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ON MULTIPLICATIVELY DEPENDENT VECTORS

OF ALGEBRAIC NUMBERS

FRANCESCO PAPPALARDI, MIN SHA, IGOR E. SHPARLINSKI,
AND CAMERON L. STEWART

Abstract. In this paper, we give several asymptotic formulas for the number
of multiplicatively dependent vectors of algebraic numbers of fixed degree, or
within a fixed number field, and bounded height.

1. Introduction

1.1. Background. Let n be a positive integer, and let G be a multiplicative group,
and let ν = (ν1, . . . , νn) be in Gn. We say that ν is multiplicatively dependent if
there is a non-zero vector k = (k1, . . . , kn) ∈ Zn for which

(1.1) νk = νk1
1 · · · νkn

n = 1.

We denote by Mn(G) the set of multiplicatively dependent vectors in Gn.
For instance, the set Mn(C

∗) of multiplicatively dependent vectors in (C∗)n is
of Lebesgue measure zero, since it is a countable union of sets of measure zero. In
fact, the ongoing project [24] aims at studying in detail the density of these vectors.
Further, if we fix an exponent vector k the subvariety of (C∗)n determined by (1.1)
is an algebraic subgroup of (C∗)n.

For multiplicatively dependent vectors of algebraic numbers there are two kinds
of questions which have been extensively studied. The first question concerns the
exponents in (1.1). Given a multiplicatively dependent vector ν it follows from
the work of Loxton and van der Poorten [14, 21], Matveev [18], and Loher and
Masser [13, Corollary 3.2] (attributed to K. Yu) that there is a relation of the
form (1.1) with a non-zero vector k with small coordinates. The second question
is to find comparison relations among the heights of the coordinates. For example,
Stewart [27, Theorem 1] has given an inequality for the heights of the coordinates
of such a vector (of low multiplicative rank, in the terminology of Section 1.2), and
a lower bound for the sum of the heights of the coordinates is implied in [28].
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In this paper, we obtain several asymptotic formulas for the number of mul-
tiplicatively dependent n-tuples whose coordinates are algebraic numbers of fixed
degree, or within a fixed number field, and bounded height. Equivalently (see [23]),
we count n-tuples of algebraic numbers in a fixed algebraic number field, or of fixed
degree, and given height which occur in some proper algebraic subgroup of the
algebraic group Gn

m, where Gm is the multiplicative group of an algebraic closure
of Q. Aside from the results mentioned above, to the best of our knowledge, this
natural question has never been addressed in the literature.

We remark that the above question is interesting in its own right, but is also
partially motivated by the works [20,25], where multiplicatively independent vectors
play an important role.

1.2. Rank of multiplicative independence. The following notion plays a cru-
cial role in our argument and is also of independent interest.

Let Q be an algebraic closure of the rational numbers Q. For each ν in (Q
∗
)n,

we define s, the multiplicative rank of ν, in the following way. If ν has a coordinate
which is a root of unity, we put s = 0; otherwise let s be the largest integer with
1 ≤ s ≤ n for which any s coordinates of ν form a multiplicatively independent
vector. Notice that

(1.2) 0 ≤ s ≤ n− 1

whenever ν is multiplicatively dependent.

1.3. Conventions and notation. For any algebraic number α, let

f(x) = adx
d + · · ·+ a1x+ a0

be the minimal polynomial of α over the integers Z (so with content 1 and positive
leading coefficient). Suppose that f is factored as

f(x) = ad(x− α1) · · · (x− αd)

over the complex numbers C. The naive height H0(α) of α is given by

H0(α) = max{|ad|, . . . , |a1|, |a0|},
and H(α), the height of α, also known as the absolute Weil height of α, is defined
by

H(α) =

(
ad

d∏
i=1

max{1, |αi|}
)1/d

.

Let K be a number field of degree d (over Q). We use the following standard
notation:

• r1 and r2 for the number of real and pairs of complex conjugate embeddings
of K, respectively, and r = r1 + r2 − 1;

• D,h,R, and ζK for the discriminant, class number, regulator, and Dedekind
zeta function of K, respectively;

• w for the number of roots of unity in K.

