− ρ

)
.

Substituting inside the real part of the logarithmic derivative of (1), we have the

identity:

∑
ρ

<
(

1

s− ρ

)
= <

(
1

s
+

1

s− 1
+ logA+

r1
2

Γ′(s/2)

Γ(s/2)
+ r2

Γ′(s)

Γ(s)
+
Z ′

K(s)

ZK(s)

)
. (5)

Now consider this expression for s = σ, σ + it, σ + 2it, 1 < σ ≤ 2, t ≥ 0. Since

log(A) � log d and since

<
(

1

s− ρ

)
=

σ − β

|s− ρ|2
> 0,

there exist three absolute positive constants c2, c3, c4 such that if we take t = γ to be

the ordinate of the zero ρ = β + iγ, then

−<Z
′
K(σ)

ZK(σ)
<

1

σ − 1
+ c2 log(d);

−<Z
′
K(σ + it)

ZK(σ + it)
< c3 log(d(t+ 2)n)− 1

σ − β
;

−<Z
′
K(σ + 2it)

ZK(σ + 2it)
< c4 log(d(t+ 2)n)

because of the Stirling formula for the Gamma function. Finally the standard in-

equality

3

[
−Z

′
K(σ)

ZK(σ)

]
+ 4

[
−<Z

′
K(σ + it)

ZK(σ + it)

]
+

[
−<Z

′
K(σ + 2it)

ZK(σ + 2it)

]
≥ 0

implies
4

σ − β
<

3

σ − 1
+ c5 log(d(t+ 2)n).

A choice of σ = 1 + δ
log(d(t+2)n)

yields, for an opportune δ

β < 1− c1
log(d(t+ 2)n)

which is equivalent to the statement.2
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2.3 On the non-Abelian L-function of Q(ζl, 2
1/l)

Just for this Section, we will use the notation L(s) = L(s, χl, L/Q), the main goal of

this Section is to prove the following:

Theorem 2.2 With the same notations as above, there exists a positive absolute

constant A such that uniformly

π(x, χl) =
∑
p≤x

χl(σp) � xl exp

−A
√

log x

l

 .
Proof: In the spirit of the classical Prime Number Theorem (See. Davenport

[6]), if we define

Λl(n) =

 χl(σp) log p if n is a power of a prime p

0 otherwise,

then it is sufficient to prove that

ψ(x, χl) =
∑
n≤x

Λl(n) � xl exp

−A
√

log x

l

 .
for some absolute positive constant A.

We will need some lemmas.

Lemma 2.3 Let N(T, χl) be the number of zeroes σ + it of L(s, χl, L/Q) such that

0 ≤ σ ≤ 1 and 0 < t ≤ T then if dK is the absolute value of the discriminant of

K = Q(21/l),

N(T, χl) = (l − 1)
T

2π
log

T

2π
− (l − 1)

T

2π
+

(
log dK

2π

)
T + O(log dKT

l).
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Proof of the Lemma: If NK(T ) and N(T ) are respectively the number of

zeroes of ZK(s) and ζ(s) in the region in question, then we have that N(T, χl) =

NK(T )−N(T ) and since, from the classical theory, we know that

N(T ) =
T

2π
log

T

2π
− T

2π
+ O(log T ).

It is enough to show that

NK(T ) = l
T

2π
log

T

2π
− l

T

2π
+

(
log dK

2π

)
T + O(log dKT

l).

Also, in the same way as in the classical result, we can write

4πNK(T ) = =
(∫

R

H ′
K

Hk

(s)ds

)
(6)

where HK(s) is the function defined during the proof of the lemma in the last Section

and R is the rectangle, described counterclockwise, having as vertices:

5/2− iT, 5/2 + iT, −3/2 + iT, −3/2− iT .

Since HK(s) = 1
2
s(s − 1)FK , by the residue theorem, we can write that (6) is equal

to

=
(∫

R

(
1

s
+

1

s− 1
+
F ′

K

FK

(s)

)
ds

)
= 4π + =

(∫
R

F ′
K

FK

(s)ds

)
(7)

If L denotes the line from 5/2 to 5/2+iT and then to 1
2
+iT , then using the functional

equation, we quickly get that (7) equals:

4π + 4=
∫
L

F ′
K

FK

(s)ds = 4π + 4T logA+ 4=
∫
L

(
r1/2

Γ′(s/2)

Γ(s/2)
+ r2

Γ′(s)

Γ(s)
+
Z ′

K(s)

ZK(s)

)
ds

and, by the Stirling formula we know that

=
(∫

L

Γ′(s/2)

Γ(s/2)
ds

)
= 2= log Γ

(
1

4
+ i

T

2

)
= T log

T

2
− T − π

4
−O

(
1

T

)
,

and

=
(∫

L

Γ′(s)

Γ(s)
ds

)
= = log Γ

(
1

2
+ iT

)
= T log T − T + O

(
1

T

)
.
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This yields

NK(T ) = l
T

2π
log

T

2π
− l

T

2π
+

(
log dK

2π

)
T +

8− r1
8

+ O

(
l

T

)
+ 4=

(∫
L

Z ′
K(s)

ZK(s)
ds

)
.

The problem amounts to proving that

=
(∫

L

Z ′
K(s)

ZK(s)
ds

)
= O(log dKT

l). (8)

Since ZK(s) is real on the reals, we have that ∆L arg(ZK(s)) = argZK(1
2

+ iT ). As

in the classical case:

Lemma 2.4 For all T > 0, we have that

∑
ρ

1

1 + (T − γ)2
= O(log dK(T + 2)l)

where ρ runs over all the non-trivial zeroes of ZK(s).

Proof of Lemma 2.4: From the same argument used in the proof of Lemma 2.1,

we know that for 1 < σ ≤ 2 and t > 0, there exists an absolute positive constant c0

such that

−<Z
′
K(s)

ZK(s)
< c0 log(dK(t+ 2)l)−

∑
ρ

< 1

σ − β
.

Since for a choice of s = 2 + iT , we have∣∣∣∣∣Z ′
K

ZK

(2 + iT )

∣∣∣∣∣� log dK ,

we obtain ∑
ρ

< 1

σ − β
< c1 log(dK(T + 2)l).

Finally note that

< 1

σ − β
=

2− β

(2− β)2 + (T − γ)2
� 1

1 + (T − γ)2

and prove the Lemma.2

As in the classical case we have the following implications:
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Corollary 2.5 For T ≥ 2, we have that

a) N(T + 1)−N(T − 1) = O(log dKT
n);

b)
∑

ρ,|γ−T |>1

1

(T − γ)2
= O(log dKT

n).2

Now we are ready to prove (8). Take the identity (5) for s = σ + iT and s = 2 + iT ,

subtract and get:

Z ′
K(σ + iT )

ZK(σ + iT )
=
Z ′

K(2 + iT )

ZK(2 + iT )
+ O(log T l) +

∑
ρ

(
1

σ + iT − ρ
− 1

2 + iT − ρ

)
� (9)

O(log dKT
l) +

∑
ρ,|T−γ|<1

1

σ + iT − ρ
,

the last estimate because for |T − γ| > 1,∣∣∣∣∣ 1

σ + iT − ρ
− 1

2 + iT − ρ

∣∣∣∣∣ ≤ 3

|γ − T |
,

and ∑
ρ,|T−γ|<1

1

2 + iT − ρ
≤ N(T + 1)−N(T − 1) = O(log dKT

n).

Finally,

=
(∫

L

Z ′
K(s)

ZK(s)
ds

)
= =

(
−
∫ 2+iT

1
2
+iT

Z ′
K(σ + iT )

ZK(σ + iT )
dσ

)
+ =

(∫ 2+iT

2

Z ′
K(s)

ZK(s)
ds

)
.

By (9), the absolute value of the second integral is � than

∑
ρ,|T−γ|<1

∣∣∣∣∣
∫ 2+iT

1
2
+iT

=(σ + iT − ρ)−1

∣∣∣∣∣ dσ + O(log dKT
n) =

∑
ρ,|T−γ|<1

|arg(σ + iT − ρ)|2+iT
1
2
+iT

≤ π (N(T + 1)−N(T − 1)) + O(log dKT
n),

while the first integral is in absolute value

|log (|ZK(2 + iT )|/|ZK(2)|)|

which is O(l).2
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Lemma 2.6 Let x be an integer and 2 ≤ T < x, then

ψ(x, χl) = −
∑
|γ|≤T

xρ

ρ
+ O

(
xl

T
(log lxT )2 + l2 log2 l

)
. (10)

where the sum is extended over all those zeroes ρ whose imaginary part γ is in absolute

value less or equal than T

Proof of Lemma 2.6: As in the classical case of the zeta function, ψ(x, χl) is

the sum of the coefficients of the logarithmic derivative, more precisely, if c > 1 and

T is large, then the Lemma in §17 of [6] gives that if:

J(x, T ) =
1

2πi

∫ c+iT

c−iT

[
−L

′(s)

L(s)

]
xs

s
ds,

then

ψ(x, χl) = J(x, T )+O

 ∞∑
n=1
n6=x

(
Λl(n)

(
x

n

)c 1

T | log(x/n)|

)
+
cΛl(x)

T

+O(l log x) (11)

If we choose c = 1 + 1/ log x (xc = ex) and we treat the four ranges separately:

(n ≤ 3
4
x, n ≥ 5

4
x) (3

4
x < n < x− 2) (x− 2 ≤ n ≤ x+ 2) (x+ 2 < n < 5

4
x).

For the values of n, the first range, we have that |log(x/n)| � 1 therefore the

contribution of these terms in the sum in(11) is

� x

T

[
−L

′(c)

L(c)

]
� x

T
l log l, (12)

where we just noticed that for c > 1

−L
′(c)

L(c)
= −

(
Z ′

K(c)

ZK(c)
− ζ ′(c)

ζ(c)

)
=

1

c− 1
− 1

c− 1
+ O(log dK) = O(l log l),

and that dK = 2l−1ll.
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For the values of n, the second range, set [x]− n = r, and note that 1 ≤ r ≤ x/4

therefore

log
(
x

n

)
= log

(
x

[x]− r

)
≥
∣∣∣∣∣log

(
1− r

[x]

)∣∣∣∣∣ ≥ r

2x
.

We gather that the contribution of these terms in (11) is

� x

T

∑
1≤r≤x/4

Λl(x− r)r−1 � xl log x

T

∑
1≤r≤x/4

r−1 � xl log2 x

T
(13)

Analogously, for the values of n in the fourth range, set n − [x] = r′ (now 2 ≤

r′ < x
4

+ 1) and thus ∣∣∣∣log
(
x

n

)∣∣∣∣ = − log
(
1− n− x

n

)
� r

x

and the contribution of these terms in (11) is

� xl log2 x

T
. (14)

Finally for the (at most five) values of n in the third range, we have a contribution

which is � l log x. Putting this together with the estimates in (12), (13) and (14),

we get:

ψ(x, χl) = J(x, T ) + O

(
xl

T
(log2 x+ log l)

)
. (15)

Now we replace the vertical segment of integration by the other three sides of the

rectangle with vertices

c− iT, c+ iT, −U + iT, −U − iT

where U is a large half integer (i.e. U = m/2, m odd integer). If T 6= γ for any zero

ρ = β + iγ of L(s) is the critical strip, the residue Theorem gives

ψ(x, χl) = −
∑
|γ|<T

xρ

ρ
− Res

s = 0

(
xs

s

L′(s)

L(s)

)
− l − 1

2

U∑
m=1

x−m

−m
+

+O

(
xl

T
(log2 x+ log l)

)
+ (16)

+
1

2πi

{(∫ −U−iT

c−iT
+
∫ −U+iT

−U−iT
+
∫ c+iT

−U−iT

)
− L′(s)

L(s)

xs

s

}
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since by the functional equation in (2), the integrand in J(x, T ) has simple poles at

s = ρ, poles of order (l − 1)/2 at s = −m (m ≥ 1), and an extra pole of order 2 at

s = 0.

The residue at s = 0 can be estimated as follows: Since L(s) = Zk(s)/ζ(s), and

since xs/s = 1/s+ log x+ . . ., we have

Res

s = 0

(
xs

s

L′(s)

L(s)

)
=

Res

s = 0

(
1

s

Z ′
K(s)

ZK(s)

)
+ O(log x). (17)

From the functional equation in (1) and the Weierstrass product expansion in (4) we

get that

Res

s = 0

(
1

s

Z ′
K(s)

ZK(s)

)
= b− logA+ 1− (l/2)

Γ′(1)

Γ(1)
= b+ O(l log l). (18)

If we substitute s = 2 in (4), use the functional equation again and note that

Z ′
K(2)/ZK(2) � l, we deduce that

b =
∑
ρ

(
1

2− ρ
+

1

ρ

)
+ O(l log l). (19)

For the terms of this series with |γ| ≥ 1, we have

∑
|γ|≥1

∣∣∣∣∣ 1

2− ρ
+

1

ρ

∣∣∣∣∣ = 2
∑
|γ|≥1

1

|ρ(2− ρ)|
�
∑
ρ

1

|2− ρ|2
� l log l. (20)

The last sum being estimated as O(log dk) using Lemma 2.4 with t = 0. The same

estimate applies to ∑
|γ|<1

1

2− ρ
,

since for |γ| < 1 we have |2− ρ| � |2− ρ|2.

Finally, for |γ| < 1, we know that c8/ log dK < β < 1− c8/ log dK , therefore

ρ−1 � log dK ,
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and being the number of zeroes in question � log dK by Lemma 2.3 with T = 1, we

have ∑
|γ|<1

1

ρ
= O(log2 dK) = O(l2 log2 l). (21)

Putting together the estimates (17), (18), (19), (20) and (21) we gather

Res

s = 0

(
xs

s

L′(s)

L(s)

)
= O(l2 log2 l) + O(log x). (22)

From Corollary 2.5, we see that the number of non-trivial zeroes ρ of ZK(s)

for which |γ − T | < 1 is O(l log lT ), thus the differences of the ordinates of these

zeroes cannot be all o(1/(l log lT )). Hence, we can choose T (varying it by a bounded

amount, if necessary) so that |γ−T | � (l log lT )−1 for all the zeroes ρ. This allows us

to determine a good bound for −L′(s)/L(s) for s = σ+ iT , T large and −1 ≤ σ ≤ 2,

that is

L′(s)

L(s)
=
Z ′(s)

Z(s)
− ζ ′(s)

ζ(s)
=

∑
ρ,|γ−T |<1

1

s− ρ
+ O(log dKT

l) � l log2 lT (23)

where we have used (9), the fact that by our choice of T we have |γ − T | �

(log dKT
l)−1 for all ρ and the fact that the number of summands is here � log dKT

l.

