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ON HOOLEY’S THEOREM WITH WEIGHTS

F. Pappalardi*

Abstract. We adapt Hooley's proof that the Generalized Riemann Hypothesis implies
the Artin Conjecture for primitive roots to various other problems. We consider the sum
Zpgm f(@p) wherei, is the index of 2 modul@ and f is a given function. In various

cases we establish asymptotic formulas for such a sum and analyse the constants. While
we claim no originality, we outline the method to approach this problem in a fairly
general case.

1. Introduction

For a fixed prime numbey, we denote by, the index of2 (modp). For a function
f: N — C, we consider the sum
> ).

p<z

We will establish various estimates for such a sumf(if) = 1 and f(z) = 0 for
x # 1, then the famous Artin Conjecture for primitive roots states that

(1) #ip <z|i, =1} ~om(),

whered is the Artin constant,

1
0= 11— —— ] =037 13619202. ..
II ( 1(1—1)> 0.37395581361920
1 prime
In 1967, C. Hooley (see [5]) proved the Artin Conjecture as a consequence of the
Generalized Riemann Hypothesis.

The weaker form of the Artin Conjecture states thay fixed integeb > 1 that is
not a perfect square is a primitive root for infinitely many priméteath-Brown [4], Gupta
and Murty [3] (see also [9]) solved this form of the Artin conjecture for a very large class of
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numbers but the asymptotic formula in (1) is still to be proven. For a clear exposition on the
Artin Conjecture and its “quasi-resolution” we refer to [8].

Let us set

m(z,n) = #{p < z|nli,}.

The intuition of Artin and the subsequent proof of Hooley is based on the identity

(2) #{p<wli, =1} =) p(m)m(z,n),

which is just the inclusion—exclusion principle.
A natural generalization of (2) is the identity

S 1) = 3 g(my(a, ),
n=1

p<z

where, by Mbius inversiong(n) = 3_,,, u(n/d) f(d) andf(m) =3, ,, 9(n).
If n is a positive integer, we séf,, = Q((,, 2'/"), so that

np(n) if 8 n

k., =K, : =
| V {mp(n)/2 if 8|n.

It is a criterion due to Dedekind that an odd primsplits completely ink, if and onlyn
dividesi,. Thereforer(z,n) equals the number of primes uptahat are unramified and
split completely ink,,.

The Chebotarev Density Theorem provides us with an asymptotic formutdfon).
The following result is due to Lagarias and Odlyzko [6].

CHEBOTAREV DENSITY THEOREM. Suppose that the Generalized Riemann
Hypothesis (GRH) holds for the Dedekind zeta functioA gf Then

1.
m(x,n) = k_LI (x) + O(x1/2 log xn)

n
Unconditionally, there exists an absolute constarguch that ifn. < (log z)'/7 then

1

o Li(x) + O(x exp(—A\/@/n)).

m(x,n) =

From now on we will suppose that

(3) Z ‘g]g:)‘ < 0.

n=1
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The generalized Artin problem is to establish the asymptotic formula

3 £~ Y- E (),

p<z

We adopt the following standard notatiof(x) < G(z) means that for every > 0
there exists:. such that ifr > z, thenF(z) < (1 + ¢)G(z).
We have the following

THEOREM 1.
(a) Suppose thag(n) > 0. Then we have

S gtz Y Az,
n=1 n

(b) Suppose that the seri€s,,, [g(n)|/¢(n) converges and tha}", _ . |g(n)|/n =
O(log{1 z) Then

Z g(n)m(z,n) ~ Z g]i:)ﬂ(x)

Let us writeH,,,(z) = # {p < z| i, = m}, sothat

Y flip) =Y f(m)Hp(2).

p<x m=1

The functionH,,,(x) has been studied by L. Murata in [7] where he proved

THEOREM (MuUrATA). GRH implies that for every every> 0,

mex log log x)
log? x

Hyn(2) = O () + o(

where the implied constant depends onlygofurthermore

n=1 K m? 1 prime

llm

?2-1
2—-1-1

with r,,, = 1if 4 fm, rp,, = 2/3if 4|m, r,, = 2if 8m and4 is the Artin constant.

From now on we will also suppose that

oo

Z | f(m)|0pm < oo

m=1
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Note that since,, < (loglogm)/m?* we may assume thgt(m) = O(m?). By exchanging
the order of summation in absolutely convergent series, we have that

IECED SVIIID o B DL

m=1 n

We have the following

THEOREM 2.