Note that r is exactly the rank of the unit group of the ring of algebraic integers
of K. As usual, let ζ(s) be the Riemann zeta function.

For any real number x, let �x� denote the smallest integer greater than or equal
to x, and let �x� denote the greatest integer less than or equal to x.
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MULTIPLICATIVELY DEPENDENT VECTORS 6223

We always implicitly assume that H is large enough, in particular so that the
logarithmic expressions logH and log logH are well-defined.

In the sequel, we use the Landau symbols O and o and the Vinogradov symbol
�. We recall that the assertions U = O(V ) and U � V are both equivalent to
the inequality |U | ≤ cV with some positive constant c, while U = o(V ) means that
U/V → 0. We also use the asymptotic notation ∼.

For a finite set S we use |S| to denote its cardinality.
Throughout the paper, the implied constants in the symbols O and � only

depend on the given number field K, the given degree d, or the dimension n.

1.4. Counting vectors within a number field. Let K be a number field of
degree d. Denote the set of algebraic integers of K of height at most H by BK(H)
and the set of algebraic numbers of K of height at most H by B∗

K(H). Set

BK(H) = |BK(H)| and B∗
K(H) = |B∗

K(H)| .
Put

C1(K) =
2r1(2π)

r2dr

|D|1/2r! .

It follows directly from the work of Widmer [31, Theorem 1.1] (taking n = e = 1
there) that

(1.3) BK(H) = C1(K)Hd(logH)r +O
(
Hd(logH)r−1

)
.

If r = 0, then (1.3) can be improved to (see [2, Theorem 1.1])

(1.4) BK(H) = C1(K)Hd +O(Hd−1).

We remark that the estimate in (1.3) is stated in [12, Chapter 3, Theorem 5.2]
without the explicit constant C1(K), and moreover Barroero [3] has obtained similar
estimates for the number of algebraic S-integers with fixed degree and bounded
height.

Define

C2(K) =
22r1(2π)2r22rhR

|D|wζK(2)
.

Schanuel [22, Corollary to Theorem 3] proved in 1979 (see also [17, equation (1.5)])
that

(1.5) B∗
K(H) = C2(K)H2d +O

(
H2d−1(logH)σ(d)

)
,

where σ(1) = 1 and σ(d) = 0 for d > 1. Note that the height in [22] is our height
to the power d.

For any positive integer n, we denote by Ln,K(H) the number of multiplicatively
dependent n-tuples whose coordinates are algebraic integers of height at most H,
and we denote by L∗

n,K(H) the number of multiplicatively dependent n-tuples whose
coordinates are algebraic numbers of height at most H.

Put

C3(n,K) =
n(n+ 1)

2
wC1(K)n−1.

Theorem 1.1. Let K be a number field of degree d over Q and let n be an integer
with n ≥ 2. We have

Ln,K(H) = C3(n,K)Hd(n−1)(logH)r(n−1)

+O
(
Hd(n−1)(logH)r(n−1)−1

)
.

(1.6)
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If furthermore K = Q or is an imaginary quadratic field, we have

(1.7) Ln,K(H) = C3(n,K)Hd(n−1) +O
(
Hd(n−3/2)

)
.

We remark that when K = Q a better error term than that given in (1.7) is
stated in Theorem 1.4 below; more precisely, see (1.16).

We estimate L∗
n,K(H) next. Put

C4(n,K) = n2wC2(K)n−1.

Theorem 1.2. Let K be a number field of degree d, and let n be an integer with
n ≥ 2. Then, we have

(1.8) L∗
n,K(H) = C4(n,K)H2d(n−1) +O

(
H2d(n−1)−1g(H)

)
,

where

g(H) =

⎧⎨
⎩

logH if d = 1 and n = 2,
exp(c logH/ log logH) if d = 1 and n > 2,
1 if d > 1 and n ≥ 2,

and c is a positive number depending only on n.