To obtain a bound for σ ≤ −1, we use the asymmetric functional equation (3)

whose logarithmic derivative is

−L
′(1− s)

L(1− s)
= l log l +

l − 1

2

(
2 log π + π cotπs+

Γ′(s)

Γ(s)

)
+
L′(s)

L(s)
. (24)

We know that cot πs is bounded if |s−m| ≥ 1/3, that is if

|(1− s) + (m+ 1)| ≥ 1

3
.

If 1 − σ ≤ −1, then Γ′(s)/Γ(s) = O(log 2|1 − s|) by the Stirling formula, while the

last term (24) is O(l). Thus

L′(s)

L(s)
� log 2|s|+ l log l (σ ≤ 1), (25)
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provided that circles of radius 1/3 around the trivial zeroes s = −m of L(s) are

excluded.

Using (23) and (25) we have∫ c±iT

−U±iT
� l log2 lT

T

∫ c

−∞
xσdσ � xl log2 lT

T log x
,

while (25) gives∫ −U+iT

−U−iT
� l log2 lU

U

∫ T

−T
xUdt� T l log2 lU

UxU
= o(1), (for U →∞).

Inserting these estimates in (16) we get the wanted claim.2

Proof of Theorem 2.2: The zero-free region proved for ZK(s) in Lemma 2.1

holds also for L(s), therefore, if ρ = β + iγ is a zero of L(s) with γ < T < x we have

that

β < 1− c

l log lT

where c is an absolute positive constant.

We gather that

|xρ| = xβ < x exp

(
−c log x

l log lT

)
. (26)

The sum
∑

γ<T
1
ρ

extended over all the zeroes with |γ| > 1 can be estimated by

partial summation as follows

∑
|γ|<T

1

γ
=
∫ T

0
t−1dNl(t) =

Nl(T )

T
+
∫ T

0
t−2Nl(t)dt

� log T (l log T + log dK) � l2 log2 lT.

The same sum over the zeroes ρ with |γ| ≤ 1 is O(l2 log2 l) as we noted in (21).

Putting these two facts and (26) together with Lemma 2.6 we get

ψ(x, χl) � xl2 log2 lT exp

(
−c log x

l log lT

)
+
xl

T
(log lxT )2. (27)
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We minimize it by choosing T such that

l log2 lT = log x,

and we get that (27) is

� xl exp

−c/2
√

log x

l


which by partial summation is equivalent to statement.2

Remark: If we assume the strong Hypothesis that for any prime l, the Dedekind

zeta function ZK(s) has the zero-free region

σ > 1− c

log T
, T ≥ 0

then, using exactly the same method we would be able to prove that uniformly for

l < x

π(x, χl) � xl exp
(
−c
√

log x
)
. (28)

2.4 An Application to Chebotarev Density Theorem

In this Section we apply Theorem 2.2 to the Chebotarev Density Theorem, obtaining

for the special case of Q(ζl, 2
1/l) a stronger result than Lemma 1.2. This will be used

later in Theorem 3.1, which is actually a motivation for such a result.

Theorem 2.7 There exists a constant B such that uniformly for all l with

l <
log x

B(log log x)2
,

we have

P (x, l) = #{p ≤ x | p splits completely in Q(ζl, 2
1/l)}

=
1

l(l − 1)
li(x) + O

(
x exp

(
−Al−1/2

√
log x

))
,

where A is an absolute positive constant.
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Proof Let χG be the character of the regular representation. That is:

χG(x) =

 |G| = l(l − 1) if x = 1,

0 otherwise.

We have that

1

l(l − 1)

∑
p≤x

χG(σp) = #{p ≤ x | σp is trivial} = #{p ≤ x | p splits completely in L}.

On the other hand, χG = χ1 + . . .+χl−1 +(l−1)χl is the canonical decomposition

of the regular character, therefore:

1

l(l − 1)

∑
p≤x

χG(σp) =
1

l(l − 1)

∑
p≤x

l−1∑
i=1

χi(σp) +
1

l

∑
p≤x

χl(σp).

The orthogonality relations for the characters of the subgroup H < G give:

1

l − 1

l−1∑
i=1

χi(h) =

 1 if h = 1,

0 otherwise.

Therefore, the first l− 1 characters count the number of primes up to x such that

their Artin symbol is trivial modulo H. These are the primes that split completely

in the Cyclotomic field Q(ζl) (whose Galois group is isomorphic to H). Finally, if

π(x, l, 1) = {p ≤ x | p ≡ 1 mod l}, then

P (x, l) =
1

l
(π(x, l, 1) + π(x, χl)) .

The Siegel-Walfisz Theorem (see [6] in §22) states that given any positive constant

C, if l ≤ (log x)C , one has

π(x, l, 1) = #{p ≤ x | p ≡ 1 mod l } =
1

l − 1
li(x) +O(x exp(−A

√
log x))

for some constant A = A(C), uniformly in l.
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This result with C = 2 and Theorem 2.2 gives the wanted claim.2

We conclude with the following statement whose proof is a consequence of the

Remark at the end of the last Section.

Theorem 2.8 Assuming the strong Hypothesis that for any prime l and for any non-

trivial zero β + iγ of the Dedekind zeta function ZK(s), β < 1− c
log γ

, then given any

positive constant C, uniformly for l ≤ (log x)C, we have

P (x, l) =
1

l(l − 1)
li(x) + O

(
x exp

(
−A

√
log x

))
,

for some constant A = A(C).2
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3 ON THE NUMBER OF PRIMES GENERAT-

ING F∗p

3.1 Extending Hooley’s Method

In this Section we will extend the ideas illustrated in Chapter 1 proving the following

Theorem 3.1 Suppose Γp is the subgroup of F∗
p generated by the classes of the first

log p primes, let

N(x) = #{p ≤ x | Γp = F∗
p}

then

lim
x→∞

N(x)
x

log x

≥ 1− log 2.

Proof: If we assume p ≥ x1/2, then, for every x,

Γp ⊇ Γr,p = 〈p1, . . . , pr〉, with r = [
1

2
log x]

and

N(x) ≥ Ñ(x) = #{p ≤ x | Γr,p = F∗
p}. (1)

Now, as in the standard Hooley’s case, we define for given η1 and η2:

Ñ(x, η1) = #{p ≤ x | ∀l, l ≤ η1, l 6 |[F∗
p : Γr,p]};

M(x, η1, η2) = #{p ≤ x | ∃l, η1 ≤ l ≤ η2, l|[F∗
p : Γr,p]};

M(x, η2) = #{p ≤ x | ∃l, l ≥ η2, l|[F∗
p : Γr,p]},

and clearly

Ñ(x) ≥ Ñ(x, ξ1)−M(x, ξ1, ξ2)−M(x, ξ2, ξ3)−M(x, ξ3) (2)

where ξ1 = 1/4
√

log log x, ξ2 = log x
B(log log x)2

and ξ3 = (log2 x)(log log x)2 and B is a

fixed positive number to be chosen later.

43



• The last term of (2) can be treated as in Theorem 1.1 using Lemma 1.4. We

have that

M(x, ξ3) ≤ #

{
p ≤ x | |Γr,p| ≤

x

(log2 x)(log log x)2

}

and since
∑

i log pi = O(pr) = O(r log r), Lemma 1.4 gives

M(x, ξ3) � x

(log2 x)(log log x)2

(
x

(log2 x)(log log x)2

)1/r

r log r

� x

log x

1

log log x
. (3)

• To handle the third term of (2), we will make use of the already quoted Siegel-

Walfisz Theorem, which states that given any positive constant C, then if l ≤

(log x)C , one has

π(x, l, 1) = #{p ≤ x | p ≡ 1 mod l } =
1

l − 1
li(x) + O(x exp(−A

√
log x)) (4)

for some constant A = A(C), uniformly in l.

This result yields to,

M(x, ξ2, ξ3) ≤ #{p ≤ x | ∃l, ξ2 < l < ξ3, p ≡ 1 mod l } ≤
∑

ξ2<l<ξ3

π(x, l, 1)

=
∑

ξ2<l<ξ3

(
1

l − 1
li(x) + O(x exp(−A

√
log x))

)
(5)

where we have chosen C = 3 say.

Now recall the Merten’s Theorem that states that for any two positive numbers

a and b, ∑
a<l<b

1

l
= log

(
log b

log a

)
+ O

(
1

log b

)
.

It follows that:

∑
a<l<b

1

l − 1
=

∑
a<l<b

1

l
+

∑
a<l<b

1

l(l − 1)
= log

(
log b

log a

)
+ O

(
1

log b

)
. (6)
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Using this result in (5), we get

M(x, ξ2, ξ3) ≤ li(x)

(
log

(
log ξ3
log ξ2

)
+ O((log ξ2)

−1)

)
+ O

(
ξ3x exp−c

√
log x

)

≤ x

log x

(
log 2 + log

(
1 + log log log x/ log log x

1− (logB + 2 log log log x)/ log log x

))
+ o

(
x

log x

)

=
x

log x
log 2 + o

(
x

log x

)
(7)

• Theorem 2.7 in Chapter 2 is the ingredient to the estimate of the second term

of (2). Indeed, l < ξ2 yields to

M(x, ξ1, ξ2, ) ≤
∑

ξ1<l<ξ2

#{p ≤ x | p splits completely in Q(ζl, 2
1/l)}

=
∑

ξ1<l<ξ2

(
1

l(l − 1)
li(x) + O(xl exp

(
−Al−1/2

√
log x

))

� 1

ξ1
li(x) + xξ2

2 exp
(
−Aξ−1/2

2

√
log x

)

� 1

ξ1
li(x) +

x log2 x

(log log x)4 logAB/2 x
= o

(
x

log x

)
, (8)

where B has been chosen to be larger than 6/A, say.

• To treat the main term of (2), let us set t = [(log r)1/2], and note that if

N0(x, ξ1) = #{p ≤ x | ∀l, l ≤ ξ1, l 6 |[F∗
p : Γt,p]},

then Ñ(x, ξ1) ≥ N0(x, ξ1), and

N̂(x, ξ1) =
∗∑
m

µ(m)πm(x),

where again the sum is extended to all the square free integers m whose prime

divisors are less then ξ1 (Note m ≤ eξ1), and

πm(x) = #{p ≤ x | p splits completely in Q(ζm, p
1/m
1 , . . . , p

1/m
t )}.
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Finally, the Hensel inequality (see (4) of Section 1.1) gives

c n1/2
m log dm ≤ m

3
2
t+1(logm+

∑
i≤t

log pi) ≤ m2t ≤ e2ξ1t ≤
√

log x.

Therefore the Chebotarev Density Theorem (see Lemma 1.2 of Section 1.1)

gives

N0(x, ξ1) =
∗∑
m

µ(m)

 1

nm

li(x) + O

x exp

−A
√

log x

nm



=
∞∑

m=1

µ(m)

nm

x

log x
+ O

 ∑
m>ξ1

1

mt+1
li(x)

+ O

(
eξ1x exp

(
−A

√
log x

(log x)1/2

))

= δΓ
x

log x
+ O

(
1

ξ1

x

log x

)
, (9)

where δΓ is as in Section 1.1 and where we used the fact that in this range of

m, nm ≤ e2tξ1 ≤
√

log x.

Putting together the estimates (3), (7), (8) and (9) and using (1) and (2), we get

N(x) ≥ N0(x, ξ1)−M(x, ξ1, ξ2)−M(x, ξ2, ξ3)−M(x, ξ3)

≥ δΓ
x

log x
+ o

(
x

log x

)
− log 2

x

log x
+ o

(
x

log x

)
.

Therefore, by Corollary 1.9

lim
x→∞

N(x)

x/ log x
≥ lim

x→∞
(δΓ − log 2 + o(1)) ≥ 1− log 2

which is the wanted claim.2

The estimate in (8) is the real obstacle to achieve an asymptotic formula for N(x).

Such estimate is connected with the range of validity of the Chebotarev Density

Theorem of the field K = Q(ζl, 2
1/l). As we have seen in Chapter 2, such a range

depends on the determination of zero-free regions for L(s, χl) and thus of the Dedekind

zeta function ZK(s). Indeed we have
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Theorem 3.2 Assuming in the strong Hypothesis that for any prime l and for any

non-trivial zero β + iγ of the Dedekind zeta function ZK(s), β < 1 − c
log T

, then for

almost all primes p, F∗
p is generated by the first [2 log p] primes.

Proof. Using exactly the same notation of Theorem 3.1, we now choose ξ1 =

1/4
√

log log x, ξ2 = log2 x and ξ3 = (log2 x)(log log x)2.

The estimate of the main and last terms in (2) is the same, for the third term,

again we use the Siegel-Walfisz Theorem (4) and Merten’s formula (6),

M(x, ξ2, ξ3) ≤
∑

ξ2<l<ξ3

(
1

l − 1
li(x) + O

(
x exp

(
−A

√
log x

)))

≤ x

log x
log

(
2 log log x+ log log log x

2 log log x

)
+ o

(
x

log x

)

= o

(
x

log x

)
.

Finally for the second term we use Theorem 2.8, and gather that

M(x, ξ1, ξ2, ) ≤
∑

ξ1<l<ξ2

(
1

l(l − 1)
li(x) + O

(
xl exp

(
−A

√
log x

)))

= o

(
x

log x

)
,

and this concludes the proof.2

Remark: It can be proven that the minimal assumption necessary to prove that

N(x) ∼ π(x) in Theorem 3.1 is that the Dedekind zeta function ZK(s) has a zero-free

region of the type

σ > 1− c

l1/2 log d
1/l
K T

, T ≥ 0,

for any prime l large enough and for some absolute positive constant c.

