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Density Estimates Related to
Gauß Periods

Joachim von zur Gathen and Francesco Pappalardi

Abstract. Given two integers q and k, for any prime r not dividing q with
r ≡ 1 mod k, we denote by indr(q) the index of q mod r. In [2] the question
was raised of calculating the density of the primes r for which indr(q) and
(r− 1)/k are coprime; this is the condition that the Gauß period in Fq(r−1)/k

defined by these data be normal over Fq. We assume the Generalized Riemann
Hypothesis and calculate a formula for this density for all q and k. We prove
unconditionally that our formula is an upper bound for the density and then
express it as an Euler product. Finally we apply the results to characterize
the existence of a special type of Gauß periods.

1. Introduction

Let q and k be integers with |q| > 1 and k > 0. For any prime r not dividing q,
we define the index of q mod r as indr(q) = [F∗r : 〈q mod r〉], so that indr(q) =
(r − 1)/ ordr(q). If r ≡ 1 mod k, we also set

gq,k(r) = gcd (indr(q), (r − 1)/k) .

Finally we let Mq,k(x) be the number of primes r ≡ 1 mod k up to x for which
gq,k(r) = 1.

The interest in this quantity comes from the construction of normal Gauß
periods in Fqn over Fq, where q ∈ N is a prime power. If n = (r−1)/k, gq,k(r) = 1,
β ∈ Fqr−1 is a primitive r–th root of unity, K ⊆ F∗r is the unique subgroup of order
k, and α =

∑
i∈K βi, then (n, k) is called in [2] a Gauß pair (over Fa), and indeed

the Gauß period α generates a normal basis for Fqn over Fq. It was noted a few
years ago that such a normal basis is useful for fast exponentiation in finite fields,
which in turn has various cryptographic applications. Theory and applications of
this, including implementations, are discussed in [2], [3], [4], [5], [6], [7]. A survey
of these results is in [8]. In particular, two elements of Fqn represented in such a
basis can be multiplied at essentially the same cost as multiplying two polynomials
of degree nk over Fq.

Therefore a natural question is: given q and n as above, what is the smallest
k such that (n, k) is a Gauß pair over Fq?
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In this paper we turn this question around and ask: given q and a (small) k,
for how many n is (n, k) a Gauß pair over Fq?

The paper [1] gives a generalization of Gauß periods, where basically the
prime r is replaced by an arbitrary integer; our considerations only apply to the
classical case as treated by Gauß, where r = nk + 1 is prime.

For k = 1, it is clear that gq,k(r) = 1 if and only if indr(q) = 1, and this
happens exactly when q is a primitive root modulo r. Hence Mq,1(x) is the number
of primes r up to x for which q is a primitive root modulo r; the famous Artin
Conjecture for primitive roots states that the set of these primes has a positive
density unless q is a square or equals −1. In 1965, C. Hooley [11] proved that the
Generalized Riemann Hypothesis implies the asymptotic formula

Mq,1(x) =
(

δq + O
(

log log x + log q

log x

))
x

log x

uniformly with respect to q, where δq depends only upon q. Unconditionally, the
work of Gupta and Murty [9] and of Heath-Brown [10] provides evidence for the
Artin Conjecture.

Our question can be considered as a natural generalization of Hooley’s famous
result. This generalization is meaningful also if q is a square.

For r ∈ N, we let ζr ∈ C be a primitive rth root of unity. We will prove the
following results.

Theorem 1.1. Let q and k be integers with |q| > 1 and k > 0, and for m ∈ N set
Km = Q(ζkm, q1/m) and nm = [Km : Q], and

δq,k =
∑
1≤m

µ(m)
nm

.

Then there exists cq,k ∈ R that depends only on q and k such that

Mq,k(x) ≤
(

δq,k +
cq,k

log log x

)
x

log x
.

If the Generalized Riemann Hypothesis holds for all these fields Km, then

Mq,k(x) =
(

δq,k + O
(

log log x

log x

))
x

log x
.