We now outline the strategy of the proofs. Given a number field K, we define
Ln,K,s(H) and L∗

n,K,s(H) to be the number of multiplicatively dependent n-tuples

of multiplicative rank s whose coordinates are algebraic integers in BK(H) and
algebraic numbers in B∗

K(H) respectively. It follows from (1.2) that

(1.9)

⎧⎨
⎩

Ln,K(H) = Ln,K,0(H) + · · ·+ Ln,K,n−1(H),

L∗
n,K(H) = L∗

n,K,0(H) + · · ·+ L∗
n,K,n−1(H).

The main term in (1.6) comes from the contributions of Ln,K,0(H) and Ln,K,1(H)
in (1.9), and the main term in Theorem 1.2 comes from the contributions of
L∗
n,K,0(H) and L∗

n,K,1(H) in (1.9). To prove Theorems 1.1 and 1.2, we make use

of (1.9) and the following result.

Proposition 1.3. Let K be a number field of degree d. Let n and s be integers
with n ≥ 2 and 0 ≤ s ≤ n− 1. Then, there exist positive numbers c1 and c2 which
depend on n and K, such that

(1.10) Ln,K,s(H) < Hd(n−1)−d(�(s+1)/2�−1) exp(c1 logH/ log logH)

and

(1.11) L∗
n,K,s(H) < H2d(n−1)−d(�(s+1)/2�−1) exp(c2 logH/ log logH).

In Section 5, we show that when s = n−1 (1.10) cannot be improved by much; see
Theorems 5.2 and 5.4. In particular, it does not hold with exp(c1 logH/ log logH)

replaced by a quantity which is o((logH)(k−1)2), where K = Q and n = 2k.

1.5. Counting vectors of fixed degree. Let d be a positive integer, and let
Ad(H), respectively A∗

d(H), be the set of algebraic integers of degree d (over Q),
respectively algebraic numbers of degree d, of height at most H. We set

Ad(H) = |Ad(H)| and A∗
d(H) = |A∗

d(H)| .
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Put

C5(d) = d2d
�(d−1)/2�∏

j=1

d(2j)d−2j−1

(2j + 1)d−2j

and

C6(d) =
d2d

ζ(d+ 1)

�(d−1)/2�∏
j=1

(d+ 1)(2j)d−2j

(2j + 1)d−2j+1
.

It follows from the work of Barroero [2, Theorem 1.1] that (see also [2, equa-
tion (1.2)] for a previous estimate with a weaker error term which follows from [6,
Theorem 6])

(1.12) Ad(H) = C5(d)H
d2

+O
(
Hd(d−1)(logH)ρ(d)

)
,

where ρ(2) = 1 and ρ(d) = 0 for any d �= 2.
Further, Masser and Vaaler [16, equation (7)] have shown that (see also [17,

equation (1.5)])

(1.13) A∗
d(H) = C6(d)H

d(d+1) +O
(
Hd2

(logH)ϑ(d)
)
,

where ϑ(1) = ϑ(2) = 1 and ϑ(d) = 0 for any d ≥ 3.
For any positive integer n, we denote by Mn,d(H) the number of multiplica-

tively dependent n-tuples whose coordinates are algebraic integers in Ad(H), and
we denote by M∗

n,d(H) the number of multiplicatively dependent n-tuples whose

coordinates are algebraic numbers in A∗
d(H).

For each positive integer d, we define w0(d) to be the number of roots of unity
of degree d. Let ϕ denote Euler’s totient function. Since ϕ(k)  k/ log log k for
any integer k ≥ 3, it follows that

(1.14) w0(d) � d2 log log d,

where d ≥ 3 and the implied constant is absolute. We remark that w0(d) can be
zero, such as for an odd integer d > 1.

Given positive integers n and d, we define C7(n, d) and C8(n, d) as

C7(n, d) = (nw0(d) + n(n− 1))C5(d)
n−1

and

C8(n, d) = (nw0(d) + 2n(n− 1))C6(d)
n−1.

