
Rend. Sem. Mat. Univ. Pol. Torino
Vol. 53, 4 (1995)
Number Theory

ON HOOLEY’S THEOREM WITH WEIGHTS

F. Pappalardi∗

Abstract. We adapt Hooley’s proof that the Generalized Riemann Hypothesis implies

the Artin Conjecture for primitive roots to various other problems. We consider the sum∑
p≤x f (ip) whereip is the index of 2 modulop andf is a given function. In various

cases we establish asymptotic formulas for such a sum and analyse the constants. While

we claim no originality, we outline the method to approach this problem in a fairly

general case.

1. Introduction

For a fixed prime numberp, we denote byip the index of2 (modp). For a function

f : N→ C, we consider the sum ∑
p≤x

f(ip).

We will establish various estimates for such a sum. Iff(1) = 1 andf(x) = 0 for

x 6= 1, then the famous Artin Conjecture for primitive roots states that

(1) # {p ≤ x | ip = 1} ∼ δπ(x),

whereδ is the Artin constant,

δ =
∏

l prime

(
1− 1

l(l − 1)

)
= 0.373955813619202 . . .

In 1967, C. Hooley (see [5]) proved the Artin Conjecture as a consequence of the

Generalized Riemann Hypothesis.

The weaker form of the Artin Conjecture states thatany fixed integerb > 1 that is

not a perfect square is a primitive root for infinitely many primes.Heath-Brown [4], Gupta

and Murty [3] (see also [9]) solved this form of the Artin conjecture for a very large class of
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numbersb but the asymptotic formula in (1) is still to be proven. For a clear exposition on the

Artin Conjecture and its “quasi-resolution” we refer to [8].

Let us set

π(x, n) = # {p ≤ x | n|ip }.

The intuition of Artin and the subsequent proof of Hooley is based on the identity

(2) # {p ≤ x | ip = 1} =
∞∑
n=1

µ(n)π(x, n),

which is just the inclusion–exclusion principle.

A natural generalization of (2) is the identity∑
p≤x

f(ip) =
∞∑
n=1

g(n)π(x, n),

where, by M̈obius inversion,g(n) =
∑
d|n µ(n/d)f(d) andf(m) =

∑
n|m g(n).

If n is a positive integer, we setKn = Q(ζn, 21/n), so that

kn = [Kn : Q] =

{
nϕ(n) if 86 |n

nϕ(n)/2 if 8|n.

It is a criterion due to Dedekind that an odd primep splits completely inKn if and onlyn

dividesip. Thereforeπ(x, n) equals the number of primes up tox that are unramified and

split completely inKn.

The Chebotarev Density Theorem provides us with an asymptotic formula forπ(x, n).
The following result is due to Lagarias and Odlyzko [6].

Chebotarev Density Theorem. Suppose that the Generalized Riemann

Hypothesis (GRH) holds for the Dedekind zeta function ofKn. Then

π(x, n) =
1
kn

Li(x) + O
(
x1/2 log xn

)
.

Unconditionally, there exists an absolute constantA such that ifn ≤ (log x)1/7 then

π(x, n) =
1
kn

Li(x) + O
(
x exp(−A

√
log x/n)

)
.

From now on we will suppose that

(3)
∞∑
n=1

|g(n)|
kn

<∞.
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The generalized Artin problem is to establish the asymptotic formula∑
p≤x

f(ip) ∼
∞∑
n=1

g(n)
kn

π(x).

We adopt the following standard notation:F (x).G(x) means that for everyε > 0
there existsxε such that ifx > xε, thenF (x) ≤ (1 + ε)G(x).

We have the following

Theorem 1.

(a) Suppose thatg(n) ≥ 0. Then we have

∞∑
n=1

g(n)π(x, n)&
∞∑
n=1

g(n)
kn

π(x).

(b) Suppose that the series
∑∞
n=1 |g(n)|/ϕ(n) converges and that

∑
n>z |g(n)|/n =

o
(
log−1 z

)
. Then

∞∑
n=1

g(n)π(x, n) ∼
∞∑
n=1

g(n)
kn

π(x).

Let us writeHm(x) = # {p ≤ x | ip = m}, so that∑
p≤x

f(ip) =
∞∑
m=1

f(m)Hm(x).

The functionHm(x) has been studied by L. Murata in [7] where he proved

Theorem (Murata). GRH implies that for every everyε > 0,

Hm(x) = δmπ(x) + O

(
mεx log log x

log2 x

)
where the implied constant depends only onε. Furthermore

δm =
∞∑
n=1

µ(n)
knm

=
rm
m2

δ
∏

l prime
l|m

l2 − 1
l2 − l − 1

with rm = 1 if 46 |m, rm = 2/3 if 4||m, rm = 2 if 8|m andδ is the Artin constant.

