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ON THE EXPONENT OF THE IDEAL CLASS GROUP OF Q(v-d)

FRANCESCO PAPPALARDI

(Communicated by Dennis A. Hejhal)

ABSTRACT. Let m(d) be the exponent of the ideal class group of Q(v—-d),
we establish the bound m(d) > ﬁl‘o% for almost all the discriminants d by

using uniform asymptotic formulas on the number of n < x for which there
exists a prime less than s for which 7 is a quadratic residue.

1. INTRODUCTION

Let d be a positive square-free integer and let m(d) denote the exponent
of the class group of Q(v/—d), i.e., m(d) is the least positive integer m , such
that x™ =1 for every x in the class group.

In 1972 D.W. Boyd and H. Kisilevsky (see [2]) proved that if the Extended
Riemann Hypothesis holds, then for any n > 0 and 4 sufficiently large,

logd
(1.1) m(d) > (2+ n)loglogd
which of course implies that m(d) — co as d — oo.

The goal of this note is to establish unconditional inequalities of the type
(1.1) for density-one sets of values of d. Before doing this, let us review the
method used by Boyd and Kisilevsky to prove (1.1).

First they noticed that if a is an integer of Q(v/—d) which is notin Z, then
N(a) > d/4 and that if p is a rational prime that splits in Q(v—d) and @
is a prime ideal above p, then w™@ is a principal ideal (a); thus,

N(w )™ = pmd) = N(a)™D > (d/4)m@.
In conclusion,

(1.2) (—_;) =1 = p>(d/4)lm@,

Then they proved that
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664 FRANCESCO PAPPALARDI

If the Extended Riemann Hypothesis holds, then, for any integer d, there
exists a prime less than log**"d for which —d is a quadratic residue and this
gives (1.1).

Now, let us take p = 3 and ask how often is a square-free d a quadratic
residue (mod 3)? This happens when d = 1 mod 3, and the density of such
d’s is certainly positive

For a positive proportion of square-free integers d,
logd/4

> .
m(d) 2 log3
In general we will be able to prove that

Theorem 1.1. For any d < x there exists a prime < logd for which —d is a
quadratic residue with at the most O (xl"‘(‘°81°3")'1) exceptions.

This is a consequence of Theorem 2.1 below and by (1.2) implies
Theorem 1.2, For all discriminants d < x, we have that

logd/4
m(d) > loglogd

with at most O (x‘“"(1°8‘°3")_') exceptions.

2. THE RESULT

Let p(p) be any function of p with values in {+1}. For any integer n,
define

M)(n) = min {p ‘ p is prime and (g) = p(p) }
For example .#)(n) is the least prime for which »n is quadratic residue and
Let K;(x,s) (respectively, K>(x, s)) be the set of numbers (respectively,
square-free numbers) n up to x such that .#,(n) > s. We have that

Theorem 2.1. Let ki(x, s) = |Ki(x, s)| and ky(x, s) = |Ka(x, s)|. Then

€% log? s
@) ki(x,s) =55 H( )+0 (—zm) ) ;

p<s
x1/20(5)
(b) ka(x,s) 22n(s)H(1+ +1) 0(2n<s)1ogs>

uniformly with respect to s (where as usual n(s) and 0(s) are respectively the
number of primes up to s and the sum of the logarithms of the primes up to s).

Proof. Let us define P to be the product of all primes up to s. We will start
by proving (b).
(b) In order for a square-free number n < x to be in K3(x, §), one must

have (g) =0 or —p(p) for all primes p up to s. For any divisor Q of P,
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let Ay be the set of n € K»(x, s) such that

n n P
— ) =0 for an and —) =- for any p | .
(p) yp|Q <p p(p) YP |5
Clearly

(2.1) Ky(x,s)=|s) Ag
QlP

where the union is disjoint. Note also that
(2.2)

x
4ol =#{n <5
=) *#{ <X | (n, Q) =1, n square-free,

(n, Q) = 1, n square-free, (12)) = (%) for any p Ig }

tQ

n=g(modg),i=1,... ,t}

where we have put -3 =¢q,---¢, and Y * means that the sum is extended to
all the t-tuples (g1, ... , &), & being a congruence class mod g; such that

(&) =-p(a) (2)
By the Chinese Remainder Theorem, for each t-tuple (g1, ... , &), there
exists a unique congruence class M = M (g, ... , &) (modg) such that

n=g; (mod g;),Vi=1,...,t << nsM(modg).

Therefore (2.2) equals

x x
23) > #{nsQ

Now we need the following two lemmas:

(n, Q) =1, n square-free, n = M (modg) }

Lemma 2.2. Let Ry, Ry, R3 be positive integers with (R, R3) = (Ry, R3) =1,
and define

Br, R, R (¥) =#{n<y | (n,R))=1, n=R; (modRy)}.