Next we express the densities as Euler products. The parameter l in the
products below ranges over the primes. We let

A =
∏

l prime

(1− 1
l(l − 1)

) ≈ 0.373956

be Artin’s constant, and µ the Möbius function.

Theorem 1.2. With the notation of Theorem 1.1, we write q = bh and b = b2
1b2

with integers b, b1, b2, and h, where b is not a perfect power and b2 is squarefree,
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set

b3 =

{
4b2/ gcd(4b2, k) if b2 ≡ 2, 3 mod 4,

b2/ gcd(b2, k) if b2 ≡ 1 mod 4,

write b3 = αb4 with α a power of two and b4 odd, so that the values of α are given
by the following table:

2 - k 2‖k 4‖k 8 | k
b2 ≡ 1 mod 4 1 1 1 1
b2 ≡ 3 mod 4 4 2 1 1
b2 ≡ 2 mod 4 8 4 2 1

.

Furthermore, we set

Ah,k =
A

k

∏
l|k

(
1 +

l

l2 − l − 1

)∏
l|h
l-k

(
1− l − 1

l2 − l − 1

)
.

Then we have

δq,k = Ah,k ·

1− µ(b4 · gcd(h, 2)2) · |µ(α)|
2 gcd(2, k)− 1

∏
l|b4
l-h

1
l2 − l − 1

∏
l|b4
l|h

1
l − 2

 , (1)

and Ah,k = 0 if and only if h is even and k is odd.

Finally we apply the above results to the problem of Gauß pairs.

Corollary 1.3. Let p be a prime, h and k be positive integers, q = ph, and assume
that the GRH holds for all fields Km of Theorem 1.1.

(i) δq,k = 0 if and only if at least one of the following two conditions is
satisfied:
(a) 2 | h and 2 - k,
(b) 2 - k, p | k, and p ≡ 1 mod 4.

(ii) If δq,k = 0, then there is no Gauß pair (n, k) over Fq.

Proof. (i) We write (1) as δq,k = Ah,k ·B, so that

δq,k = 0 ⇐⇒ Ah,k = 0 or B = 0 ⇐⇒ (2 | h and 2 - k) or B = 0,

using Theorem 1.2. Furthermore,

B = 0 ⇐⇒ µ(b4)|µ(α)| = (2 gcd(2, k)− 1)
∏
l|b4
l-h

(
l2 − l − 1

)∏
l|b4
l|h

(l − 2) .

The left-hand side has absolute value 1, and the right hand side is positive, since
b4 is odd. They are equal if and only if both are equal to 1. If that is the case,
then b4 = 1, since otherwise it would have at least two distinct prime factors, by
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µ(b4) = 1, and then one of the factors on the right hand side would be greater
than 1. Since |µ(α)| = 1 if and only if α ≤ 2, we have

B = 0 ⇐⇒ α ≤ 2, 2 - k, b4 = 1
⇐⇒ 2 - k, α = 1, b3 = b4 = 1, b2 ≡ 1 mod 4
⇐⇒ 2 - k, p | k, p ≡ 1 mod 4,

since b2 = b = p.
(ii) Since δq,k = 0, either (a) or (b) holds. From (a) we find that indr(q) and

(r−1)/k are both even, so that gq,k(r) is even, for all odd primes r, and thus there
is no Gauß pair (n, k) over Fq. So now we assume that (b) holds, and let r be an
odd prime with r ≡ 1 mod k. Then (r − 1)/k is even. Since p divides k, we also
have r ≡ 1 mod p. We may assume that h is odd, since otherwise (a) holds. Then
the quadratic reciprocity law gives the following for the Legendre symbol(

q

r

)
=
(

ph

r

)
=
(p

r

)
=
(

r

p

)
=
(

1
p

)
= 1.

Thus q is a square modulo r and indr(q) is even. Therefore again gq,k(r) is even,
and there is no Gauß pair, as claimed.