Indeed this would yield to a version of Chebotarev Density Theorem for K valid

up to l < (log x)2, and the rest of the proof would work as in Theorem 3.2.
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Finally note that using this approach improvements, in terms of determining a

significantly smaller set of generators of F∗
p for almost all p, are not possible. The

choice r = log p is in fact imposed by the statement of Lemma 1.4. The next Section

is devoted to analyzing this aspect in a more detailed manner.

3.2 Relaxation of the Hypothesis and Improvements

Our first intention is to prove a version of Theorem 3.1 in which the number of

generators is optimal with respect to the method used. As we have already remarked,

the choice of the minimal number of generators of F∗
p for a positive proportion of p’s

is imposed by Lemma 1.4. Precisely

Theorem 3.3 a) Let f be a (monotone) function of p with f(p) → +∞ for p→∞

and let Γp be the subgroup of F∗
p generated by the classes of the first

f(p)
log p

log log p

primes, then for a set of primes of density greater than 1− log 2, we have Γp = F∗
p.

b) Let α be a real number with 0 < α < e − 2 and let Γ′p be the subgroup of F∗
p

generated by the classes of the first

log p

α log log p

primes, then for a set of primes of density greater than 1− log(2 +α), it follows that

Γ′p = F∗
p.

Proof: a) The proof starts in the same way as in Theorem 3.1, where we assumed

p ≥ x1/2 and noticed that, for every x,

Γp ⊇ Γr,p =< p1, . . . , pr >, with r =

[
f(x)

2

log x

log log x

]
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and

#{p ≤ x | Γp = F∗
p} ≥ Ñ(x, ξ1)−M(x, ξ1, ξ2)−M(x, ξ2, ξ3)−M(x, ξ3) (10)

where the notations, ξ1 and ξ2 are the same as in Theorem 3.1 and ξ3 will be chosen

later.

The estimate of the main term and the second term are exactly the same, while

this time the estimate of the last term of (10) using Lemma 1.4 is the following:

M(x, ξ3) ≤ #

{
p ≤ x | |Γr,p| ≤

x

ξ3

}
� x

ξ3

(
x

ξ3

)1/r

r log r

� x

ξ3
(log x)2/f(x)f(x) log x� x(log x)1+ε(x)

ξ3
(11)

where we have put ε = ε(x) = 2/f(x) + (log f)/ log log x and assumed that f(x) �

log log x, say.

If we now choose ξ3 = (log x)2+ε log log x, we get that (11) is

� x

log x log log x
.

Finally we deal with the third term similarly as we did in Theorem 3.1, using the

Siegel-Walfisz Theorem and the Merten’s Formula:

M(x, ξ2, ξ3) ≤
∑

ξ2<l<ξ3

(
1

l − 1
li(x) + O(x exp(−A

√
log x))

)

≤ li(x)

(
log

(
log ξ3
log ξ2

)
+ O((log ξ2)

−1)

)
+ O

(
ξ3x exp−c

√
log x

)

≤ x

log x

(
log 2 + log

(
1 + ε(x)/2

1− log(B(log log x)2)/ log log x

))
+ o

(
x

log x

)

=
x

log x
log 2 + o

(
x

log x

)
,

and this concludes the proof of a).
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b) In this case we need to be a little more careful with the definition of r. We

can assume that p ≥ x1−ε(x) where ε(x) is a given function which is o( log log x
log x

), and

therefore we define

r =

[
(1− ε(x))

log x

α log log x

]
and the rest is as in a).

The last term is

M(x, ξ3) ≤ #

{
p ≤ x | |Γ′r,p| ≤

x

ξ3

}
� x

ξ3

(
x

ξ3

)1/r

r log r � x

ξ3
(log x)1+α/(1−ε(x)).

and choosing ξ3 = (log x)2+α/(1−ε(x)) log log x, we would make it o(x/ log x). Finally

the estimate for the third term is:

M(x, ξ2, ξ3) ≤ li(x)

(
log

(
log ξ3
log ξ2

)
+ O((log ξ2)

−1)

)
+ O

(
ξ3x exp−c

√
log x

)

≤ x

log x
log

(
2 +

α

1− ε(x)

)
+ o

(
x

log x

)

=
x

log x
log(2 + α) + o

(
x

log x

)

and this completes the proof.2

Now we turn our attention to another aspect. Note that neither the proof of

Theorem 3.1 nor the one of Theorem 3.3 use in any way the fact that each Γp is

generated by the first [log p] primes except for the fact that the sum of their logarithms

is� log p log log p and that limr→∞ δΓ = 1. The statement remains true if we consider

a sequence a1, a2 . . . of multiplicatively independent integers such that for any r,

r∑
i=1

log a1 � r log r and lim
r→∞

δΓ = 1.

It is conceivable to ask if a choice of a1, . . . , ar exists for which we could prove a

stronger Theorem. That would amount to having a better estimate for the sum of

50



the logarithms. For this purpose one could set

Υ(r) = min

{
r∑

i=0

log ai | a1, . . . , ar, multiplicatively independent r−tuple

}
.

The following holds:

Proposition 3.4

Υ(r) = r log r +O(r).

Proof: For any multiplicatively independent a1, . . . , ar, we can assume

a1 ≥ 1, . . . , ar ≥ r, therefore

r∑
i=1

log ai ≥
r∑

i=1

log i = log r! = r log r − r + O(log r)

the last identity, by the Stirling formula. Thus

Υ(r) ≥ r log r + O(r).

The choice a1 = 2, . . . , ar = pr, the rth prime, and the Prime Number Theorem,

prove that

Υ(r) ≤
r∑

i=0

log pr = pr + O(pr exp−A
√

log pr) = r log r + O(r exp−A
√

log r).2

Although many of the results that we will state can be extended to any sequence of

multiplicatively independent integers, from now on we will only consider the sequence

of the prime numbers.

It is now clear that the problem amounts to estimating the number of those primes

p ≤ x for which [F∗
p : Γr] has a prime divisor in the range (log1−ε1(x) x, log2+ε2(x) x)

where εi(x) = o(1). We note that it is enough to restrict our attention to those

primes for which the prime divisor is in (log x, log2 x), since by the argument we

already used more than once (the Siegel-Walfisz Theorem and the Mertens Formula),
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that the number of primes p for which p− 1 has a prime divisor in (log1−ε1(x) x, log x)

or in (log2 x, log2+ε2(x) x) is o(π(x)).

We can also assume that [F∗
p : Γr] has exactly one prime divisor in (log x, log2 x).

Indeed, if p is a prime in the set under consideration for which this is not the case,

we would have

∃l1, l2, l1l2
∣∣∣[F∗

p : Γr]
∣∣∣ =⇒ |Γp| ≤

p− 1

l1l2
≤ x

log2 x

and an application of Lemma 1.4 shows that the number of such primes is o(π(x)).

Finally for the same reason we can assume no divisors of [F∗
p : Γr] are > log2 x.

Putting these remarks together, we have the following

Proposition 3.5 With the same notation of Theorem 3.3, for almost all primes p

up to x either

F∗
p = Γr

or the index [F∗
p : Γr] has exactly one prime divisor in the range (log x, log2 x) and no

divisor > log2 x, i.e.

N(x) =
x

log x
− A(x) + o

(
x

log x

)
,

where

A(x) =
{
p ≤ x | ∃!l ∈

(
log x, log2 x

)
, l|[F∗

p : Γr], and [F∗
p : Γr] ≤ log2 x

}
.2

This fact will be used in Section 3.3. We conclude the Section mentioning how

this argument can be extended to the case of any r →∞, in particular the following

holds:

Theorem 3.6 Let r be a function of p that tends to ∞, then for almost all primes

p, either Γr = F∗
p or

∃!l, l|[F∗
p : Γr] with l ∈

(
log p, rp1/r log p

)
, and [F∗

p : Γr] < rp1/r log p.2
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Corollary 3.7 Let α > 0 be fixed. For almost all primes p either F∗
p is generated by

the classes of the first 1
α

log p
log log p

primes, or

∃!l, l|[F∗
p : Γp] with l ∈

(
log p, log2+α p

)
, and [F∗

p : Γp] < log2+α p.2

As we have seen in Proposition 3.5, the problem is now to determine upper bounds

for the quantity:

A(x) =
{
p ≤ x | ∃!l ∈

(
log x, log2 x

)
, l|[F∗

p : Γr], and [F∗
p : Γr] ≤ log2 x

}
where we can suppose r � log x. We already noticed that the Siegel-Walfisz Theorem

and the Merten’s Formula, give:

A(x) ≤ log 2
x

log x
+ o

(
x

log x

)
.

The idea that allows one to improve this upper bound is coming from the Brun’s

Sieve, more precisely we will use the following result:

Lemma 3.8 Let Bn(x) be the number of primes up to x for which p−1 is not divisible

by any of the primes in the interval (log x, logn x), then we have

Bn(x) ∼ 1

n
π(x).

Proof: It is an application of the version of the Brun’s Sieve that is on Theorem

2.5′ at page 83 of [18] to the set:

A = {p− 1 | p is primes, p ≤ x}.

Hypothesis (R0) and (R1(k, a)) are easily satisfied, the latter using the Bombieri-

Vinogradov

Theorem.2

The application to our problem with the following:
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Corollary 3.9 With the same notation as above, for any r,

A(x) ≤ 1

2

x

log x
+ o

(
x

log x

)
.

Proof: We have that

A(x) ≤
{
p ≤ x | ∃l ∈

(
log x, log2 x

)
, l|[F∗

p : Γr]
}

= π(x)−B2(x) ∼
1

2
π(x).2

We conclude with

Theorem 3.10 a) Let f be a (monotone) function of p with f(p) → +∞ for p→∞

and let Γp be the subgroup of F∗
p generated by the classes of the first

f(p)
log p

log log p

primes, then for at least half of the primes p, we have Γp = F∗
p.

b) Let α be a real number with 0 < α and let Γ′p be the subgroup of F∗
p generated

by the classes of the first
log p

α log log p

primes, then for a set of primes of density greater than 1
2+α

, it results Γ′p = F∗
p.2

Proof of b): The proof goes as the one in Theorem 3.3, except that to estimate

the third term we make use of Lemma 3.8 with n = 2 + α.2
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3.3 A Density One Result

We will discuss in this section a method to find an estimate for the size of the set

Hm,r(x) =
{
p ≤ x | |Γr| =

p− 1

m

}

where m is a given integer greater than one and r a function of p that tends to infinity.

The idea is that Γr is a subgroup of the cyclic group F∗
p and therefore is itself

cyclic. For any integer m, m ≡ 1(modp), the subgroup of m-th powers is a subgroup

of F∗
p of order (p−1)/m and since a finite cyclic group has a unique subgroup for every

divisor of its order, we deduce that Γr is the group of m-th powers mod p. Since a

group is made out of m-th powers if and only if it is generated by m-th powers, this

implies:

Hm,r(x) = {p ≤ x | p ≡ 1(modm) and pi is an m-th power (modp) ∀i = 1, . . . , r} .

If nm(p) is the least prime which is not congruent to an m-th power (modp), then

we can also write:

Hm,r(x) = {p ≤ x | p ≡ 1(modm) and nm(p) > pr} .

As r grows, the possibility that all the pi’s are m-th powers becomes less probable.

The idea is to find the minimum r such that Hm,r(x) is o( 1
m
π(x)). We will do this

making use of the large sieve, the proof of which can be found in [6] or [2], that is:

Lemma 3.11 (The Large Sieve)

Let N be a set of integers contained in the interval {1, . . . , z} and for any prime

p ≤ x, let Ωp = {h(modp) | ∀n ∈ N , n 6≡ h(modp)} and

L =
∑
q≤x

µ2(q)
∏
p|q

|Ωp|
p− |Ωp|

,
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then

|N | ≤ z + 3x2

L
.2

In our case, let N = {n ≤ z | ∀q|n, q < pr} and note that if p ∈ Hm,r(x), then

Ωp ⊃ {h(modp) | h is not an m-th power (modp)}

therefore, for such p’s, |Ωp| ≥ p− 1− (p− 1)/m and

L ≥
∑

p∈Hm,r(x)

|Ωp|
p− |Ωp|

≥ m− 1

2
|Hm,r(x)|.

Applying the Large Sieve with z = x2, we get:

Theorem 3.12 Let Ψ(s, t) = #{n ≤ s‖ ∀q|n, q < t}, then

Hm,r(x) ≤
8x2

(m− 1)Ψ(x2, pr)
.2

Estimating the function Ψ(z, y) is a classical problem in Number Theory. In 1985,

D. Hensley proved (see [22]) the following:

Lemma 3.13 Let u = log z
log y

and let ρ(u) be the function determined by:

 ρ(u) = 1 if 0 ≤ u ≤ 1;

uρ′(u) = −ρ(u− 1) if u > 1,

then, for 1 + log log z ≤ log y ≤ (log log z)2, and ε > 0,

Ψ(z, y) � zρ(u) exp(−u exp(−(log y)(3/5−ε))).2

In our case, this gives:
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Corollary 3.14 Let r be a function of x such that log pr ∈ [1+log log x2, (log log x2)2]

and let u = 2 log x/ log pr, then

Hm,r(x) � m−1 1

ρ(u)
exp

(
u exp

(
−u exp

(
− log(3/5−ε) pr

)))
.2

An asymptotic formula for ρ(u) was found by de Bruijn in [10] and is the following:

Lemma 3.15 Let u > 0, then

ρ(u) = exp

{
−u

(
log u+ log log u− 1 +

(log log u)− 1

log u
+ O

(
(log log u)2

log2 u

))}
.2

In our case we get the following:

Theorem 3.16 If pr ≥ log2 x then

Hm,r(x) �
1

m

x

exp
{

log x
2 log log x

} = o(π(x)).