From now on we will also suppose that

∞∑
m=1

|f(m)|δm <∞.
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Note that sinceδm � (log logm)/m2 we may assume thatf(m) = O
(
m2
)
. By exchanging

the order of summation in absolutely convergent series, we have that

∞∑
n=1

g(n)
kn

=
∞∑
m=1

f(m)
∞∑
n=1

µ(n)
knm

=
∞∑
m=1

f(m)δm.

We have the following

Theorem 2.

(a) Suppose that the series
∑∞
m=1 |f(m)|/ϕ(m) converges and thatmaxm≤y {|f(m)|} �

y1−τ for someτ > 0. Then

∞∑
m=1

f(m)Hm(x).
∞∑
m=1

f(m)δmπ(x).

(b) Assume GRH and suppose thatf(m) ≥ 0. Then

∞∑
m=1

f(m)Hm(x)&
∞∑
m=1

f(m)δmπ(x).

(c) Assume GRH and suppose thatmaxm≤x {|f(m)|} � (log x)C . Then

∞∑
m=1

f(m)Hm(x) =

=
∞∑
m=1

f(m)δmπ(x) + O

 ∑
√
x

logC+5 x
≤m≤

√
x log(C+1)/2 x

|f(m)|
ϕ(m)

π(x)

.

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. We start by the inequality
∑∞
n=1 g(n)π(x, n) ≥∑

n≤(log x)1/7 g(n)π(x, n). Applying the unconditional version of the Chebotarev Density

Theorem, we have that the previous sum equals( ∞∑
n=1

g(n)
π(x)
kn

)
−O

 ∑
n>log1/7 x

| g(n) |
nϕ(n)

π(x) + (log x)3/7x exp
(
−A(log x)5/15

)=

=

(( ∞∑
n=1

g(n)
kn

)
− o(1)

)
π(x)

sinceg(n)� n2 by hypothesis (3).The statement in (a) follows immediately.
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To prove (b) it suffices to show that∑
n>(log x)1/7

g(n)π(x, n) = o(π(x)).

We split the above sum into the sum forn >
√
x plus the sum forn ≤

√
x. Now∑

n>
√
x

g(n)π(x, n) ≤
∑
n>
√
x

|g(n)|# {a ≤ x | n|a− 1} �
∑
n>
√
x

|g(n)|x
n

= o(π(x)),

while, by the Brun-Titchmarsh Theorem,∑
(log x)1/7≤n≤

√
x

g(n)π(x, n)�
∑

(log x)1/7≤n≤
√
x

|g(n)| x

ϕ(n) log(x/n)
= o(π(x)).

This completes the proof.

The result of Murata of Section 1 gives a conditional asymptotic formula forHm

uniform in the rangem < (log x)1/2−ε, which is not enough for some of our applications.

We can easily prove the following

Lemma 3. Let c < 1/7. Form ≤ logc x we have unconditionally the upper bound

Hm(x) ≤
(
δm + o

(
1

mϕ(m)

))
π(x).

If we assume GRH, then

Hm(x) ≤ δmπ(x) + O

(
x

mϕ(m) log x log log x
+ x1/2 log2 x logm

)
.

Proof of Lemma 3. Let z be a parameter to be chosen later and letP (z) be the product

of the primes up toz. We start from the inequality

Hm(x) ≤
∑
n|P (z)

µ(n)π(x, nm).

Provided thatnm < log1/7 x, we can apply the Chebotarev Density Theorem. So the

previous sum is∑
n|P (z)

µ(n)
{

1
kmn

Li(x) + O
(
x exp(−A

√
log x/nm

)}
=

=
∞∑
n=1

µ(n)
knm

π(x) + O

∑
n≥z

1
knm

π(x)

+ O
(

2π(z)x exp(−A
√

log x/2zm)
)

=
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= δmπ(x) + O

(
x

mϕ(m)z log x
+ 2π(z)x exp(−A

√
log x/2zm)

)
and the result follows by choosingz = log log log x, say. The estimate assuming GRH is

proven in a similar way, therefore we omit it.

Proof of Theorem 2. (a) We write
∞∑
m=1

f(m)Hm(x) =
∑
m≤z

f(m)Hm(x) +
∑

z<m<y

f(m)Hm(x) +
∑
m≥y

f(m)Hm(x).