In particular, for q and k as in Corollary 1.3, the set of primes r for which
((r − 1)/k, k) is a Gauß pair over Fq is either empty or has the positive density
δq,k.

Wassermann proves in [14] an existence result starting from a different set of
parameters. His Theorem 3.3.4 states that for any given integers h, n and a prime
p, there exists a Gauß pair (n, k) over Fph if and only if gcd(h, n) = 1 and

2p - n if p ≡ 1 mod 4,

4p - n if p ≡ 2, 3 mod 4.

2. Proof of the Theorems

The following lemma is the Chebotarev Density Theorem. The proof of the two
versions that we state here is due to Lagarias and Odlyzko [12].

Lemma 2.1. Suppose that L is a Galois extension of Q with absolute discriminant
dL and degree nL over Q, and define

π(x, L : Q) = #{p ≤ x : p is unramified and splits completely in L}.

If the Generalized Riemann Hypothesis holds for the Dedekind zeta function of L,
then

π(x, L : Q) =
1

nL
li (x) + O(x1/2 log(x · d1/nL

L )).

In general (unconditionally) there exists absolute constants C1 and B such that for√
log x ≥ C1 n

1/2
L max{log | dL |, | dL |1/nL}, (2)
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one has

π(x, L : Q) =
1

nL
li(x) + O(x exp(−Bn

−1/2
L

√
log x)).

Proof of Theorem 1.1. The argument is similar to the original one of Hooley,
therefore we only mention the main steps.

We start by noticing that the condition for a prime l 6= p to divide the index
indp(q) is equivalent to p splitting completely in Q(ζl, q

1/l), while the condition
that l divides (p − 1)/k is equivalent to p splitting completely in the cyclotomic
field Q(ζlk). Since a prime splits completely in two extensions if and only if it splits
completely in the compositum, by the inclusion–exclusion principle we gather that

Mq,k(x) =
∑
1≤m

µ(m)π(x, Q(ζkm, q1/m) : Q).

We now consider the set S(y) of those squarefree “y-smooth” integers m ≥ 1
all of whose prime divisors are less than a (sufficiently small) parameter y. We
note that S(y) has 2π(y) elements, and if m ∈ S(y), then m ≤ P (y), where P (y)
denotes the product of the primes up to y.

Furthermore, we let N and D denote the degree and the discriminant of
Km over Q. Then

√
N ≤

√
km ≤

√
kP (y), log D � N log N � yP (y)2, and

D1/N � N
∏

l|D l � P (y)3, where the implied constants depend on a and k. By
choosing y such that P (y) = C2(log x)1/8 for some constant C2, we can use the
unconditional part of Lemma 2.1. The inclusion–exclusion principle then yields
the (unconditional) upper bound

Mq,k(x) ≤
∑

mεS(y)

µ(m)π(x, Q(ζkm, q1/m) : Q)

=
∑

mεS(y)

µ(m)
{

li(x)
nm

+ O
(
x exp(−C3

√
(log x)/nm)

)}

=

(
δq,k + O

(∑
m>y

1
mϕ(m)

))
li(x) + O

(
2π(y)x exp

(
−C4

√
log x

P (y)

))
=

(
δq,k + O

(
1
y

))
x

log x
+ O

(
x exp

(
−C5(log x)3/8

))
=

(
δq,k + O

(
1

log log x

))
x

log x
,

where we used the fact that ϕ(m)m � nm. This proves the second part of Theo-
rem 1.1. We note that the method of A. I. Vinogradov [13] could be used here to
establish a sharper error term.
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For the second claim we note that

Mq,k(x) ≤
∑

mεS(y)

µ(m)π(x, Q(ζkm, q1/m) : Q)

≤ Mq,k(x) + # {p ≤ x : ∃l ≥ y l | gq,k} .

Therefore

Mq,k(x) =
∑

mεS(y)

µ(m)π(x, Q(ζkm, q1/m) : Q) + O (# {p ≤ x : ∃l ≥ y l | gq,k}) .