Proof: From Corollary 3.14 and the asymptotic formula of Lemma 3.15, we can

write the estimate:

Hm,r(x) �
1

m
exp(u(log u+ log2 u− 1 + O

(
log log u

log u

)
)).

where u = 2 log x
log pr

. Now, take pr ≥ log2 x, and note that

u = log x
log2 x

; log u = log2 x− log3 x; log2 u = log3 x+ log
(
1− log3 x

log2 x

)
and log u � log2 x; log2 u ≤ log3 x−

log3 x
log2 x

� log3 x.

Therefore

mHm,r(x) � exp

{
log x

log2 x

(
log2 x− log3 x+ (log3 x−

log3 x

log2 x
)− 1 + O

(
log3 x

log2 x

))}
�

exp

{
log x

(
1− 1

log2 x
+ O

(
log3 x

log2
2 x

))}
� x

exp
{

log x
2 log log x

} = o(π(x)).2
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Remark:

The choice of pr = log2 x is not optimal in Theorem 3.16. A simple but long calcu-

lation shows that if pr =
(

log x
e

)2
, then the asymptotic formula on Lemma 3.15 gives

the estimate
1

ρ(u)
� x

(
1+O

(
log2

3 x

log3
2

x

))
,

which is useless to our purpose. However, if we fix δ < 1 and set pr =
(

log x
eδ

)2
, then

the same calculation gives

1

ρ(u)
� x

(
1− 1−δ

log2 x
− 1−δ2

log2
2

x
+O
(

log2
3 x

log3
2

x

))
,

which is a valid estimate and is the optimal one.

We are now ready to prove:

Theorem 3.17 Let Γr = 〈p1, . . . , pr〉 be the subgroup of F∗
p generated by all the

primes up to pr = log2 p (r ∼ log2 p
log log p

), then for almost all primes p,

Γr = F∗
p

Proof: We want to estimate the size of the set

S =
{
p ≤ x |

[
F∗

p : Γr

]
> 1

}
.

The index
[
F∗

p : Γr

]
can be at most x since it is a divisor of p− 1.

Since we may suppose p > x1−ε, we can take pr = log2 p > (1 − ε)2 log2 x and

apply Theorem 3.16, to S,

S =
x∑

m=1

Hm,r(x) =

(
x∑

m=1

1

m

)
x

exp
{

log x
2 log log x

} = o(π(x)).2

Remarks:
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a) This is an improvement with respect to the result of Burgess and Elliot of [5]

deduced in Proposition 1.11 where for almost all primes ≤ x, the size of pr (least

primitive root) was proven to be ≥ log2 x(log log x)4;

b) Improvements to this result using this approach do not stay in the possibility to

apply a stronger version of Lemma 3.13 (which exists in the literature, see for example

the work of A. Hildebrand in [23] or Canfield, Erdös and Pomerance in [8]). It is the

asymptotic formula of De Bruijn for the function ρ(u) that forces a choice pr of size

close to log2 x.
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4 MORE ON PRIMITIVE ROOTS

This Chapter is devoted to the problem of finding a uniform asymptotic formula for

the number of primes p up to x such that s distinct numbers (which for simplicity

we suppose to be prime) are all at the same time primitive roots (modp). It turns

out that, under the assumption of the G.R.H., there is always a positive density of

primes with such a property.

Heuristically, the probability that a prime l divides one the indexes [F∗
p : 〈p1〉]

or [F∗
p : 〈p2〉] is the probability that p splits completely in the fields Q(ζl, p

1/l
1 )

and Q(ζl, p
1/l
2 ), minus the probability that p splits completely in the compositum

Q(ζl, p
1/l
1 , p

1/l
2 ). By the Chebotarev density Theorem, we get that the probability

that l does not divide both the indexes is

1−
(

1

[Q(ζl, p
1/l
1 ) : Q]

+
1

[Q(ζl, p
1/l
2 ) : Q]

− 1

[Q(ζl, p
1/l
1 , p

1/l
2 ) : Q]

)
.

Multiplying for all primes l, we get the formula:

δ =
∏

l prime

(
1− 2l − 1

l2(l − 1)

)
.

A natural generalization of this argument to the case of r distinct primes with the

application of an inclusion exclusion principle, yields to:

δ =
∏

l prime

(
1− 1

l − 1

[
1−

(
1− 1

l

)s])
.

We will prove that this heuristic argument is correct with the assumption of the

Generalized Riemann Hypothesis and some adjustments of the same type of those

noticed by Lehmer in the case of the Artin Conjecture for primitive roots. This will

be applied in Section 4.3 to the problem of determining the least prime primitive root

modp for almost all primes p.
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4.1 Another Generalization of Hooley’s Theorem

We present in this section a very natural generalization of Hooley’s Theorem for

primitive roots.

Theorem 4.1 Let P = {p1, . . . , ps} be a set of odd primes, L(d1, . . . , ds) be the

compositum field:

L(d1, . . . , ds) =
s∏

i=1

Q(ζdi
, p

1/di

i ),

nd1,...,ds = [L(d1, . . . , ds) : Q], and let

δP =
∞∑

d1=1,...,ds=1

µ(d1) · · ·µ(ds)

nd1,...,ds

.

Define

NP(x) = #{p ≤ x | ∀i = 1, . . . , s pi is a primitive root (mod p)}.

Then, if the Generalized Riemann Hypothesis holds for the fields L(d1, . . . , ds), we

have that

NP(x) = δP
x

log x
+ O

(
x log log x

log2 x
cs0

s∑
i=1

log pi

)
for some absolute constant c0, uniformly respect to s = |P| and p1, . . . , ps.

Remark: It is not straightforward to see that δP is well defined nor that it is non

zero. Indeed, the series defining the density, converges absolutely. We will assume it

for the moment and prove it in the next section in Corollary 4.12.

Proof: We will follow the same approach of Hooley who first noticed that in

order p1, . . . , ps be all primitive roots for the same prime p, one has to have that

∀l prime, l 6 |[F∗
p : 〈pi〉],∀i = 1, . . . , s,

therefore

NP(x) = NP(x, y) +MP(x, y)
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where

NP(x, y) = #
{
p ≤ x | ∀l prime, l < y and ∀i = 1, . . . , s l 6 |[F∗

p : 〈pi〉]
}

and

MP(x, y) = #
{
p ≤ x | ∃l prime, l > y with l|[F∗

p : 〈pi〉], for some i = 1, . . . , s
}
.

We choose y = 1
6s

log x for a reason that will become clear later.

Step 1): MP(x, y) � x log log x

log2 x
s

s∑
i=1

log pi.

Clearly

MP(x, y) ≤
s∑

i=1

M{pi}(x, y),

therefore it is enough to show that, uniformly with respect to P ,

M{q}(x, y) �
x log log x

log2 x
s log q.

This was proven already by Hooley in his original paper [26], and we will report it

here just for completeness.

Note that

M{q}(x, y) ≤ |A|+ |B|+ |C|,

where

A =
{
p ∈M{q}(x, y)| ∃l|[F∗

p : 〈q〉], l > x1/2 log x
}

;

B =
{
p ∈M{q}(x, y)| ∃l|[F∗

p : 〈q〉], x1/2

log2 x
< l ≤ x1/2 log x

}
;

C =
{
p ∈M{q}(x, y)| ∃l|[F∗

p : 〈q〉], y ≤ l ≤ x1/2

log2 x

}
.

|A| can be estimated as follows:

l|[F∗
p : 〈q〉] implies that

q
p−1

l ≡ 1 (mod p).
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Therefore, since l > x1/2 log x and p ≤ x, any prime in A must divide the positive

product ∏
m≤x1/2 log−1 x

(qm − 1).

Now note that the number of divisors of a natural number N is O(logN), therefore

|A| �
∑

m≤x1/2 log−1 x

m log q � x

log2 x
log q.

|B| can be estimated as follows:

Retaining only the condition l|p− 1 for the primes p ∈ B, we get

|B| ≤
∑

x1/2

log2 x
<l≤x1/2 log x

π(x, l, 1).

By the Brun-Titchmarsh Theorem, we know that

π(x, l, 1) � x

(l − 1) log(x/l)
.

We therefore deduce that

|B| � x

log x

∑
x1/2

log2 x
<l≤x1/2 log x

1

l
� x

log2 x

∑
x1/2

log2 x
<l≤x1/2 log x

log l

l
,

from which it follows from the easier Merten’s formula that

|B| � x

log2 x

(
log

(
x1/2 log x

)
− log

(
x1/2

log2 x

)
+ O(1)

)
= O

(
x log log x

log2 x

)
.

|C| can be estimated as follows:

We have already noticed that l|[F∗
p : 〈q〉] is equivalent to the statement that p splits

completely in the field Q(ζl, q
1/l), the version of the Chebotarev Density Theorem

that assumes the validity of the Generalized Riemann Hypothesis for such fields is:

P (x, l) = #{p ≤ x | p splits completely in Q(ζl, q
1/l)} =
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1

l(l − 1)
li(x) + O(x1/2 log x · l · q).

If we use this formula we get:

|C| =
∑

y≤l≤ x1/2

log2 x

P (x, l) =
∑

y≤l≤ x1/2

log2 x

[
1

l(l − 1)
li(x) + O(x1/2 log x · l · q)

]
=

O

(
1

y

x

log x

)
+ O

(
x

log2 x
log q

)
.

Taking into account that y = 1
6s

log x, we get

|C| = O

(
x

log2 x
s log q

)
,

which is the desired estimate.

Step 2): We can now turn our attention to NP(x, y). We claim that

NP(x, y) =
∗∑
a1

· · ·
∗∑
as

µ(a1) · · ·µ(as)P (x, a1, . . . , as) (1)

where the ∗ over the sums means that the sums are extended to those values of ai for

which all its prime divisors are less than y (note that this implies ai < e2y = x1/3s),

and

P (x, a1, . . . , as) = #
{
p ≤ x | ai

∣∣∣[F∗
p : 〈pi〉] ∀i = 1, . . . , s

}
.

This claim can be proven by induction on s: If s = 1 then we have the standard

inclusion-exclusion principle:

N{p1}(x, y) = π(x)−
∑
l<y

P (x, l) +
∑

l<y,l′<y

P (x, ll′)− · · · =
∗∑

a1=1

µ(a1)P (x, a1).

Similarly, for 0 ≤ t ≤ s, define

Pt(x, at+1, . . . , as) = #{p ∈ N{p1,...,pt}(x, y)
∣∣∣ai

∣∣∣[F∗
p : 〈pi〉] ∀i = t+ 1, . . . , s}.

Clearly

P0(x, a1, . . . , as) = P (x, a1, . . . , as)
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and the recursive relation holds;

Pt(x, at+1, . . . , as) =
∗∑
at

µ(at)Pt−1(x, at, . . . , as).

Hence inductively

NP(x, y) = Ps(x) =
∗∑
as

µ(as) . . .
∗∑
a1

µ(a1)P0(x, a1, . . . , as).

Now note that the condition ai

∣∣∣[F∗
p : 〈pi〉] is equivalent to

p splits completely in Q(ζai
, p

1/ai

i ),

and that a prime splits completely in a set of fields if and only if it splits completely

in their compositum.

Therefore ai

∣∣∣[F∗
p : 〈pi〉] for all i = 1, . . . , s, if and only if p splits completely in

s∏
i=1

Q(ζai
, p

1/ai

i ) = Q(ζ[a1,...,as], p
1/a1

1 , . . . , p1/as
s ).

We gather that

P (x, a1, . . . , as) = # {p ≤ x | p splits completely in L(a1, . . . , as)}

and the Generalized Riemann Hypothesis allows us to write the Chebotarev Density

formula:

P (x, a1, . . . , as) =
1

na1,...,as

li(x) + O

(
x1/2

(
log x+

logDa1,...,as

na1,...,as

))
.

where Da1,...,as is the discriminant of L(a1, . . . , as). Recall that by the Hensel Inequal-

ity (See page 259 of [42]) we can write

logDa1,...,as

na1,...,as

≤ log[a1, . . . , as] +
s∑

i=1

log pi,
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since only p1, . . . , ps and the primes dividing [a1, . . . , as] ramify in L(a1, . . . , as). Now

substitute inside (1) and get:

NP(x, y) =
∗∑
a1

· · ·
∗∑
as

µ(a1) · · ·µ(as)

{
li(x)

na1,...,as

+ O

(
x1/2

(
log x+

logDa1,...,as

na1,...,as

))}
=

δP li(x) + O

 ∑
(a1,...,as)∈S

µ2(a1) · · ·µ2(as)

na1,...,as

 li(x)+

O

 ∑
a1<e2y ,...,as<e2y

x1/2

(
log x+

s∑
i=1

log p1 + log[a1, . . . , as]

) (2)

where S is the set of s-tuples of positive integers where at least one of the component

is greater that y. We will prove later in Proposition 4.4 that

∑
(a1,...,as)∈S

µ2(a1) · · ·µ2(as)

na1,...,as

� cs1
y
,

for some absolute constant c1 . In our case 1/y � s/ log x therefore (2) is equal to

δP
x

log x
+ O

(
x

log2 x
scs1

s∑
i=1

log pi

)
+ O

x1/2
∑

a1<e2y ...as<e2y

log[a1, . . . , as]

 .
Finally note that if a1, . . . , as are square-free numbers with prime divisors less than

y, then also [a1, . . . , as] has the same property, thus

∑
a1<e2y ...as<e2y

log[a1, . . . , as] �
∑

a1<e2y ...as<e2y

y � ye2sy � x1/3 log x

Hence

NP(x, y) = δP
x

log x
+ O

(
x

log2 x
cs0

s∑
i=1

log pi

)
.

which, together with step 1) proves the Theorem.2
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4.2 Calculation of the Densities

We can now give the expression for the density δP , and as we did in Section 1.2, the

first step is to calculate the dimension of the fields

L = La1,...,as =
s∏

i=1

Q
(
ζai
, p1/ai

)
= Q(ζ[a1,...,as], p

1/a1

1 , . . . , p1/as
s ),

for any s-tuple a1, . . . , as of square-free integers. This is done in the following:

Theorem 4.2 Let n = na1,...,as = [L : Q] ,M = [a1, . . . , as] and suppose P is the

product of those pi such that pi|M and ai is even. Let t be the number of prime

factors of P , then

n =
φ(M)a1 · · · as

2α
,

with

α =

 t if ∀q|P, q ≡ 1 (mod 4),

t− 1 if ∃q|P,with q ≡ 3 (mod 4).