First note that sinceHm(x) = 0 if m > 0,∑
m≥y

f(m)Hm(x)� x1−τ#
{
p | p− 1

ip
≤ x

y

}
� x1−τ x2

y2 log(x/y)

by a similar argument as in the Theorem of Hooley ([5], pages 211-212). So, if we choose

y = x1−τ/3, we get that the above sum is� x1−τ/3.

Further, ifz goes to infinity asx goes to infinity,∑
z<m<y

f(m)Hm(x) ≤
∑

z<m<y

|f(m)|π(x,m, 1)�
∑
m>z

|f(m)| x

ϕ(m) log x
= o(π(x))

by the Brun-Titchmarsh Theorem and the hypothesis that
∑
|f(m)|/ϕ(m) converges. Finally∑

m≤z

f(m)Hm(x) ≤
∑
m≤z

f(m)
{
δmπ(x) + o

(
π(x)
mϕ(m)

)}
=

=
∞∑
m=1

f(m)δmπ(x) + o(π(x))

by Lemma 1, choosingz = log1/8 x. This completes the proof of (a).

(b) Note that sincef(n) ≥ 0,
∞∑
m=1

f(m)Hm(x) ≥
∑

m≤(log x)1/4

f(m)Hm(x).

Now we apply the result of Murata and deduce that the previous sum is∑
m≤(log x)1/4

f(m)
(
δm −O

(
mε log log x

log x

))
π(x)

=

( ∞∑
n=1

f(m)δm − o(1)

)
π(x)−O

x log log x
log2 x

∑
m≤(log x)1/4

f(m)mε


and this completes the proof since

∑
m≤t f(m)mε � t3+2ε.
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(c) As we did in the proof of (a) we split the sum

(4)
∞∑
m=1

f(m)Hm(x) =
∑
m≤z

f(m)Hm(x) +
∑

z<m<y

f(m)Hm(x) +
∑
m≥y

f(m)Hm(x).

By Lemma 3 ∑
m≤z

f(m)Hm(x) ≤

≤
∑
m≤z

f(m)
(
δmπ(x) + O

(
x

mϕ(m) log x log log x
+ x1/2 log2 x logm

))

=
∞∑
m=1

f(m)δmπ(x) + o(π(x))+ O
(
z logC+1 z x1/2 log2 x

)
.

If we setz = x1/2/ log5+C x, the error term in the above sum is o(π(x)).

To deal with the last sum in (4) we proceed as we did in the proof of (a) and we get∑
m≥y

f(m)Hm(x) ≤ max
m≥y
| f(m) | x2

y2 log(x/y)
� logC x

x2

y2 log(x/y)

which is o(π(x)) if we sety = x1/2 log(C+1)/2 x.

Finally the middle sum in (4) is∑
z<m<y

f(m)Hm(x) ≤
∑

z<m<y

|f(m)| π(x,m, 1)�
∑

z<m<y

|f(m)|
ϕ(m)

π(x)

by the hypothesis onf and the Brun-Titchmarsh Theorem. This completes the proof.

2. Applications

SupposeS ⊂ N andχS is the characteristic function ofS. If we let

πS(x) = # {p ≤ x | ip ∈ S } =
∞∑
m=1

χS(m)Hm(x),

then by the M̈obius inversion formula,

πS(x) =
∞∑
n=1

χ̃S(n)π(x, n)

where

χ̃S(n) =
∑
m|n

µ(n/m)χS(m) =
∑

m|n,m∈S

µ(n/m).
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If we assume GRH then, by Theorem 2.b, we have the lower bound

πS(x)&
∞∑
n=1

χ̃S(n)
kn

π(x).

If the sum overs ∈ S of 1/ϕ(s) converges, we have, by Theorem 2.a, the (unconditional)

upper bound

πS(x).
∞∑
n=1

χ̃S(n)
kn

π(x).

Example 1. SupposeS = P is theset of all rational primes. Then, ifν(n) is the

number of prime divisors ofn,

χ̃P(n) =
∑

l|n, l prime

µ(n/l) =


−µ(n)ν(n) if n is square free

µ(n) if ∃!p ∈ P with p2||n
0 otherwise

Applying Theorem 2.b we get that (on GRH)

πP(x) ≥ (δP + o(1))π(x),

where a quick calculation shows that

δP =
∞∑
n=1

∑
l|n µ(n/l)

kn
= δ

∑
l prime

l2 − 1
l4 − l3 − l2

.

Furthermore, note that by Mertens’ Theorem∑
√
x(log x)−C−5≤p≤

√
x(log x)(C+1)/2

1
p− 1

� log log x
log x

.