The main term is estimated using the version of the Chebotarev Density Theorem
in Lemma 2.1 dependent on the Generalized Riemann Hypothesis which leads to
a choice of y = 1

6 log x. The error term can be handled exactly as in Hooley’s case,
ignoring the condition that l | (p− 1)/k. �

For the proof of Theorem 1.2, we need the following two lemmas. We will have an
integer h, and for an integer m we set

m̂ = m/ gcd(h, m).

Lemma 2.2. Let q, k,m ∈ Z with m, k > 0, |q| > 1, and m squarefree. We write
q = bh with b not a perfect power, b = b2

1b2 with b2 squarefree, and set

ε =


2 if 2 | m̂, b2 | mk, and b2 ≡ 1 mod 4,

2 if 2 | m̂, 4b2 | mk, and b2 6≡ 1 mod 4,

1 otherwise.

Then nm = ϕ(km) ·
[
Q(ζkm, q1/m) : Q

]
= ϕ(km)m̂/ε.

Proof. First we note that Q(ζkm, q1/m) = Q(ζkm, b1/m̂). Since [Q(b1/m̂) : Q] = m̂
and [Q(b1/m̂)(ζkm) : Q(b1/m̂)] is a divisor of ϕ(km), from the identity

[Q(ζkm, b1/m̂) : Q(ζkm)] · [Q(ζkm) : Q] = [Q(b1/m̂, ζkm) : Q(b1/m̂)] · [Q(b1/m̂) : Q]

we deduce that

nm = ϕ(km)
[
Q(ζkm, b1/m̂) : Q(ζkm)

]
= ϕ(km)

m̂

d

for some divisor d of m̂. We claim that d is 1 or 2. Indeed, if l is a prime dividing
d, then we have extensions

Q(ζkm) ⊆ Q(ζkm, b1/l) ⊆ Q(ζkm, b1/m̂).

Since m̂ is squarefree, l does not divide m̂, hence Q(ζkm, b1/l) = Q(ζkm) and b1/l ∈
Q(ζkm). Therefore we have an inclusion of Abelian extensions Q(b1/l) ⊆ Q(ζkm)
of Q. This can only happen when l is 1 or 2.

Furthermore Q(
√

b) = Q(
√

b2), so that d = 2 if and only if m̂ is even and√
b2 ∈ Q(ζkm).
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The quadratic subfields of Q(ζkm) are{
Q(
√(−1

D

)
|D|) : D | km,D odd squarefree

}
if 4 - km,{

Q(
√

D) : D | km,D odd squarefree
}

if 4 ‖ km,{
Q(
√

D) : D | km,D squarefree
}

if 8 | km.

In the first case, d = 2 if and only if b2|km and b2 ≡ 1 mod 4, and in the
second case, d = 2 if and only if b2 is odd and divides km, and in the third case
d = 2 if and only if b2|km.

Finally, d = ε and hence the claim.

Lemma 2.3. Let Ah,k be as in the statement of Theorem 1.2 and t ∈ N. Then

Ah,k =
∑
1≤m

µ(m)
ϕ(km)m̂

=
1

ϕ(k)

∏
l prime

(
1− gcd(l, h)ϕ(gcd(l, k))

l gcd(l, k)(l − 1)

)
,

∑
1≤m

gcd(m,t)=1

µ(m)
ϕ(km)m̂

=
1

ϕ(k)

∏
l-t

(
1− ϕ(gcd(l, k))

(l − 1)l̂ gcd(l, k)

)
. (3)

Proof. We have ∑
1≤m

µ(m)
ϕ(km)m̂

=
∑
d|k

∑
1≤m

gcd(m,k)=d

µ(m)
ϕ(km)m̂

=

 ∑
1≤m

gcd(m,k)=1

µ(m)
ϕ(km)m̂

 ·

∑
d|k

µ(d)

dd̂

 =
1

ϕ(k)

∏
l-k

(
1− 1

l̂(l − 1)

)∏
l|k

(
1− 1

l̂l

)
,

since if d | k, then ϕ(kmd) = dϕ(km), and the claim is easily deduced. The second
part is proven similarly.