Then, uniformly with respect to Ry, Ry, R3 <y, we have

B0, 0(0) = YR + O(O(R))

where O(R,) is the number of square-free divisors of R; .

Lemma 2.3. Let Q;, Q;, Q3 be positive integers with (Q, Q2) = (@2, @3) =
1, and define

Co,.0,,0,(2) =#{n < z | n square-free, (n, Q1)=1, n=Q3 (modQ,)}.
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Then, uniformly with respect to Q,, Q;, Q3 < z, we have

Co,0,,0:(2) = % IQQIZ) |£IQ< ;)7)~1+0(zl/219(Q1)).
14

Lemmas 2.2 and 2.3 are due, respectively, to Cohen (see [3]) and to Landau
(see pp. 633-636 of [6]). Their version is slightly less general, though the proof
is similar. One might think that a stronger version of Lemma 2.2, say valid on
a range of R; of the same order of the range given by the Brun’s Sieve, would
yield a better error term in Theorem 2.1. On the contrary, it will become clear
how this is not influential to the main goal of our discussion.

Proof of Lemma 2.2. We have that

Br, R, (V) = Y_ u(d)#{n <y | d|n, and n = R, (modR3)}

d|R,
=Zu(d)#{ng§ | n=Ryd* (modR3} 3 ud [dRJ
d|R, d|R,

where d* is the unique congruence class mod R; defined by dd* = 1 mod R;
(such a class exists since we have assumed that (R;, R3) = and d|R3). Finally

Br, g, &, (¥) = Y u(d) ( +0(1)) y“l’e(ljg) +O(®(Ry). O
dIR,

Proof of Lemma 2.3. This is based on the identity

©i(n) =" u(d)

d?|n

We have that

Coi,0,,0,(2) = Z /12(”) = E u(d)

anz d25<z
(n,Q))=1 d,01)=(6,0))=!
n=Q3 (modQ,) d25=Q; (modQy)
= u(d) > 1
d<z1/? Jsﬁ
d,Q)=(d,0y)=1 6,0p)=1

6=Q3d*2 (modQy)

= Z 'u(d)BQl,Qsd‘z,Qz(z/dz)
d<z\?
(d,Q1)=(d,Qy)=1

where the condition (Q,, @3) = 1 implies (d, Q;) =1 and d* has the same
meaning as in the proof of Lemma 2.2. Now apply Lemma 2.2 and get that
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(2.4) equals

> wd) (5% ovion)
d<z1/?

@,010y)=1

the claim is deduced. O

Now we can apply Lemma 2.3 to (2.2) with 0, =Q, 0, =P/Q,Q3=M
and z = x/Q. Note that the number of summands in (2.3) is ¢(§)/9(5);

therefore,
?(Q) 1\~ x\'?
“Dr1(-5) +o((3) v

x
Q p
6 x 1\~ 9(Q) X112 92(Q) &%)
= (”E) * ( <”Q‘/2¢(Q)logS)’

where we just noticed that 9(P) = 2%¢) and ¢(P) < 1:;; Now use (2.1) and

get

(2.5)
ka(x, 5) =D gl
ol
6 x 80) , o (2262 5~ _8%0)
~ 22270 ;IP ( ) % (2"(5) logs £ Z Q”%(Q))
6 x ! 2 x1/2 eG(s)
=;t_2"(s)££<1+—> g<1+5)+0(m@).

The last identity follows since ZQ| P Qﬁ?;% converges as s — oo. This con-
cludes the proof of (b).

(a) This is simpler than (b). For any Q|P, define 4y to be the set of
n € Ky(x, s) such that

n n P
"\ _o+ d (_)=_ for any p | 2.
<p) orany p|Q an 7 p(p) for any p )
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Again

(2.6) 1(x,8) =Y 4ol ,
QI{>

and now

* x .
IAQ|=Z#{"5§ | n=g; (modg;),i=1,... ,t}

n=M (modg)}

where the g;,i=1,...,t and M = M(g,..., &) are defined as above.
Now apply Lemma 2.2 with Ry, =Q, R, =M, R;=P/Q,and y = é and get

?(3) 2Q) | s (L 9(P) B(Q) e?®) 92(Q)
Mol =5 >{ 22 owie) | =27 (x5 +0 (s )

Finally by (2.6),

wsn=3n (11 -4) (+3) o (50 (+520)

p<s

1 2
=2-7) [ x (1+———)+0 e%® 1og®s
(I (1+5-3) vo(ewmes)

which is the claim of (a). O

Note that if we let ko(x,s) be the number of primes / < x for which
#),(l) > s, then by the same method of Theorem 2.1 and by the Bombieri-
Vmogradov Theorem (see [1]) one can prove that uniformly for s < logx,

ko(x, ) ~ 2]
Proof of Theorem 1.1. We want to estimate
(2.7) #{d <x|#(d)>logd}

where we write #(d) for .#,(d) with p(p) = (_Tl) Note that, since the

contribution for d < x!/2 is O(x!/?), we have that (2.7) equals

#{d x2<d<x|#d) > logd} + O(x'?)
(2.8)
<# {d <x|Ad)> l1ogx} +O(x'12).