Theorem 1.4. Let d and n be positive integers with n ≥ 2. Then, the following
hold.

(i) We have

(1.15) Mn,d(H) = C7(n, d)H
d2(n−1) +O

(
Hd2(n−1)−d/2

)
.

Furthermore if d = 2 or d is odd, we have

Mn,d(H) = C7(n, d)H
d2(n−1)

+O
(
Hd2(n−1)−d exp(c0 logH/ log logH)

)(1.16)

and

(1.17) M2,d(H) = C7(2, d)H
d2

+O
(
Hd2−d(logH)ρ(d)

)
,
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where c0 is a positive number which depends only on n and d, and ρ(d) has
been defined in (1.12).

(ii) We have

(1.18) M∗
n,d(H) = C8(n, d)H

d(d+1)(n−1) +O
(
Hd(d+1)(n−1)−d/2 logH

)
.

Furthermore if d = 2 or d is odd, we have

M∗
n,d(H) = C8(n, d)H

d(d+1)(n−1)

+O
(
Hd(d+1)(n−1)−d exp(c logH/ log logH)

)(1.19)

and

(1.20) M∗
2,d(H) = C8(2, d)H

d(d+1) +O
(
Hd2

(logH)ϑ(d)
)
,

where c is a positive number which depends only on n and d, and ϑ(d) is
defined in (1.13).

We remark that the case when d = 1 actually has been included in Theorems 1.1
and 1.2. However, in this case the error term in (1.16) is Hn−2+o(1), which is better
than that in (1.7) taken with d = 1.

The strategy to prove Theorem 1.4 is similar to that in proving Theorems 1.1
and 1.2. For each integer s with 0 ≤ s ≤ n− 1, we define Mn,d,s(H) and M∗

n,d,s(H)
to be the number of multiplicatively dependent n-tuples of multiplicative rank s
whose coordinates are algebraic integers in Ad(H) and algebraic numbers in A∗

d(H)
respectively. Just as in (1.9) we have

(1.21)

⎧⎨
⎩

Mn,d(H) = Mn,d,0(H) + · · ·+Mn,d,n−1(H),

M∗
n,d(H) = M∗

n,d,0(H) + · · ·+M∗
n,d,n−1(H).

For the proof of Theorem 1.4, we make use of (1.21) and the following result.

Proposition 1.5. Let d, n, and s be integers with d ≥ 1, n ≥ 2, and 0 ≤ s ≤ n−1.
Then, there exist positive numbers c1 and c2, which depend on n and d, such that

(1.22) Mn,d,s(H) < Hd2(n−1)−d(�(s+1)/2�−1) exp(c1 logH/ log logH)

and

M∗
n,d,s(H) < Hd(d+1)(n−1)−d(�(s+1)/2�−1)

exp(c2 logH/ log logH).
(1.23)

We remark that the estimate (1.22) yields an improvement on the upper bound

of Hd2(n−1) and (1.23) yields an improvement of the upper bound Hd(d+1)(n−1) for
s at least 2.

2. Preliminaries

2.1. Weil height. We first record a well-known result about the absolute Weil
height; see [12, Chapter 3]. Let α be a non-zero algebraic number, and let k be an
integer. Then

(2.1) H(αk) = H(α)|k|.
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There is also a well-known comparison between the naive height H0 and the
absolute Weil height H; see [15, equation (6)]. Let α be an algebraic number of
degree d. Then

(2.2) H0(α) ≤ (2H(α))
d
.

For the proofs of Theorems 1.1 and 1.2, we need the following result.

Lemma 2.1. Let α be an algebraic number of degree d, and let a be the leading
coefficient of the minimal polynomial of α over the integers. Then

H(aα) ≤ 2d−1H(α)d.

Proof. By definition, we have

H(α) =

(
a

d∏
i=1

max{1, |αi|}
)1/d

,

where α1, . . . , αd are the roots of the minimal polynomial of α. Then, aα is an
algebraic integer, and

H(aα) =

(
d∏

i=1

max{1, |aαi|}
)1/d

.