Proof: The argument is similar to the one in the proof of Theorem 1.5. We can

suppose, with out loss of generality, that P = p1 · · · pt, and define

C0 = Q(ζM), Ci = Ci−1(p
1/ai

i ).

Clearly L = Cs and

[L : Q] = [Cs : Cs−1] · · · [C2 : C1]φ(M).

Step 1): For 1 ≤ i ≤ s, it results [Ci : Ci−1] = ai or ai/2 .

Since xa1 − pi splits into linear factors over Ci−1, we have that [Ci : Ci−1] =
ai

d
, if q|d

is a prime, then we have the fields:

Ci−1 ⊆ Ci−1(p
1/q
i ) ⊆ Ci.
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Now, either q = 1 or

[Ci−1(p
1/q
i ) : Ci−1] |[Ci : Ci−1] =

ai

d

and since ai is square-free, we deduce that p
1
q

i ∈ Ci−1. Either pi ∈ C0 which imply

q = 2 since the only subfields of a cyclotomic field of the type Q(p
1/q
i ) are quadratic,

or C0(p
1/q
i ) is a Kummer extension of degree q of C0. Now by Galois Theory, we get

that such an extension has to be of the following type:

C0(p
1/q
i ) = C0

(
(ps1 · · · psk

)1/q
)
,

where 1 ≤ s1 ≤ s2 · · · ≤ sk ≤ i − 1 Finally, the Theory of Kummer extensions, (See

Lemma 3 at page 160 of Cassels and Fröhlich [7]) implies that there exists 0 ≤ i ≤ q−1

such that (
pi

(ps1 · · · psk
)i

)1/q

∈ C0,

which again implies q = 2.

Step 2): [Ci : Ci−1] = ai for t < i ≤ s.

In the case ai odd then clearly Step 1) implies Step 2), thus suppose ai is even and

[Ci : Ci−1] = ai/2. In this case, we have that
√
pi is in Ci−1 because ai is square-

free ([Ci−1(
√
pi) : Ci−1] |ai/2). This implies that pi ramifies in Ci−1, but since, by

the Kummer Theory, the only primes that ramify in Ci−1 are p1, . . . , pi−1 and those

dividing M , we get a contradiction and conclude that [Ci : Ci−1] = ai.

This also implies that [Cs : Ct] = at+1 · · · as.

Step 3): If every prime dividing P is ≡ 1( mod 4), then [Ci : Ci−1] = ai/2 for every

1 ≤ i ≤ t.

From the Theory of Cyclotomic fields we know that a generic quadratic subfield of

C0 = Q(ζM) is of the following type:

Q

√(−1

D

)
D

 , where D |M ,
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since
(
−1
q

)
= 1 if and only if q ≡ 1(mod4), we deduce that

√
qi ∈ C0 and the Galois

group of Ci over Ci−1 is generated by the map

σ : p
1/ai

i 7→ ζ2
ai
p

1/ai

i

(note that σ(
√
pi) = (σ(p

1/ai

i ))ai/2 =
√
pi), which has clearly order ai/2.

In this case we have [Ct : C0] = a1 · · · at/2
t.

Step 4): If it exists q |P with q ≡ 3( mod 4) (we assume, without loss of generality,

that q = p1), then [C1 : C0] = a1 and [Ci : Ci−1] = ai/2 for every 1 < i ≤ t.

The assumption [C1 : C0] = a1/2 would imply again that
√
p1 ∈ C0. By the same

argument of Step 3), this implies that the Legendre symbol
(
−1
p1

)
= 1; which is a

contradiction. Therefore we are left to show the second part of the statement of this

Step.

If 1 < i ≤ t then
√
pi ∈ C1 because, either pi ≡ 1(mod4) and thus

√
pi ∈ C0 ⊂ C1,

or pi ≡ 3(mod4) and
√
p1pi ∈ C0 hence

√
pi =

√
p1pi/

√
p1 ∈ C1. In both cases, the

Galois group of Ci over Ci−1 is generated by the map

σ : p
1/ai

i 7→ ζ2
ai
p

1/ai

i

which again has order ai/2.

Finally, in this case we have [Ct : C0] = a1 · · · at/2
t−1 and this concludes the proof.2

Corollary 4.3 We have the following lower bound for the dimension na1,...,as of the

field La1,...,as over Q:

na1,...,as ≥
φ([a1, . . . , as])a1 · · · as

2s
.2

We have now enough tools to prove the property we used during the proof of

Theorem 4.1.
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Proposition 4.4 Recall that S = {(a1, . . . , as) ∈ Ns | ∃i with ai > y}. It results

that ∑
(a1,...,as)∈S

µ2(a1) · · ·µ2(as)

na1,...,as

� cs1
y

(3)

for some absolute constant c1.

Before proving Proposition 4.4, we need the following technical Lemma:

Lemma 4.5 Consider the multiplicative function dt(n) defined as the number of ways

to write n as product of t natural numbers, and denote:

σ(t) =
∏

l prime

1 +
1

l

∑
k≥1

dt(l
k)

lk

 .
we have:

σ(t) ≤ ζ(2)2t.

Proof: Note that dt(l
2k−1) ≤ dt(l

2k), therefore

1 +
1

l

(
dt(l)

l
+
dt(l

2)

l2
+ · · ·

)
≤ 1 + 2

(
dt(l

2)

l2
+
dt(l

4)

l4
+ · · ·

)

≤
(

1 +
dt(l

2)

l2
+
dt(l

4)

l4
+ · · ·

)2

=
(
1 +

1

l2
+

1

l4
+ · · ·

)2t

.

Hence

σ(t) ≤
∏

l prime

(
1 +

1

l2
+

1

l4
+ · · ·

)2t

= ζ(2)2t.2

Proof of Proposition 4.4: First note that from Corollary 4.3, we get that

na1,...,as ≥
φ([a1, . . . , as])a1 · · · as

2s
,

therefore (3) is

� 2s
∑
S

µ2(a1) · · ·µ2(as)

a1 · · · asφ([a1, . . . , as])
, (4)
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But the sum on (4) is completely symmetric on the ai’s, therefore is

� 2ss
∑
a1>y

(a2,...,as)∈Ns−1

µ2(a1) · · ·µ2(as)

a1 · · · asφ([a1, . . . , as])

� 2ss
∑

a1>y

µ2(a)

a

∑
(a2,...,as)∈Ns−1

1

a2 · · · asφ([a2, . . . , as])
. (5)

Using the multiplicative function defined above and the function γ defined as

γ(n) =
∏
p|n
p,

we can write that (5) is equal to:

2ss
∑
a>y

µ2(a)

a

∞∑
b=1

ds−1(b)

φ(γ(ab))
= 2ss

∑
a>y

µ2(a)

φ(a)a

∞∑
b=1

ds−1(b)φ((a, b))

φ(γ(b))
.

Since all functions inside the second sum are multiplicative, we can write (5) as

2ss
∑
a>y

µ2(a)

φ(a)a

∏
l prime

{
1 +

φ((a, l))

φ(l)

(
ds−1(l)

l
+
ds−1(l

2)

l2
+ · · ·

)}
�

2ssσ(s− 1)
∑
a>y

µ2(a)

φ(a)a

∏
l|a

∑
k≥0

ds−1(l
k)

lk

 .
If we can prove the estimate:

∑
a>y

f(a)

a2
� σ(s− 1)

y
(6)

where

f(a) =
aµ2(a)

φ(a)

∏
l|a

∑
k≥0

ds−1(l
k)

lk
= µ2(a)

(
a

φ(a)

)s

,

then the estimate for the function σ(t) of Lemma 4.5 would imply the claim.

From the Theory of Dirichlet series, we know that (6) is

�
∫ ∞

y

F (x)

x3
dx,
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where F (x) =
∑

n≤x f(n) is the average of f . If we could prove the asymptotic

formula:

F (x) ∼ σ(s− 1)x, (7)

for x that tends to infinity, then we would have that (6) is

�
∫ ∞

y

σ(s− 1)x

x3
dx =

σ(s− 1)

y
.

To prove (7), we make use of the Dirichlet series:

H(z) =
∞∑

n=1

f(n)

nz
. (8)

Since f(n) � (log log n)s, we know that H(z) converges in the semi-plane <(z) > 1

and we can write the Euler product expansion:

H(z) =
∏
l

1 +
1

lz
l

l − 1

∑
k≥0

ds−1

lk

 = ζ(z)K(z)

where

K(z) =
∏
l

1 +
1

lz
l

l − 1

∑
k≥0

ds−1

lk

(1− 1

lz

)
converges for <(z) > 0. This decomposition gives an analytic continuation for H(z)

and therefore we can calculate the residue at z = 1 of H(z) which is going to be

lim
z→1

(z − 1)ζ(z)K(z) = K(1) =
∏
l

1− 1

l
+

1

l

1 +
∑
k≥1

ds−1(l
k)

lk

 = σ(s− 1).

The Ikehara Tauberian Theorem (see [33], page 311) implies the claim of (7) and the

Proposition results proven.2

Remark: The details used in the last part of the proof of Proposition 4.4 are

missing from the original proof of Hooley in the case s = 1. In that circumstance

the level of precision that we need here for the application on Section 4.3 was not

required.
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If nd1,...,ds is the dimension over Q of
∏s

i=1 Q(ζdi
, p

1/di

i ) then we have seen that

whenever ([d1, . . . , ds], p1 · · · ps) = 1, it results

nd1,...,ds = d1 · · · dsφ([d1, . . . , ds]),

this leads us to consider the function:

∆s =
∞∑

a1=1

· · ·
∞∑

as=1

µ(a1) · · ·µ(as)

a1 · · · asφ([a1, . . . , as])
.

Our goal is to show that ∆s 6= 0 and that lims→∞ ∆s = 0, the best way to do this

is again to express ∆s as an Euler product. This will also confirm the heuristic

argument illustrated at the beginning of this Chapter.

Proposition 4.6

∆s =
∏

l prime

(
1− 1

l − 1

[
1−

(
1− 1

l

)s])
.

We need two lemmas:

Lemma 4.7 For any prime l, let it be given a function αl, and define

Γt+1(αl) =
∞∑

a1=1

. . .
∞∑

at+1=1

µ(a1) . . . µ(at+1)

a1 · · · at+1

∏
l|[a1,...,at+1])

αl

 , (9)

(note that Γs(1/(l − 1)) = ∆s) then:

Γt+1(αl) = Γt

(
αl
l − 1

l − αl

) ∏
q prime

(
1− αq

q

)
.

Proof: The right hand side of (9) is equal to:

∞∑
a1=1

· · ·
∞∑

at=1

µ(a1) . . . µ(at)

a1 · · · at

∏
l|[a1,...,at])

αl




∞∑
x=1

µ(x)

x

∏
l

∣∣∣ [a1,...,at,x]

[a1,...,at]

αl

 , (10)

73



where we just renamed at+1 to be x. Note that for any multiplicative function f(n)

and H ∈ N, if we define

F (n) = µ(n)f([H,n]/H),

then F (n) is again multiplicative. If we take H = [a1, . . . , at] and f(n) =
∏

l|n αl, we

get that (10) is equal to

∞∑
a1=1

· · ·
∞∑

at=1

µ(a1) · · ·µ(at)

a1 · · · at

∏
l|[a1,...,at]

αl

 ∏
q prime

1− 1

q

 ∏
l

∣∣∣ [a1,...,at,q]

[a1,...,at]

αl


 . (11)

Since l
∣∣∣ [H,q]

H
if and only if l = q and q 6 |H, we gather that (11) is equal to:

∞∑
a1=1

· · ·
∞∑

at=1

µ(a1) · · ·µ(at)

a1 · · · at

∏
l|[a1,...,at]

αl

 ∏
l|[a1,...,at]

(
1− 1

l

) ∏
q prime

q 6|[a1,...,at]

(
1− αq

q

)
.

Multiplying and dividing by the missing terms, we get the claim.2

Lemma 4.8 Define inductively the functions βi = βi(l) in the following :

β1 =
1

l − 1
and βn = βn−1

l − 1

l − βn−1

,

then:

∆s =
∏

l prime

s∏
n=1

(
1− βn(l)

l

)
.

Proof: By induction on s, the case s = 1 being the definition of the Artin

constant. Lemma 4.7 implies that:

∆s = Γs(β1) = Γs−1(β2)
∏

l prime

(
1− β1(l)

l

)
=

Γs−2(β3)
∏

l prime

(
1− β1(l)

l

)(
1− β2(l)

l

)
=

...

Γ1(βs)
∏

l prime

[
s−1∏
i=1

(
1− βi(l)

l

)]
.
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Finally

Γ1(βs) =
∞∑

a=1

µ(a)

a

∏
l|a
βs(l) =

∏
l prime

(
1− βs(l)

l

)
,

and the claim follows.2

First Proof of Proposition 4.6: Note that by the inductive definition of the

βi’s, we have that(
1− βi(l)

l

)(
1− βi+1(l)

l

)
=

(
1− βi(l)

(
1−

(
1− 1

l

)2
))

and, more in general(
1− βi(l)

l

)(
1− βi+1(l)

(
1−

(
1− 1

l

)k
))

=

(
1− βi(l)

(
1−

(
1− 1

l

)k+1
))

.

Finally

∆s =
∏

l prime

[(
1− β1(l)

l

)
· · ·

(
1− βs−1(l)

l

)(
1− βs(l)

l

)]
=

∏
l prime

[(
1− β1(l)

l

)
· · ·

(
1− βs−2(l)

l

)(
1− βs−1(l)

(
1−

(
1− 1

l

)2
))]

...∏
l prime

[(
1− β1(l)

l

)(
1− β2(l)

(
1−

(
1− 1

l

)s−1
))]

.