(a) Supposethattheserigs >_, |f(m)|/¢(m) converges and thahax,, <, {|f(m)|} <
y'~7 for somer > 0. Then

Y ) Hp(2) S Y f(m)dpnm().

m=1 m=1

(b) Assume GRH and suppose ttfétn) > 0. Then

> Fm)Hp(x) 2 Y f(m)dmm(x).
m=1 m=1
(c) Assume GRH and suppose thatx,,<, {|f(m)|} < (logz)®. Then
> Fm)Ho(x) =
m=1
= f: fm)dpm(x) + O Z ‘f(mﬂﬁ(x)
i cntyrgera, P

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. We start by the inequality} - g(n)r(z,n) >
an(bg )1/ g(n)m(x,n). Applying the unconditional version of the Chebotarev Density
Theorem, we have that the previous sum equals

S 7(x) | g(n) | 1
<nz_:1 g(n)ﬁ> - O( Z () 7(z) + (logz)* "z exp (—A(log )5/ 5)) =

n>log!/7 x

| [~=9(n)
_ (( (r ) —o<1>) (@

sinceg(n) < n? by hypothesis (3).The statement in (a) follows immediately.




On Hooley’s Theorem with weights 379

To prove (b) it suffices to show that
Y gn)m(z,n) = o(x(z)).
n>(log z)1/7
We split the above sum into the sum for> /z plus the sum for < \/z. Now

> gtmren) € Y laml#a<alna—1} < 3 o)l = ofx@)).
n>\z n>\z n>\/x

while, by the Brun-Titchmarsh Theorem,

Z g(n)m(z,n) < Z |g(n)|m = o(m(z)).

(log @)1/ 7<n<\/@ (log )/ 7<n</a

This completes the proof. m

The result of Murata of Section 1 gives a conditional asymptotic formulatHgr
uniform in the rangen < (logz)'/2~¢, which is not enough for some of our applications.
We can easily prove the following

LEMMA 3. Letc < 1/7. For m < log®z we have unconditionally the upper bound

Ho(z) < <5m + o<ﬁ(m)>> (z).

If we assume GRH, then

xT

H,, () < dpm(x) —|—O< + z1/? longlogm).

mp(m) log x log log

Proof of Lemma 3. Let z be a parameter to be chosen later andlet) be the product
of the primes up ta. We start from the inequality

Hpy,(z) < Z p(n)m(z, nm).

n|P(z)

Provided thatim < logl/ "z, we can apply the Chebotarev Density Theorem. So the
previous sum is

Z p(n) {k:m Li(z) + O(m exp(—A\/@/nm)} —

n|P(z)

L (o) | + 02O exp(-aioga/2m) =

knm nm
n>z
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=5m7r(x)+0<#+2“(z xexp(—Ay/logx/2*m )

mp(m)zlogx
and the result follows by choosing = logloglog z, say. The estimate assuming GRH is
proven in a similar way, therefore we omitit. m

Proof of Theorem 2. (a) We write

o fmHp(@) =" fm)Hu(@)+ Y fm)Hp(x)+ Y f(m)Hp(x)
m=1 m<z z<m<y m>y
First note that sincél,,,(z) = 0if m > 0,
> f(m)Hp(x) < ' T#{p 1<E}<<gc1—7w42
ip Y y?log(z/y)

by a similar argument as in the Theorem of Hooley ([5], pages 211-212). So, if we choose
y = 2"~ 7/3, we get that the above sumds z'~7/3.

m>y

Further, ifz goes to infinity as goes to infinity,

T
< _—_—
> S () < 37 mlnem, 1) < 3 1S s = ofn(@)
z<m<y z<m<y m>z
by the Brun-Titchmarsh Theorem and the hypothesisthat (m)|/¢(m) converges. Finally

> fm)Hn(@) < Y f(m { +°<m7$@>>} B

m<z m<z

Z ) + o(m ()

by Lemma 1, choosing = log!'/® z. This completes the proof of (a).
(b) Note that sincg(n) > 0

Y fm)Hp(x)= Y f(m)Hu(x).

m<(logz)1/4

Now we apply the result of Murata and deduce that the previous sum is

> s (6 - O ")) 7o)

m<(logx)

= (Z Fm) o<1>> () - 0(”“lggﬂ > f<m>m6)
n=1 m<(log z)1/4

and this completes the proof singe, _, f(m)m® < 3+
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(c) As we did in the proof of (a) we split the sum

@) Y fm)Hp(z) =Y fm)Hn(x)+ Y f(m)Hu(z)+ Y f(m)Hy(z).
m=1

m<z z<m<y m>y
By Lemma 3
N Fm)Ho (@) <
m<z
x 1/27. .2
< 1 1
< ngzf(m) <5m7T(J:) + O(map(m) Tog 7loglog 7 + z/%log” xlog m))

= Z f(m)dpm(z) + o(m(x))+ O(z log®™ z 21/2 log? x)

If we setz = 21/2/1og® " &, the error term in the above sum i&z)).
To deal with the last sum in (4) we proceed as we did in the proof of (a) and we get