Now apply Theorem 2.1(a) with s = %logx and get that (2.8) is < ; then
2-(}logx) (x loglog x + et 1°“"))(loglogx)3)
< xexp(—Alogx/loglogx)

where we took A4 < %logZ , say, and this proves the claim. 0O
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3. CONCLUSIONS

Although in Theorem 1.1 we consider discriminants of imaginary quadratic
fields which are by definition squarefree numbers, statement (b) of Theorem 2.1
does not give anything more than statement (a). This is due to the fact that the
set of square-free numbers has nonzero density.

Theorem 2.1(b) can be improved using a version of Lemma 2.3 in which the
error term depends on Q, . The last has been obtained by K. Prachar in [7] for
the case Q; = 1, and his proof can adapted to show the following:

Lemma 3.1. With the same notation of Lemma 2.3 we have that, uniformly with
respect to the parameters,

6 N -
Coe.0:(2) = Q1Q2 plyQ ( )

1/ b
+0(;1,4( () + Q(?,i)) 8(0 )Q”z)-

Corollary 3.2. With the same notation as above, we have that
ka(x, 8) = 7:22“)1—[( p+1)

X /2 8(s)/2 e0(s)
+0 ((2n<s>e0<s>/4 e ) fogs )

Proof. 1t is similar to the proof of Theorem 1.1(b), but in this case we have

6 C1\7'e
ol =711 (1+5) 2

p|P
ﬁgﬁ 8(P)Q'2\ | PPO(P)\ 8(Q) 8O
+0 ((Q 2 pY (ﬂ(Q) + ﬂ(Q)Pl/Z) + QI/Zﬂ(Q)) 21r(s)¢(Q) logs)

and therefore

6 x 1
ka(x,s) =) |dg| = % p(1+m)

Q|P <s
x!/2 9%(Q) 19(1’ Q'l/4
+0 ((p1/4 (Z o12- 1/4¢(Q) Pin Z 9(Q) )

Q|p

4(s)
1/2 e
+ PR Q‘/2¢(Q)) 2m(s) logS>

Q|p

6 x 1 x!/2 ) e?®)
= — - Ihad (8)/29m(s) y _— ______
72 2(s) (1 + P+ 1) +0 ((ee(sm M 2 ) 27(s) logs) )
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. . . 1 9
The last identity, because both the series ZQI P G760 and EQI P Q7T 5G)

converge as § — oo and ‘19,1’,’ ZQlP%, is o(1). O

A general form of Theorem 1.1 can also be proved.

Theorem 3.3. Let k,,(x,s) be the number of m-free numbers n up to x for
which #,(n) > s. Then, uniformly with respect to s and m < /s,

km(x,S)=?(:n—)§nﬁ(s‘)pl;[s(l _me)_l (1 +1_17_1%)

xl/m 0 e0(s)
- )mpgm(s) \ __~ "~
+0 ({ i T } 770 logs) :

where ((s) is the Riemann zeta function.

The proof is similar to the one of Theorem 1.1 and uses an m-free version
of Lemma 3.1 that is also in [7]. The results of Prachar have been improved by
Hooley in [4], making possible another small improvement of Theorem 2.1.

It may be asked whether the approach of Boyd and Kisilevsky can be extended
to other classes of fields. If K is Galois over Q with discriminant dg , then
the condition (_Td) =1 in Q(v/—d) is analogous to the condition that p splits
completely in K/Q. It has been proven by Lagarias, Montgomery, and Odlyzko
in [5] that, assuming the Generalized Riemann Hypothesis, the least such p is -
< (logdg)?. The second ingredient of Boyd and Kisilevsky’s approach is the
inequality

N(a) > dx
for all o € Ox\Z. In any field with infinitely many units (i.e., not quadratic
imaginary), such an inequality is violated infinitely often. Therefore, no direct
extension of this method seems immediate.

Finally we point out that the large sieve implies that

X + 52
s/log’s’

ki(x,s) <

Therefore, if s = s(x) is any function tending to infinity as x — oo, such that
s(x) = O(v/x) , then for all but O(xlog®s/s) discriminants d < x, we have

logd
(3.1) e(d) > Togs(x)’

The bound in (3.1) is worse than the one in Theorem 1.2 but holds for a
larger range of s.
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