Substitute β1(l) = 1/(l − 1), and get the claim.2

Second Proof of Proposition 4.6: If we define

f(m) =
∑

a1,...,as
[a1,...,as]=m

µ(a1) · · ·µ(as)

a1 · · · as

,

then it results

∆s =
∞∑

m=1

µ2(m)f(m)

φ(m)
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since the lowest common multiple of square-free integers is itself square-free.

We now claim that f(m) is multiplicative, which imply:

∆s =
∏

l prime

(
1 +

f(l)

l − 1

)
. (12)

Indeed, if m and m′ are coprime integers, then the map

(a1, . . . , as), (b1, . . . , bs) 7−→ (a1b1, . . . , asbs)

is a bijection from the set of s-tuples of integers with lowest common multiple m cross

the set of r-tuples of integers with lowest common multiple m′ to the set of s-tuples

of integers with lowest common multiple mm′, whose inverse map is given by:

(c1, . . . , cs) 7−→ ((c1,m), . . . , (cs,m)), ((c1,m
′), . . . , (cs,m

′)).

We gather that

f(m)f(m′) =
∑

a1,...,as
[a1,...,as]=m

∑
b1,...,bs

[b1,...,bs]=m′

µ(a1b1) · · ·µ(asbs)

a1b1 · · · asbs
=

∑
c1,...,cs

[c1,...,cs]=mm′

µ(c1) · · ·µ(cs)

c1 · · · cs
= f(mm′).

Finally, if [a1, . . . , as] = p, then each ai can be equal to 1 or to p, and each possibility

is possible except ai = 1∀i = 1, . . . , s. Hence

f(p) = s
−1

p
+

 s

2

 1

p2
+ · · ·+

 s

k

 (−1)k

pk
+ · · ·+ (−1)s

ps
=

(
1− 1

p

)s

− 1.

Substitute in (12) and get the claim.2

Corollary 4.9 With the same notation of Theorem 4.1, we have that:

∆s = O

(
2−s 1

log s

)
.
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Proof: For any fixed N > 0, we have that:

2s∆s ≤
∏
l<N
l6=2

(
1− f(l)

l − 1

)

where f(l) =
(
1−

(
1− 1

l

)s)
. Note that in such a range for l it results

f(l) ≥
(
1−

(
1− 1

N

)s)
∼ 1− e−

s
n ,

as N tends to infinity. Hence

2s∆s ≤ exp


∑
l<N
l6=2

log

(
1− f(N)

l − 1

)� exp−


∑
l<N
l6=2

(
1

l − 1

)
f(N)

�
exp−

{
(log logN)(1− e−

s
N )
}
.

Now take N = s/ log s and get

2s∆s �
1

log s
exp

(
log log(s/ log s)s−1

)
� 1

log s
.2

Theorem 4.10 Let P = {p1, . . . , ps} be a set of odd primes, suppose P̃ is the subset

of P of those primes congruent to 1(mod4). With the same notation of Theorem 4.2

and Proposition 4.6, it results

δP =
∞∑

a1=1

· · ·
∞∑

as=1

µ(a1) · · ·µ(as)

na1,...,as

=
1

2
∆s

∏
p∈P

1

1 + αp

+
∏
p∈P̃

1 + αp −
(
−1
p

)
αp

1 + αp

 ,
where αp = 1

p−1

((
1− 1

p

)s
− 1

)
.

Proof: To make the notation lighter, we will indicate the s-tuple (a1, . . . , as) by

a, the product a1 · · · as by a and µ(a1) · · ·µ(as) by µ(a). We also say that a is odd if

all its components are odd.
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Furthermore, for any subset I of [s]def
=
{1, . . . s}, we denote by PI the product of

elements in I and by Ĩ the subset of I of those i’s for which pi ≡ 1(mod4). Now call

[a]I the set of s-tuples of integers for which ai is even for all i ∈ I and ai is odd for

all i 6∈ I. It is clear that {[a]I}I∈[s] is a partition of Ns, therefore

δP =
∑
a

µ(a)

na

=
∑
I⊆[s]

∑
a∈[a]I

µ(a)

na

=
∑
I⊆[s]

(−1)|I|

2|I|
∑

a odd

2βIµ(a)

aφ([a])

where, if Q = (PI , [a]),

βI =

 ν(Q) if Q |PĨ

ν(Q)− 1 otherwise

the possibility Q = 1 belonging to the first case. We gather that

∑
a odd

2βµ(a)

aφ([a])
=
∑
J⊆I

∑
a odd

PJ=(PI ,[a])

2βµ(a)

aφ([a])
=
∑
J⊆Ĩ

2ν(PJ )
∑

a odd
PJ=(PI ,[a])

µ(a)

aφ([a])
+
∑
J 6⊆Ĩ
J⊆I

2ν(PJ )−1
∑

a odd
PJ=(PI ,[a])

µ(a)

aφ([a])

=
1

2


∑
J⊆Ĩ

2ν(PJ )
∑

a odd
PJ=(PI ,[a])

µ(a)

aφ([a])
+
∑
J⊆I

2ν(PJ )
∑

a odd
PJ=(PI ,[a])

µ(a)

aφ([a])

 .
Now note that for J ⊆ I, the condition PJ = (PI , [a]) is equivalent to PJ |[a] and

([a], PI−J) = 1. As we did during the second proof of Proposition 4.6, we can write

∑
a odd

PJ=(PI ,[a])

µ(a)

aφ([a])
=

∞∑
m=1

m odd,PJ |m,(m,PI−J )=1

µ2(m)

φ(m)

∑
a odd
[a]=m

µ(a)

a
, (13)

again the function inside is multiplicative, thus we can write that (13) is equal to

∞∑
m=1

m odd,PJ |m,(m,PI−J )=1

µ2(m)

φ(m)

∏
l|m

[(
1− 1

l

)s

− 1
]

=
1

φ(PJ)

∏
l|PJ

[(
1− 1

l

)s

− 1
] ∞∑

m=1
m odd, (PI ,m)=1

µ2(m)

φ(m)

∏
l|m

[(
1− 1

l

)s

− 1
]

=

2s∆s

∏
p|PJ

αp

∏
p|PI

1

1 + αp

.
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Putting everything together,

δP = 2s∆s

∑
I⊆[s]

(−1)|I|

2|I|+1

∑
J⊆I

2J
∏
p|PJ

αp

∏
p|PI

1

1 + αp

+
∑
J⊆Ĩ

2J
∏
p|PJ

αp

∏
p|PI

1

1 + αp

 .
Finally

∑
I⊆[s]

(−1)|I|

2|I|
∑
J⊆I

2J
∏
p|PJ

αp

∏
p|PI

1

1 + αp

=
∑
I⊆[s]

(−1)|I|

2|I|
∏
p|PI

1 + 2αp

1 + αp

=
1

2s

s∏
i=1

1

1 + αp1

and similarly

∑
I⊆[s]

(−1)|I|

2|I|
∑
J⊆Ĩ

2J
∏
p|PJ

αp

∏
p|PI

1

1 + αp

=
∑
I⊆[s]

(−1)|I|

2|I|
∏
p|PĨ

(1 + 2αp)
∏
p|PI

1

1 + αp

=

1

2s

s∏
i=1

p1≡1 mod 4

1

1 + αp

s∏
i=1

p1≡3 mod 4

(
2− 1

1 + αp

)
=

s∏
i=1

(
1−

(
−1

p

)
αp

1 + αp

)

therefore the claim.2

We conclude this Section with two Corollaries:

Corollary 4.11 Under tha same assumptions of Theorem 4.1, if every prime in P

is congruent to 1(mod4) then the density of primes for which all elements of P are

primitive roots, is ∏
l 6∈P

(1 + αl) .2

Corollary 4.12 For any set of odd primes P, δP is a well defined number.2

79



4.3 An Application to the Least Prime Primitive Root

In this last section we apply Theorem 4.1 to the classical problem of the study of

the function G(p) defined as the least prime primitive root (modp). More precisely,

by the use of the inclusion exclusion principle, we determine a uniform asymptotic

formula for the number of primes p ≤ x such that G(p) < r.

Theorem 4.13 With the same notation and hypothesis of Theorem 4.1, let qn be the

n-th odd prime,

Tr(x) = #{p ≤ x | ∃i ≤ r | qi is a prime primitive root (mod p)}, ,

and

δ̂r =
∑

P⊆{p1,...,pr}
(−1)|P|δP

(δ∅ = 1). We have that

Tr(x) = (1− δ̂r)
x

log x
+ O

(
x log log x

log2 x
Cr

2

)

for some absolute constant C2, uniformly respect to r.

Proof: Let Sr be the number of primes p up to x such that none of the first r

primes is a primitive root modp.

As a straightforward application of the inclusion exclusion principle, we get that

Sr =
∑

P⊆{p1,...,pr}
(−1)|P|NP(x)

where as in Theorem 4.1,

NP = # {p ≤ x |∀q ∈ P , q is a primitive root (modq)}

and N∅(x) = π(x).
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Applying Theorem 4.1, we get for a suitable positive constant c0,

Sr =
∑

P⊆{p1,...,pr}
(−1)|P|

(
δP

x

log x
+ O

(
x log log x

log2 x
c|P|o

))
=

δ̂r
x

log x
+ O

(
x log log x

log2 x
Cr

)
where we have taken C = 2c0, say. Finally, noticing that Tr = π(x)− Sr, we get the

claim.2

Corollary 4.14 Let f(x) be any monotone function of x that tends to infinity. Sup-

pose also that f(x) = o(log log x), then, if the generalized Riemann Hypothesis holds,

we have that G(p) ≤ f(x) for all primes with the exception of a set of primes of size

δ̂f(x)
x

log x
+ O

(
x log log x

log2 x
C

f(x)
2

)
.

Proof:It is enough to notice that by the assumption made on f , the error term

is o(π(x)).2

The problem now amounts to estimating the behaviour of the function δ̂r. Com-

puter calculations suggest that δ̂r = O
(

1
log r

)
, but we do not hazard in any precise

claim.

We are not even able to present a direct proof of the fact that

lim
r→∞

δ̂r = 0,

which, of course would imply that G(p) < f(p) for almost all p (f →∞), under the

Riemann Hypothesis.

The latter assertion has been proven by L. Murata in [38] and is equivalent, under

the Riemann Hypothesis, to δ̂r = o(1).
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Upper and Lower estimates for δ̂r would allow to determine (under the Riemann

Hypothesis) Ω±-type of estimates for the size of set of primes p for which G(p) < f(p).

We do feel that such a problem is not too difficult and we are planning to address

these questions in the near future.

Finally we would like to mention that in principle this approach could be extened

to the analogous problem for the function g(p), the least primitive root (modp). We

found out just recently that a general form of Theorem 4.1 has been found by K. R.

Matthews in [36]. The asymptotic formula found by Matthews is not uniform and

provides a weeker error term than Theorem 4.1, however the proof can be adjusted to

yield to an analogous result of Corollary 4.14 for g(p). The expression for the density

in this case would be much more complicated and even computer calculations seem

at the moment very hard to perform.
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APPENDIX A: ON DIVISORS OF p− 1

We recall that Lemma 1.4 states that for any given sequence of multiplicatively

independent integers, the number of primes for which the group generated by the

first r elements of the sequence is smaller than t is

O
(
t1+1/rr log r

)
,

uniformly with respect to r.

(Note that we are using the statement of Proposition 3.4 according to which the sum

of the logarithms of the first r elements of a sequence of multiplicatively independent

numbers in asymptotic to r log r). A consequence of this is that, if r is fixed, then

for almost all primes,

|Γr| ≥
p

r
r+1

log p
.

Indeed, if we take t = xr/(r+1)/ log x, in Lemma 1.4, we get that the number of primes

for which |Γr| < pr/(r+1)/ log p ≤ t is O(π(x)/ log1/r x), therefore for almost all primes

we have the desired inequality. It is natural to ask what would be an estimate of |Γr|

uniform respect to r? Using the same method of the fixed r case, we get that, if f(p)

is any divergent function, then

|Γr| ≥
(

p

f(p) log p r log r

) r
r+1

for almost all primes, uniformly respect to r. We need of course to ensure certain

growing conditions to be met.

The goal of this section is to improve the preceding results making use of the

following:
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Theorem A. 1 It exist, β and δ positive such that, for all h ∈ [log−β x, 1− log−β x],

and y = xh, one has uniformly on h:

#
{
p ≤ x | ∃u|p− 1, with u ∈ [y, y exp logδ x]

}
= o

(
x

log x

)

where the constant implied by the o symbol is absolute.

Before starting the proof of the Theorem we need some preliminary lemmas:

Lemma A. 2 (Erdös) Let Ω(n) be the number of prime divisors counted with mul-

tiplicity of a natural number n than the normal order of Ω(p − 1) is log log p; more

precisely, for every ε > 0, it exists η = η(ε) such that the number of p up to x for

which Ω(p− 1) > ε log log p is

o

(
x

log x

)
.

Proof: See [12].2

Lemma A. 3 (de Bruijn) Let Ψ(x, y) be the number of natural numbers up to x

whose greatest prime divisor is less than y, then

Ψ(x, y) � x exp

{
−c1

log x

log y

}
.

Proof: See [11].2

Lemma A. 4 (Hardy-Ramanujan) For any 0 < ε < 1 there exists τ > 0 such

that the number of integers n up to x such that Ω(n) < ε log log x is

O

(
x

logτ x

)
.

Proof: See [19].2
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Lemma A. 5 Murty (Weak Brun’s sieve) For any natural number m < x, de-

note by N(x,m) the number of solutions of

p− 1 = qm

where p and q are prime numbers ≤ x. Then for some absolute constant B > 0, we

have

N(x,m) ≤ Bx(log log x/m)2

φ(m) log2(x/m)
.