Therefore, applying Theorem 2.c, we have the following

Corollary 4. Assume GRH. ThenπP(x) ∼ δPπ(x).

The PARI 1.37 command (see [2])

A=0.;forprime(l=2,100000,q=l^2;A=A+(q-1)/(q*(q-l-1)));A*0.3739558

gives an approximation forδP
%1 = 0.3870025833660499182018950757

while the PARI 1.37 command

C=0;forprime(l=3,200000,if(isprime((l-1)/order(mod(2,l))),C=C+1,));C

calculates the number of odd primes up to 200000 such thatip is prime and its output is

%2 = 7019



On Hooley’s Theorem with weights 383

Sinceπ(200000) = 17984, we have

πP(200000)
π(200000)

= 0.3902913701067615658362989323

Example 2. Suppose thatS is a set of natural numbers such thatχS(n) is a

multiplicative function. Then

χ̃S(la) =

{
1 if a = 0

χS(la)− χS(la−1) otherwise.

Applying Theorem 2.b we get that (on GRH)πS(x)& δSπ(x), where a quick calculation

shows that

δS =
∞∑
n=1

χ̃S(n)
kn

=

=

1
2
− 3χS(2) + χS(4)

8
+ 3

∑
i≥1

2i∈S

1
22i

 ∏
l odd prime

1− 1
l(l − 1)

+
l + 1
l

∑
i≥1
li∈S

1
l2i

.
i) If Fk is the set ofk-free numbersthen

δFk =
(
ρk + 1− 1

4k−1

) ∏
l odd prime

(
1− 1

l2k−1(l − 1)

)
,

where

ρk =


1/2 if k = 1

1/8 if k = 2

0 if k ≥ 3.

In this case we note that̃χFk(n) = µ(m) if n = mk and0 otherwise. Hence the series
∞∑
n=1

χ̃Fk(n)
n

=
∞∑
m=1

µ(m)
mk

converges. Therefore, by Theorem 1.b, we have the following

Corollary 5. The asymptotic formulaπFk(x) ∼ δFkπ(x) holds unconditionally.

The PARI 1.37 command

F=0.875;forprime(l=3,100000,F=F*(1-1/((l-1)*l^3)));F

gives an approximation forδF2

%3 = 0.8565404448535421984682105482

while the PARI 1.37 command

A=0;forprime(l=3,200000,if(issqfree((l-1)/order(mod(2,l))),A=A+1,));A
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calculates the number of odd primes up to 200000 such thatip is square-free and its output is

%4 = 15430

Sinceπ(200000) = 17984, we have

πF2(200000)
π(200000)

= 0.8579848754448398576512455515.

ii) If Gk is the set ofk-full numbers then

δGk =
(
τk +

1
4k−1

) ∏
l odd prime

(
1− l2k−2 − 1

l2k−1(l − 1)

)
,

where

τk =


0 if k = 1

3/8 if k = 2

1/2 if k ≥ 3.
Since the sum of the reciprocals ofk-full numbers converges (fork ≥ 2), by Theorem

2.a we have

Corollary 6. We haveπGk(x)& δGkπ(x) on GRH, andπGk(x). δGkπ(x)
unconditionally.

iii) If Pk is the set ofk-powers(k ≥ 1) then

δPk =
(
τk +

3
4k − 1

) ∏
l odd prime

(
1− l2k−1 − l

(l2k − 1)(l − 1)

)
whereτ is as above. Since the sum of the reciprocals ofk-powers converges (for

k ≥ 2), by Theorem 2.b we have

Corollary 7. We haveπPk(x)& δPkπ(x) on GRH, andπPk(x). δPkπ(x)
unconditionally.

The PARI 1.37 command

G=0.575;forprime(l=3,100000,G=G*(1-(l^2+l)/(l^4-1)));G

gives an approximation forδG2

%5 = 0.4398154555775779797707734332

while the PARI 1.37 command

B=0;forprime(l=3,200000,if(issquare((l-1)/order(mod(2,l))),B=B+1,));B

calculates the number of odd primes up to 200000 such thatip is a perfect square and its

output is

%6 = 7898
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Sinceπ(200000) = 17984, we have

πG2(200000)
π(200000)

= 0.4391681494661921708185053380.

Example 3. Suppose thatS(b, a) is thearithmetic progression {a, a + b, a +
2b, . . .} where for simplicity we assumea andb coprime. By Theorem 2.b, we have on GRH

the lower bound

#{p ≤ x | ip ≡ a (modb)}& δa,bπ(x)

where

δa,b =
∞∑
m=1,

m≡a (modb)

δm.