Let us now prove Theorem 1.2.
If h is even, then m̂ is odd for any squarefree m, and this implies that nm =

ϕ(km)m̂. Therefore by Lemma 2.3, we have that δa,k = Ah,k. We now assume that
h is odd (so that m̂ is even if and only if m is), and consider b3, b4, and α as in
the theorem. We note that gcd(b4, k) = 1. Furthermore, for any squarefree m, ε
as defined in Lemma 2.2 equals 2 if and only if α ≤ 2 and 2b4|m.

Therefore, if α ≥ 4, then δq,k = Ah,k. If α ≤ 2, then

δq,k =
∑

2b4-m

µ(m)
ϕ(km)m̂

+ 2
∑

2b4|m

µ(m)
ϕ(km)m̂

= Ah,k +
µ(2b4)

2b̂4ϕ(b4)

∑
gcd(m,2b4)=1

µ(m)
ϕ(2km)m̂

.

By applying the multiplicative property (3) to the last sum above (with t = 2b4

and 2k instead of k), we have

δq,k = Ah,k −
µ(b4)

2b̂4ϕ(b4)ϕ(2k)

∏
l-2b4

(
1− ϕ(gcd(k, l))

(l − 1)l̂ gcd(l, k)

)
.
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In the inner product we write gcd(k, l) instead of gcd(2k, l), since l is odd. Now,
we can factor out Ah,k as follows. We multiply and divide the inner product by∏

l|2b4

(
1− ϕ((k,l))

l̂ gcd(l,k)(l−1)

)
, and obtain:

δq,k = Ah,k −
µ(b4)

2b̂4ϕ(b4)ϕ(2k)

∏
l

(
1− ϕ(gcd(k, l))

l̂ gcd(l, k)(l − 1)

)

·
∏
l|2b4

(
1− ϕ(gcd(k, l))

l̂ gcd(l, k)(l − 1)

)−1

= Ah,k

1− µ(b4)

2b̂4ϕ(b4)

ϕ(k)
ϕ(2k)

∏
l|2b4

(
l̂ gcd(l, k)(l − 1)

l̂ gcd(l, k)(l − 1)− ϕ(gcd(k, l))

).

It is easy to see that gcd(2, k)ϕ(k) = ϕ(2k) and 2̂ = 2. If l | b4, then gcd(l, k) = 1,
since gcd(b4, k) = 1. Therefore

δq,k = Ah,k

1− µ(b4)

2b̂4ϕ(b4)

ϕ(k)
ϕ(2k)

∏
l|2

(
l̂ gcd(l, k)(l − 1)

l̂ gcd(l, k)(l − 1)− ϕ(gcd(k, l))

)

·
∏
l|b4

(
l̂(l − 1)

l̂(l − 1)− 1

)
= Ah,k

(
1− µ(b4)

2b̂4ϕ(b4)

ϕ(k)
ϕ(2k)

2̂ gcd(2, k)
2̂ gcd(2, k)− 1

·
∏
l|b4

(
l̂(l − 1)

)∏
l|b4

1

l̂(l − 1)− 1


= Ah,k

1− µ(b4)
2 gcd(2, k)− 1

∏
l|b4

1

l̂(l − 1)− 1

 .

Finally we can combine the three cases h even, h odd and α ≥ 4, and h odd
and α ≤ 2, in a single formula as

δa,k = Ah,k

1− µ(b4 · gcd(h, 2)2)|µ(α)|
2 gcd(2, k)− 1

∏
l|b4

1

l̂(l − 1)− 1

 .

�
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[6] J. von zur Gathen and M. Nöcker, Exponentiation in finite fields: Theory and prac-
tice, In Teo Mora and Harold Mattson, editors, Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes: AAECC-12, Toulouse, France, number 1255 in Lecture
Notes in Computer Science, 88–113, Springer-Verlag, 1997.
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