Proof: See [43].2

We are now ready to prove Theorem A.1:

Proof: Let S =
{
p ≤ x | ∃u|p− 1, with u ∈ [y, y exp logδ x]

}
. Without loss, we can

assume that p ≥ x
log2 x

, and for a suitable δ to be chosen later, p ∈ S means that

p− 1 = uv with u ∈
[
y, y exp logδ x

]
and v ∈

[
x

y
exp logδ x,

x

y

]
.

If Ω(u) > 2
3
log log x and Ω(v) > 2

3
log log x then Ω(p − 1) > 4

3
log log x, the number

of p ∈ S for which this holds is certainly less then

#
{
p ≤ x | Ω(p− 1) >

4

3
log log x

}

and for Lemma A.2, this is o(π(x)).

Remark: A stronger statement than Lemma A.2 can be found in [39]. Using

such a statement, our proof would yield to |S| � x/ logα x. For the purpose of the

application that will follow, our assumption is enough.

On the other hand, for a fixed u, the number of v’s for which the maximum prime

divisor is less then z is, by Lemma A.3,

O

(
x

u
exp

{
−c1

log(x/u)

log z

})
.
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Fix ε > 0, let β > 0 be a number to be chosen later and put log z = log1−β−εx.

We notice that u < y exp logδ x = xh exp logδ x and thus we get that the number we

are estimating is

� x

u
exp

{
−c1

log x− log y − logδ x

log1−β−ε x

}

� x

u
exp

{
−c2

(1− h) log x− logδ x

log1−β−ε x

}
� x

u
exp {−c3 logε x} .

(Note that this put the constraint 1− β > δ.)

Therefore, the number of p ∈ S for which this holds is

�
∑
u

′x

u
exp {−c3 logε x} � x exp {−c3 logε x}

∑
u

′ 1

u

� x exp {−c4 logε x}

(here the dash on the sum sign means that the sum is extended to all the values

of u for p ∈ S). A similar argument shows that h > log−β x implies that we can

also exclude the possibility that the maximum prime divisor of u is smaller than

exp
(
log1−β−ε x

)
. Therefore we can assume that

p − 1 = u1v1q, with u1 and v1 in the desired range, q > exp
(
log1−β−ε x

)
and Ω(u1)

or Ω(v1) is less than 2
3
log log x.

From Lemma A.5, we get that for fixed u1 and v1, the number of possible solutions

is

�
x(log log x

u1v1
)2

u1v1 log2(x/u1v1)
� x(log log x)2

u1v1 log2(x/u1v1)
.

As u1v1 ≤ x exp(− log1−β−ε x) and (log log x)2 � logε x, the number is

� x

u1v1 log2−2β−3ε x
.

As applications of Lemma A.4 we know that

#
{
n ≤ x | Ω(n) <

2

3
log log x

}
= O

(
x

logτ x

)
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for some τ > 0. Partial summation implies that, if

S(t) = #
{
n ≤ t | Ω(n) < 2

3
log log t

}
, then

∑
Ω(n)<(2/3) log log x

1

n
= S(x)/x−

∫ x

1

S(t)

t2
dt� log1−τ x,

therefore the number of p ∈ S with the required properties is

� x

log2−2β−3ε x

 ∑
Ω(v1)<(2/3) log log x

∑
u1

′ 1

u1v1

+
∑

Ω(u1)<(2/3) log log x

∑
v1

′ 1

u1v1



� x

log1+τ−2β−3ε x

(∑
u1

′ 1

u1

+
∑
v1

′ 1

v1

)
� x

log1−2β−3ε+τ−δ x
.

So that if we take δ + 2β < τ (for example β = δ = 1
4
τ) we obtain the desired result

and this completes the proof of the Theorem.2

Remark: The result just proven is a p − 1-version of a Theorem of Erdös (See

[13]). For a general statement on estimates of the number of n ≤ x with a divisor in

a given range see [49].

We are now ready to give a good estimate of |Γr| = |〈p1, . . . , pr〉|. More precisely:

Theorem A. 6 Let r be a fixed positive number, then it exists δ > 0 such that for

almost all primes,

|Γr| ≥ p
r

r+1 exp
(
logδ p

)
.

Proof: From Lemma 1.4, we know that

#{p ≤ x | |Γr| < t} = O
(
t1+ 1

r

)
,

if we take t = x
r

r+1/ log x, then

#

{
p ≤ x | |Γr| <

p
r

r+1

log p

}
� #

{
p ≤ x | |Γr| <

x
r

r+1

log x

}
� x

log x log1/r x
= o(π(x)).
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Hence |Γr| ≥ p
r

r+1

log p
for almost all p’s.

Now set

y =
x

r
r+1

log x
= x

r
r+1

− log log x
log x

and note that r
r+1

− log log x
log x

< 1 − 1
logβ x

for x large enough. Theorem A.2 gives that

there exists δ such that if

T =

{
p ≤ x | ∃l|p− 1, l ∈

[
x

r
r+1

log x
, x

r
r+1 exp

(
logδ x

)]}

then |T | = o(π(x)). Finally, since{
p ≤ x | |Γr| ∈

[
x

r
r+1

log x
, x

r
r+1 exp

(
logδ x

)]}
⊂ T ,

we get that for almost all primes p,

|Γr| ≥ x
r

r+1 exp(logδ x) ≥ p
r

r+1 exp(logδ p).2

The case in which r grows with p can be treated in an analogous fashion. The

only care is to consider the version of Lemma 1.4 which is uniform with respect to r.

In particular:

Theorem A. 7 There exist β and δ such that if r ≤ (logβ p)− 1, then for almost all

primes p,

|Γr| ≥ p
r

r+1 exp(logδ p).

Proof: The uniform version of Lemma 1.4 states that

#{p ≤ x | |Γr| < t} = O
(
t1+

1
r r log r

)
,

if we take t = x
r

r+1

r log2 x
, we get

#

{
p ≤ x | |Γr| < p

r
r+1

1

r log2 p

}
� x

log2 x log
2
r x
r−

1
r log r = o(π(x)).

88



Now set
x

r
r+1

r log2 x
= x

r
r+1

− 2 log log x
log x

− log r
log x = xh = y

and note that h = r
r+1

− 2 log log x
log x

− log r
log x

< 1− 1
logβ x

if r ≤ (logβ p)− 1 and x is large enough.

Therefore Theorem A.1 gives

#

{
p ≤ x | p

r
r+1

r log2 p
≤ |Γr| ≤ p

r
r+1 exp(logδ p)

}
= o(π(x))

which clearly implies the claim.2

Remark: If l|[F∗
p : |Γr|], then Theorem A.7 puts the constraint

l <
p− 1

Γr

< p−
1

r+1 exp(− logδ p)

for almost all primes p.

Unfortunately the position r = (log p)β − 1 and the constraint β + δ < 1 remarked

during the proof of Theorem A.1, implies that

l < exp
(
log1−β p− logδ p

)
≤ exp

(
1

2
log1−β p

)
.

Such a bound is too high to make possible the use of any of our techniques for the

range of r’s under consideration.
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APPENDIX B: ON THE EXPONENT OF THE

IDEAL CLASS GROUP OF Q(
√
−d)

Let d be a positive square-free integer and let m(d) denote the exponent of the

class group of Q(
√
−d), i.e. m(d) is the least positive integer m, such that xm = 1

for every x in the class group.

In 1972 D.W. Boyd and H. Kisilevsky (see [3]) proved that if the Extended Rie-

mann Hypothesis holds, then for any η > 0, and d sufficiently large,

m(d) >
log d

(2 + η) log log d
(1)

which of course implies that m(d) →∞ as d→∞.

The goal of this note is to establish unconditional inequalities of the type (1) for

density-one sets of values of d. Before doing this, let us review the method used by

Boyd and Kisilevsky to prove (1).

First they noticed that if α is an integer of Q(
√
−d) which is not in Z, then

N(α) ≥ d/4 and that if p is a rational prime that splits in Q(
√
−d) and $ is a prime

ideal above p, then $m(d) is a principal ideal (α) thus

N($)m(d) = pm(d) = N(α)m(d) ≥ (d/4)m(d).

In conclusion, (
−d
p

)
= 1 =⇒ p ≥ (d/4)1/m(d). (2)

Then they proved that

If the Extended Riemann Hypothesis holds then, for any integer d, there exists a

prime less then log2+η d for which −d is a quadratic residue and this gives (1).
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Now, let us take p = 3 and ask how often is a square-free d a quadratic residue

(mod3)? This happens when d ≡ 1 mod 3, and the density of such d’s is certainly

positive

For a positive proportion of square-free integers d,

m(d) ≥ log d/4

log 3
.

In general we will be able to prove that

Theorem B. 1 For any d < x there exists a prime < log d for which d is a quadratic

residue with at the most O
(
x1−A(log log x)−1

)
exceptions.

This is an consequence of Theorem B.3 below and by (2) implies

Corollary B. 2 For all discriminant d < x, we have that

m(d) >
log d/4

log log d

with at most O
(
x1−A(log log x)−1

)
exceptions.

For an integer n, let M(n) be the least prime for which n is quadratic residue,

i.e.

M(n) = min

{
p

∣∣∣∣∣ p is prime and

(
n

p

)
= 1

}
.

Let K(x, s) (respectively K1(x, s)) be the set of numbers (resp. square-free numbers)

up to x such that M(n) > s. We have that

Theorem B. 3 Let k(x, s) = |K(x, s)| and k1(x, s) = |K1(x, s)|, then

a) k(x, s) =
x

2π(s)

∏
p≤s

(
1 +

1

p
− 2

p2

)
+ O

(
eθ(s) log3 s

2π(s)

)
;

b) k1(x, s) =
6

π2

x

2π(s)

∏
p≤s

(
1 +

1

p+ 1

)
+ O

(
x1/2eθ(s)

2π(s) log s

)
.
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uniformly with respect to s (where as usual π(s) and θ(s) are respectively the number

of primes up to s and the sum of the logarithms of the primes up to s).

Proof: Let us define P to be the product of all primes up to s.

b) In order for a square-free number n ≤ x to be in K1(x, s), one must have(
n
p

)
= 0 or −1 for all primes p up to s. For any divisor Q of P , let AQ be the set of

n ∈ K1(x, s) such that(
n

p

)
= 0 for any p |Q and

(
n

p

)
= −1 for any p

∣∣∣∣∣PQ,
Clearly

K1(x, s) =
◦⋃

Q|P
AQ (3)

where the union is disjoint. Note also that

|AQ| = #

{
n ≤ x

Q

∣∣∣∣∣ (n,Q) = 1, n square-free,

(
n

p

)
= −

(
Q

p

)
for any p

∣∣∣∣∣PQ
}

(4)

=
∑ ∗#

{
n ≤ x

Q
| (n,Q) = 1, n square-free, n ≡ gi(modqi), i = 1, . . . , t

}

where we have put P
Q

= q1 · · · qt and
∑ ∗ means that the sum is extended to all the

t-tuples (g1, . . . , gt), gi being a congruence class modqi such that
(

gi

qi

)
= −

(
Q
qi

)
.

By the Chinese remainder Theorem, for each t-tuple (g1, . . . , gt), there exists a

unique congruence class M = M(g1, . . . , gt)(mod P
Q

) such that

n ≡ gi(modqi),∀i = 1, . . . , t ⇐⇒ n ≡M

(
mod

P

Q

)

therefore (4) equals

∑ ∗#

{
n ≤ x

Q

∣∣∣∣∣ (n,Q) = 1, n square-free, n ≡M

(
mod

P

Q

)}
. (5)

Now we need the following two Lemmas:
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Lemma B. 4 Let R1, R2, R3 be positive integers with (R1, R3) = (R2, R3) = 1 and

define

BR1,R2,R3(y) = # {n ≤ y | (n,R1) = 1, n ≡ R2(modR3)}

then, uniformly with respect to R1, R2, R3 < y, we have

BR1,R2,R3(y) = y
ϕ(R1)

R1R3

+ O (ϑ(R1)) ,

where ϑ(R1) is the number of square-free divisors of R1.

Lemma B. 5 Let Q1, Q2, Q3 be positive integers with (Q1, Q2) = (Q2, Q3) = 1 and

define

CQ1,Q2,Q3(z) = # {n ≤ z | n square-free, (n,Q1) = 1, n ≡ Q3(modQ2)} ,

then, uniformly respect to Q1, Q2, Q3 < z, we have

CQ1,Q2,Q3(z) =
6

π2
z
ϕ(Q1)

Q1Q2

∏
p|Q1Q2

(
1− 1

p2

)−1

+ O
(
z1/2ϑ(Q1)

)
.

Remark: Lemma B.4 and B.5 are due respectively Cohen (See [9]) and to Landau

(See p. 633-636 of [30]). Their version is slightly less general though the proof is

similar. One might think that a stronger version of Lemma B.4, say valid on a range

of R1 of the same order of the range given by the Brun’s Sieve, would yield a better

error term in Theorem B.3. On the contrary, it will become clear how this is not

influential to the main goal of our discussion.