.’Ii2 C 1‘2
mZzyf(m)Hm(m) < {{3%\ f(m) |m < log ® T log(@/3)
which is d(z))if we sety = 2/21og¢+Y/2 .
Finally the middle sum in (4) is
S fmHa@ < Y fmaemy < Y Ll
z<m<y z<m<y z<m<y (p(m)

by the hypothesis oii and the Brun-Titchmarsh Theorem. This completes the proofm

2. Applications

Supposes C N andyg is the characteristic function &f. If we let
Ws(x) = # {p <z | ip € S} = Z Xs(m)Hm(z)7
m=1
then by the Mbius inversion formula,

ms(x) = Z
n=1

s(n)m(z,n)

>

where

Xs(n) =Y pln/m)xs(m)= Y u(n/m).

m|n m|n, meS
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If we assume GRH then, by Theorem 2.b, we have the lower bound

ms(@) 2 Y %i”)w(m).

n=1
If the sum overs € S of 1/p(s) converges, we have, by Theorem 2.a, the (unconditional)
upper bound

=<

ExAMPLE 1. Supposes = Pis theset of all rational primes. Then, ifv(n) is the
number of prime divisors of,

—p(n)r(n) if nis square free
Xe(n)= Y pn/l) = p(n) if 3lp € Pwith p°||n
tin, L prime 0 otherwise

Applying Theorem 2.b we get that (on GRH)
mp(z) = (0 + 0(1)) 7 (),

where a quick calculation shows that

>0 2 H(n /1) 2 -1
5P:Z K, :52 A2
n=1 I prime
Furthermore, note that by Mertens’ Theorem
1 log 1
Z < og Og.lf.
p—1 log x
V(log ) =€ 5 <p<y/x(log z)(C+1)/2

Therefore, applying Theorem 2.c, we have the following

COROLLARY 4. Assume GRH. Therp(x) ~ dpr(x).

The PARI 1.37 command (see [2])

A=0.;forprime(1=2,100000,q=1"2;A=A+(q-1)/(q*(q-1-1))) ; A*x0.3739558

gives an approximation fofp
%1 = 0.3870025833660499182018950757
while the PARI 1.37 command
C=0; forprime (1=3,200000,if (isprime ((1-1)/order (mod(2,1))),C=C+1,));C
calculates the number of odd primes up to 200000 such thatprime and its output is
%2 = 7019
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Sincew(200000) = 17984, we have

m(200000)

= 0.3902913701067615658362989323
7(200000)

ExaMPLE 2. Suppose that is a set of natural numbers such thai(n) is a
multiplicative function. Then

Cs (i) 1 ifa=0
e xs(1%) — xs(1*7) otherwise.

Applying Theorem 2.b we get that (on GRH}(z) = ds7(z), where a quick calculation
shows that

= Xs(n)
1 3xs(2) 4+ xs(4) 1 1 1+1 1
iz1 1 odd prime iz1
2teS 1tes

i) If Fy is the set ofc-free numbersthen

5Fk:<pk+1_4ki—1> 11 (1_m>

1 odd prime
where
1/2 ifk=1
pr=121/8 ifk=2
0 ifk>3.
In this case we note thgtr, (n) = u(m) if n = m* and0 otherwise. Hence the series
§ () lm)
n=1 n m=1 mk

converges. Therefore, by Theorem 1.b, we have the following

COROLLARY 5. The asymptotic formulag, (x) ~ dp, 7(z) holds unconditionally.

The PARI 1.37 command
F=0.875;forprime (1=3,100000,F=F*(1-1/((1-1)*1"3)));F
gives an approximation fofr,
%3 = 0.8565404448535421984682105482
while the PARI 1.37 command
A=0;forprime(1=3,200000,1if (issqfree((1-1)/order (mod(2,1))),A=A+1,));A
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calculates the number of odd primes up to 200000 suchi jhiessquare-free and its output is

%4 = 15430
Sincer(200000) = 17984, we have
7, (200000)
——————— = (.8579848754448398576512455515.
7(200000)

i) If Gy, is the set ofk-full numbers then

1 12k=2 1
o= () JL 0 s)

1 odd prime
where
0 ifk=1
=14 3/8 ifk=2
1/2 if k> 3.
Since the sum of the reciprocals/efull numbers converges (fdr > 2), by Theorem
2.awe have

COROLLARY 6. We haverng, (z) 2 dg,m(z) on GRH, andng, (v) Sd¢, m(x)
unconditionally.

iii) If Py isthe set ofc-powers(k > 1) then

= (vr) (i)

1 odd prime

wherer is as above. Since the sum of the reciprocalé-@owers converges (for
k > 2), by Theorem 2.b we have

CoROLLARY 7. We haverp, (x)2 dp m(x) on GRH, andnp, (z) Sdp, 7(x)
unconditionally.