To deduce the upper bound it suffices to write

#{p ≤ x | ip ≡ a (modb)}

= π(x)− 1−
∑

c (modb), (c,b)=1, c6=b

#{p ≤ x | ip ≡ c (modb)} −
∑
d|b

π(x, d)

and apply Theorem 2.b and the Chebotarev Density Theorem to the right hand side. Hence,

performing the computation, we can deduce the following

Corollary 8. On GRH we have the asymptotic formula

#{p ≤ x | ip ≡ a (modb)} ∼ δa,bπ(x) with δa,b =
1

ϕ(b)

∑
χ (modb)

χ(a) · δχ,

where the sum is extended to all the Dirichlet characters (modb) and

δχ =
(

1
2
− χ(2)(χ2(2)− χ(2) + 12)

8(4− χ(2))

) ∏
l odd prime

(
1− l(1− χ(l))

(l − 1)(l2 − χ(l))

)
.

Note that ifχ0 is the principal character (modb), then

δχ0 =
∏
l|b

(
1− 1

l(l − 1)

)
.

If b = 3 thenδχ0 = 5/6 and the non-principal character is

χ1(n) =


0 if 3|n
1 if n ≡ 1(mod3)

−1 if n ≡ 2(mod3)
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so that

δχ1 =
3
20

∏
l odd primel≡2(mod3)

(
1− 2l

(l − 1)(l2 + 1)

)
.

Finally

δ1,3 =
5
12

+
1
2
δχ1 and δ2,3 =

5
12
− 1

2
δχ1 .

Using PARI we get approximations

δ1,3 = 0.4819 and δ2,3 = 0.3514

while

πS(3,1)(200000)
π(200000)

∼ 0.4693 and
πS(3,2)(200000)
π(200000)

∼ 0.3645.

Example 4. Suppose thatf(n) = log n. E. Bach, R. Lukes, J. Shallit and H. C.

Williams in [1] consider the sum
∑
p≤x log ip.

Since
∑
d|n µ(d) log(n/d) is the von Mangoldt functionΛ(n), by Theorem 1.a we

have unconditionally the lower bound

(5)
∑
p≤x

log ip& δBπ(x)

where

δB =
∞∑
n=1

Λ(n)
kn

=
∞∑
m=1

(logm)δm.

Furthermore, note that

∞∑
n=1

Λ(n)
kn

=
∑

q prime

q log q
(q − 1)(q2 − 1)

+
1
24

log 2

as predicted in [1].

We are unable to deduce an upper bound of the typecπ(x) for the sum in (5) even on

GRH. However

Proposition 9. Assume GRH. Then∑
p≤x

log ip �
x log log x

log x
.
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Proof. We have seen that∑
p≤x

log ip =
∑
n≤x

Λ(n)π(x, n) =

=
∑

n≤
√
x/ log3 x

Λ(n)π(x, n) +
∑

√
x/ log3 x≤n≤x

Λ(n)π(x, n).

By the Chebotarev Density Theorem the first sum above is (on GRH)

�
∑

n≤
√
x/ log3 x

log n
{

x

n2 log x
+ O

(√
x log xn

)}
� π(x),

while the second sum equals

(6)
∑

q>
√
x/ log3 x

log q π(x, q) +
∑

qα>
√
x/ log3 x,α>1

log q π(x, qα).

The second sum in (6) is

≤
∑

qα>
√
x/ log3 x,α>1

log q
x

qα
� x

∑
q>
√
x/ log3 x

log q
q2
� π(x),

while the first sum in (6) equals

(7)
∑

√
x/ log3 x<q≤

√
x log x

log q π(x, q) +
∑

q>
√
x log x

log q π(x, q).

We bound the second sum in (7) with

#

q
∣∣∣∣∣∣ q divides

∏
m≤
√
x/ log x

(2m − 1)

 · log x� π(x).

Finally the first sum in (7), by the Brun-Titchmarsh Theorem and the Mertens’ formula, is

≤
∑

√
x/ log3 x<q≤

√
x log x

log q π(x, q, 1)� x

log x

∑
√
x/ log3 x<q≤

√
x log x

log q
q
� x log log x

log x

and this ends the proof.

We mention that Theorem 2.c implies that iff(m) = o
(
log−1(m)

)
, then (on GRH)

∑
p≤x

f(ip) ∼

( ∞∑
m=1

f(m)δm

)
π(x).
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3. Conclusion

The results in the present paper can be generalized to the case whereip = indp(a)
with a any integer. The computation would be affected by the corresponding formula for

Kn = [Q(ζn, a1/n),Q].
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