Proof of Lemma B.4: We have that

BR1,R2,R3(y) =
∑
d|R1

µ(d)# {n ≤ y | d|n, and n ≡ R2(modR3)}

=
∑
d|R1

µ(d)#
{
n ≤ y

d
| n ≡ R2d

∗(modR3)
}

=
∑
d|R1

µ(d)
[
y

dR3

]
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where d∗ is the unique congruence class mod R3 defined by dd∗ ≡ 1 mod R3 (Such a

class exists since we have assumed that (R1, R3) = and d|R3). Finally

BR1,R2,R3(y) =
∑
d|R1

µ(d)
(

y

dR3

+ O (1)
)

= y
ϕ(R1)

R1R3

+ O (ϑ(R1)) .2

Proof of Lemma B.5: This is based on the identity

µ2(n) =
∑
d2|n

µ(d),

We have that

CQ1,Q2,Q3(z) =
∑
n≤z

(n,Q1)=1
n≡Q3( mod Q2)

µ2(n) =
∑

d2δ≤z
(d,Q1)=(δ,Q1)=1

d2δ≡Q3( mod Q2)

µ(d)

=
∑

d≤z1/2

(d,Q1)=(d,Q2)=1

µ(d)
∑

δ≤ z
d2

(δ,Q1)=1

δ≡Q3d∗2( mod Q2)

1 =

=
∑

d≤z1/2

(d,Q1)=(d,Q2)=1

µ(d)BQ1,Q3d∗2,Q2
(z/d2) (6)

where the condition (Q2, Q3) = 1 implies (d,Q2) = 1 and d∗ has the same meaning

as in the proof of Lemma B.4. Now apply Lemma B.4 and get that (6) equals

∑
d≤z1/2

(d,Q1Q2)=1

µ(d)

(
z

d2

ϕ(Q1)

Q1Q2

+ O(ϑ(Q1))

)
=

=
zϕ(Q1)

Q1Q2

∞∑
d=1

(d,Q1Q2)=1

µ(d)

d2
+ O

 ∑
d>z1/2

zϕ(Q1)

d2Q1Q2

+ O
(
z1/2ϑ(Q1)

)

and since clearly ϕ(Q1)
Q1

< ϑ(Q1) and

∞∑
d=1

(d,Q1Q2)=1

µ(d)

d2
=

6

π2

∏
p|Q1Q2

(
1− 1

p2

)−1

,

94



the claim is deduced.2

Now we can apply Lemma B.5 to (4) with Q1 = Q,Q2 = P/Q,Q3 = M and

z = x/Q. Note that the number of summands in (5) is ϕ(P
Q

)/ϑ(P
Q

), therefore

|AQ| =
ϕ(P

Q
)

ϑ(P
Q

)

 6

π2

x

Q

ϕ(Q)

P

∏
p|P

(
1− 1

p2

)−1

+ O

( x
Q

)1/2

ϑ(Q)

 (7)

=
6

π2

x

2π(s)

∏
p|P

(
1 +

1

p

)−1
ϑ(Q)

Q
+ O

(
x1/2

2π(s)

ϑ2(Q)

Q1/2ϕ(Q)

eθ(s)

log s

)
,

where we just noticed that ϑ(P ) = 2π(s) and ϕ(P ) � eθ(s)

log s
. Now use (3) and get

k1(x, s) =
∑
Q|P

|AQ|

=
6

π2

x

2π(s)

∏
p|P

(
1 +

1

p

)−1 ∑
Q|P

ϑ(Q)

Q
+ O

 x1/2

2π(s)

eθ(s)

log s

∑
Q|P

ϑ2(Q)

Q1/2ϕ(Q)

 (8)

=
6

π2

x

2π(s)

∏
p|P

(
1 +

1

p

)−1 ∏
p|P

(
1 +

2

p

)
+ O

(
x1/2

2π(s)

eθ(s)

log s

)

The last identity follows since
∑

Q|P
ϑ2(Q)

Q1/2ϕ(Q)
converges as s→∞. This concludes the

proof of b).2

a) This is simpler than b). For any Q|P , define AQ to be the set of n ∈ K(x, s)

such that (
n

p

)
= 0 for any p |Q and

(
n

p

)
= −1 for any p

∣∣∣∣∣PQ.
Again

k(x, s) =
∑
Q|P

|AQ| (9)

and now

|AQ| =
∗∑

#

{
n ≤ x

Q
| n ≡ gi(modqi), i = 1, . . . , t

}

=
∑ ∗#

{
n ≤ x

Q

∣∣∣∣∣ n ≡M(mod
P

Q
)

}
.
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where the gi, i = 1, . . . , t and M = M(g1, . . . , gt) are defined as above. Now apply

Lemma B.4 with R1 = Q,R2 = M,R3 = P/Q and y = x
Q

and get

|AQ| =
ϕ(P

Q
)

ϑ(P
Q

)

{
x

Q

ϕ(Q)

P
+ O(ϑ(Q))

}
= 2−π(s)

(
x
ϕ(P )

P

ϑ(Q)

Q
+ O

(
eθ(s)

log s

ϑ2(Q)

ϕ(Q)

))
.

Finally by (9),

k(x, s) = 2−π(s)

x∏
p≤s

(
1− 1

p

)(
1 +

2

p

)
+ O

 eθ(s)

log s

∏
p≤s

(
1 +

4

p− 1

)

= 2−π(s)

x∏
p≤s

(
1 +

1

p
− 2

p2

)
+ O

(
eθ(s) log3 s

)
Which is the claim of a).2

Proof of Theorem B.1: We want to estimate

# {d ≤ x | M(d) > log d} (10)

Note that, since the contribution for d < x1/2 is O(x1/2), we have that (10) equals

#
{
d : x1/2 ≤ d ≤ x | M(d) > log d

}
+ O(x1/2)

≤ #
{
d ≤ x | M(d) >

1

2
log x

}
+ O(x1/2). (11)

Now apply Theorem 3 a), with s = 1
2
log x and get that (11) is � then

2−π( 1
2

log x)
(
x log log x+ eθ( 1

2
log x))(log log x)3

)
� x exp(−A log x/ log log x)

where we took A < 1
2
log 2, say, and this proves the claim.2

Remark: Note that although in Theorem B.1 we consider discriminants of imag-

inary quadratic fields which are by definition squarefree numbers, statement b) of

Theorem B.3, does not give anything more than statement a). This is due to the fact

that square-free numbers have non-zero density.
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Theorem B.3 b) can be improved using a version of Lemma B.5 in which the error

term depends on Q2. This has been done by K. Prachar in [45] for the case Q1 = 1,

and his proof can adapted to proof the following:

Lemma B. 6 With the same notations of Lemma B.5 we have that, uniformly re-

spect to the parameters,

CQ1,Q2,Q3(z) =
6

π2
z
ϕ(Q1)

Q1Q2

∏
p|Q1Q2

(
1− 1

p2

)−1

+ O
(
(z1/2Q

−1/4+ε
2 +Q

1/2+ε
2 )ϑ(Q1)

)
,

for any ε > 0.2

Corollary B. 7 With the same notation as above, we have that

k1(x, s) =
6

π2

x

2π(s)

∏
p≤s

(
1 +

1

p+ 1

)
+ O

((
x1/2

eθ(s)(1/4−ε)
+ eθ(s)(1/2+ε)

)
eθ(s)

2π(s) log s

)
.

Proof: It is similar to the proof of Theorem B.1 b), but in this case we have

|AQ| =
6

π2

x

2π(s)

∏
p|P

(
1 +

1

p

)−1
ϑ(Q)

Q
+

O

((
x1/2

Q1/2
P−1/4+εQ1/4−ε +

P 1/2+ε

Q1/2+ε

)
ϑ2(Q)

2π(s)ϕ(Q)

eθ(s)

log s

)
and therefore

k1(x, s) =
∑
Q|P

|AQ|

=
6

π2

x

2π(s)

∏
p≤s

(
1 +

1

p+ 1

)
+

+O

 x1/2

P−1/4+ε

∑
Q|P

ϑ2(Q)

Q1/2−1/4+εϕ(Q)
+ P 1/2+ε

∑
Q|P

ϑ2(Q)

Q1/2+εϕ(Q)

 eθ(s)

2π(s) log s


=

6

π2

x

2π(s)

∏
p≤s

(
1 +

1

p+ 1

)
+ O

((
x1/2

eθ(s)(1/4−ε)
+ eθ(s)(1/2+ε)

)
eθ(s)

2π(s) log s

)
.

97



The last identity because both the series
∑

Q|P
ϑ2(Q)

Q1/2+εϕ(Q)
and

∑
Q|P

ϑ2(Q)

Q1/2−1/4+εϕ(Q)

converge as s→∞.2

Remark A general form of Theorem B.1 can also be proven. It is a uniform

asymptotic formula for km−1(x, s), the number of m-free numbers d up to x for which

M(d) < s. The m-free version of Lemma B.6 is also in [45]. Finally, the results of

Prachar have been improved by Hooley in [24] and the use of this last one would give

a further improvement of Theorem B.3.
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APPENDIX C: OPEN QUESTIONS AND

FUTURE RESEARCH

Variants of the Bombieri-Vinogradov Theorem

A form of the famous Bombieri-Vinogradov Theorem for primes in arithmetic

progression states that

For any real number A > 0, it exists a B > 0 such that

∑
m≤ x1/2

logA x

∣∣∣∣∣ψ(x,m, 1)− 1

φ(m)
x

∣∣∣∣∣� x

logB x

where ψ(x,m, 1) =
∑

p≤x
p≡1 mod m

log p.

This important result provides us with an estimate on average of the error term for

the prime number Theorem for primes in arithmetic progressions which is as strong

as the one that could be deduced useing the Extended Riemann Hypothesis for the

Dirichlet L-functions of all the characters modm.

Such a Theorem can be interpreted as an estimate on average of the error term of

the Chebotarev Density Theorem for cyclotomic fields. More precisely, let us consider

the following statement:

For every integer m, let us suppose Km is a given finite Galois extension of Q

and let n(m) = [Km : Q]. Further, set

ψ(x,Km) =
∑
p≤x

p splits completely in Km

log p.

We have that ∑
m≤ x1/2

logA x

∣∣∣∣∣ψ(x,Km)− 1

n(m)
x

∣∣∣∣∣� x

logB x
(1)

Let us note the following facts:
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• If the Generalized Riemann Hypothesis holds for all the (non-abelian) Artin

L-functions of Km then the statement is true.

• If, for any m, Km is the cyclotomic field Q(ζm), then the statement is a conse-

quence of the famous Bombieri-Vinogradov Theorem.

• If, for any m, Km is the Galois Extension Q(ζm, a
1/m) and the statement is

true, then the Artin Conjecture for primitive roots is true for the number a.

The last fact has been noticed by R. Murty in his thesis and he gave a result

which is in the spirit of this approach.

We can refer to (1) as the general non-abelian Bombieri-Vinogradov Theorem and

ask for which families Km it holds

A proof of the general statements is certainly a very difficult problem, and to our

knowledge, the Theorem of R. Murty and K. Murty in [41] is the only significant

contribution toward this direction and it states that:

If πK(x, q) is the number of primes p up to x such that p splits completely in a

given fixed Galois extension K of Q and p ≡ 1(modq) (i.e. p splits completely in

K(ζq)), then for any A > 0, there exists B = B(A) such that

∑
q≤xα(log x)−B

∣∣∣∣∣πK(x, q)− 1

[K(ζq) : Q]
li(x)

∣∣∣∣∣� x

logA x

where α = min
(

2

[K:Q]
, 1

2

)
and the sum is extended to all the values of q for which

K ∩Q(ζq) = Q.

In general, one could try to settle for something less and restrict the sum in (1) to

m ≤ logC x for some fixed positive integer C. We would get a weaker statement but

with still quite a few interesting arithmetical consequences. Fox example, if we prove
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the statement with C = 2 (C = 1 is actually Theorem 2.7), then it can be proven

the following substantial improovement of Theorem 3.1:

For amost all primes p, the log p
log log p

primes generate F∗
p.

Such a problem admits an analogous situation where we substitute the Artin

L-function with the L-series attached to modular forms.

The Lang-Trotter Conjecture for Abelian Varieties

In 1977 J.-P. Serre (see [47]) has proven the following result:

Let E be an elliptic curve defined over Q and let Kn = Q(E[n]) where by E[n] we

denote the set of n-points of E (i.e. Q ∈ E such that [n]Q = 0). Let us put

δ =
∞∑

n=1

µ(n)

[Kn : Q]
,

where µ(n) denotes the µ function of Möbius. If the Generalized Riemann Hypothesis

holds for Kn, then

#{p ≤ x | Ē(F∗
p) is cyclic} ∼ δ

x

log x

This result has been reconsidered by R. Murty and R. Gupta. In 1990 (see [16])

without any unproved hypothesis they have characterized elliptic curves for which

E(F∗
p) is cyclic for infinitely many values of p.

Gupta and Murty considered as well a similar problem to Serre’s Theorem, namely

The Lang-Trotter Conjecture (see [34]):

Let E be an elliptic curve defined over Q and let P be a rational point of E with

infinite order. We denote by N(x, P ) the number of primes p up to x such that

〈P 〉 = E(F∗
p), then

N(x, P ) ∼ δE(P )
x

log x
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where δE(P ) can be expressed in terms of the decomposition of primes in the exten-

sions

Q(E[n], n−1P ) over Q.

Both this result and the statement of Serre’s Theorem are analogous to the Artin’s

Conjecture for primitive roots.

Many of these conjectures admit a very natural generalization to the case of

abelian varieties. The problem can be stated as follows:

Let A be an abelian variety defined over Q and let P ∈ A be a rational point

(with infinite order). For all (but finitely many) prime numbers p, it makes sense to

consider the reduction of A modulo p that we can denote by A(F∗
p).

A(F∗
p) is a finite group and we can indicate with P̄ ∈ A(F∗

p) the reduction of P

modulo p. Various questions can be formulated, for example:

• Under which conditions A(F∗
p) is cyclic (or more particularly 〈P̄ 〉 = A(F∗

p)) for

infinitely many p?

• What is the distribution of the prime numbers with this property ?

• Is it possible to write a formula for the density of such sets of primes?

In the case dimA = 1, (i.e. A is an elliptic curve), then the Lang-Trotter conjec-

ture toghether with the Theorem of Serre and the contribution of Gupta and Murty,

provide with a precise indication on what should be the answer to these questions.

In the case dimA > 1, there are not, at the moment in the literature conjectures

that give any answer to this question, nevertheless it is natural to suspect that many

of the arguments that worked in the case of elliptic curves, extend to the general case

and the first problem is as usual to express, for any prime number l, the condition

l
∣∣∣[A[F∗

p] : 〈P 〉
]
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in terms of particular decompositions of p in algebraic extensions K(l, P ).

Similarly as in the case of elliptic curves in which it has been necessary to dis-

tinguish between Complex Multiplication curves and curves without Complex Mul-

tiplication (see [17]), it is natural to expect that the properties under consideration

depend heavily on the structure of the ring EndQA.
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