The PARI 1.37 command
G=0.575;forprime(1=3,100000,G=G*(1-(1"2+1)/(174-1))) ;G
gives an approximation fof,
%5 = 0.4398154555775779797707734332
while the PARI 1.37 command
B=0;forprime(1=3,200000,if (issquare((1-1)/order (mod(2,1))),B=B+1,));B
calculates the number of odd primes up to 200000 suchithita perfect square and its
output is
%6 = 7898
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Sincew(200000) = 17984, we have

76, (200000)

= 0.4391681494661921708185053380.
7(200000)

ExXAMPLE 3. Suppose thab(b,a) is thearithmetic progression {a,a + b,a +
2b, ...} where for simplicity we assumeandb coprime. By Theorem 2.b, we have on GRH
the lower bound

#{p <z|i,=a(modd)} > d,pm(z)

where

m=1,

m=a (MOdb)
To deduce the upper bound it suffices to write

#{p <z |ip =a(modb)}

=7(z)—1— > #{p < |ip,=c(modb)} - > m(x,d)

c(modb), (c,b)=1, c#b d|b
and apply Theorem 2.b and the Chebotarev Density Theorem to the right hand side. Hence,
performing the computation, we can deduce the following

COROLLARY 8. On GRH we have the asymptotic formula

#p<aliy=a(modd)} ~duyr(e)  with  Oup— Lb S X@ by,
('0( ) x (modb)

where the sum is extended to all the Dirichlet characters (f)ahd

(1 x(@)KE2) —x(2) +12) I —x0)
5= (3 o) lodppﬂme(l T

Note that ify is the principal character (mdd, then
o =Tt i)
If b = 3 thend,,, = 5/6 and the non-principal character is
0 if 3n
x1(n) = 1 if n=1(mod)
-1 if n=2(mod)
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so that
3 2
6X1 = 3n H (1 - 72> )
20 1 odd primel=2(mod3) (l - 1)(l + 1)
Finally
5 1 5 1
61,3 - E + 56)(1 and 5273 = E —_ 56)(1

Using PARI we get approximations
(51’3 = 0.4819 and 52’3 =0.3514

while

T5(3,1)(200000) T5(3,2)(200000)
——~ ~0.4693 and ——————~ ~ 0.3645.

7(200000) AN = 200000)
EXAMPLE 4. Suppose thaf(n) = logn. E. Bach, R. Lukes, J. Shallit and H. C.

Williams in [1] consider the suh_ _ log ).
Since}_ ,,, 1(d) log(n/d) is the von Mangoldt functiom\(n), by Theorem 1.a we

have unconditionally the lower bound

(5) > logiy, 2 6pm(x)

p<z

where

n=1 n m=1

= Z Aln) Z log m)d,,

Furthermore, note that

oo
A(n) qlogq 1

) = > ATEL o log2
Fn e @ — 1 N Z—1) T21®

n=1

as predicted in [1].
We are unable to deduce an upper bound of the ¢yge) for the sum in (5) even on
GRH. However

ProprosITION 9. Assume GRH. Then

log1
Zlog p<< x 10g Og.’L’l

ot log
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Proof. We have seen that

Zlogip = Z An)m(x,n) =

p<z n<x

— Z A(n)w(z,n) + Z A(n)m(z,n).

n<yx/log?x vz /log? x<n<z

By the Chebotarev Density Theorem the first sum above is (on GRH)

< > logn{ x +O(\/Elog:cn)}<<7r(x),

n2logx
n<yx/log?
while the second sum equals
(6) > loggm(eag)+ Y. loggm(z,q®).
q>\/x/log® x q>>\/z/log? z,a>1
The second sum in (6) is

z log q
< Z log q o <Lz Z = < (),
q>/x/log? z,a>1 q>/z/log® x

while the first sum in (6) equals
(7) > loggm(z,q)+ > loggm(z,q).
Vz/log? x<q<\/xlog x q>+/xlogx

We bound the second sum in (7) with

#<4q [gdvides ] @"-1) p-logz < n(x).
m<y/z/ log

Finally the first sum in (7), by the Brun-Titchmarsh Theorem and the Mertens’ formula, is

lo loglo
Z 2q <<~’U g 10g &

< 1 1

Vz/log® x<q</zlogx Vz/log? x<q<\/zlogz

and this ends the proof. m
We mention that Theorem 2.c implies thalfifm) = o(log ™" (m)), then (on GRH)

> flip) ~ (Z f(m)5m> ().

p<z m=1
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3. Conclusion

The results in the present paper can be generalized to the caseiyhergd,(a)

with a any integer. The computation would be affected by the corresponding formula for

K, = [Q(¢n, al/n)7 Ql.
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