Thus

H(aα)d ≤ ad
d∏

i=1

max{1, |αi|} = ad−1H(α)d,

which, together with (2.2), implies that

H(aα)d ≤ (2H(α))
d(d−1)

H(α)d = 2d(d−1)H(α)d
2

,

and so

H(aα) ≤ 2d−1H(α)d

as required. �

2.2. Multiplicative structure of algebraic numbers. Let K be a number field,
and let H be a positive real number. We denote by UK(H) the number of units in
the ring of algebraic integers of K of height at most H.

Lemma 2.2. Let K be a number field, and let r be the rank of the unit group as
defined in Section 1.3. Then, there exists a positive number c, depending on K,
such that

UK(H) < c(logH)r.

Proof. This is [12, part (ii) of Theorem 5.2 of Chapter 3]. �

The next result shows that if algebraic numbers α1, . . . , αn are multiplicatively
dependent, then we can find a relation as (1.1), where the exponents are not too
large. Such a result has found application in transcendence theory; see for exam-
ple [1, 18, 21, 26].
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Lemma 2.3. Let n ≥ 2, and let α1, . . . , αn be multiplicatively dependent non-zero
algebraic numbers of degree at most d and height at most H. Then, there is a
positive number c, which depends only on n and d, and there are rational integers
k1, . . . , kn, not all zero, such that

αk1
1 · · ·αkn

n = 1

and

max
1≤i≤n

|ki| < c(logH)n−1.

Proof. This follows from [21, Theorem 1]. For an explicit constant c, we refer
to [13, Corollary 3.2]. �

Let x and y be positive real numbers with y larger than 2, and let ψ(x, y) denote
the number of positive integers not exceeding x which contain no prime factors
greater than y. Put

Z =

(
log

(
1 +

y

log x

))
log x

log y
+

(
log

(
1 +

log x

y

))
y

log y

and

u = (log x)/(log y).

Lemma 2.4. For 2 < y ≤ x, we have

ψ(x, y)

= exp
(
Z
(
1 + O((log y)−1) +O((log log x)−1) +O((u+ 1)−1)

))
.

Proof. This is [4, Theorem 1]. �

2.3. Counting special algebraic numbers. In this section, we count two special
kinds of algebraic numbers.

Lemma 2.5. Let K be a number field of degree d, and let u and v be non-zero
integers with u > 0. Then, there is a positive number c, which depends on K, such
that the number of elements α in K of height at most H, whose minimal polynomial
has leading coefficient u and constant coefficient v, is at most

exp(c logH/ log logH).

Proof. Let c1, c2, . . . denote positive numbers depending on K. Let NK/Q be the
norm function from K to Q. Suppose that α is an element of K of height at most
H whose minimal polynomial has leading coefficient u and constant coefficient v.
Then, we see that uα is an algebraic integer in K and

NK/Q(α) = (−1)dv/u and NK/Q(uα) = (−1)dud−1v.

By Lemma 2.1, we further have H(uα) ≤ 2d−1Hd. Note that u is fixed, so the
number of such α does not exceed the number of algebraic integers β ∈ K of height
at most 2d−1Hd and satisfying

(2.3) NK/Q(β) = (−1)dud−1v.

We say that two algebraic integers β1 and β2 in K are equivalent if the prin-
cipal integral ideals 〈β1〉 and 〈β2〉 are equal. We note that, using [5, Chapter 3,
equation (7.8)], the number E of equivalence classes of solutions of (2.3) is at most
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τ (|ud−1v|)d, where, for any positive integer k, τ (k) denotes the number of positive
integers which divide k. By Wigert’s Theorem (see [11, Theorem 317]),

(2.4) E < exp (c1 log(3|uv|)/ log log(3|uv|)) .
Further by (2.2) u and v are at most (2H)d in absolute value, hence

(2.5) E < exp(c2 logH/ log logH).

Besides, if two solutions β1 and β2 of (2.3) are equivalent, then β1/β2 is a unit
η in the ring of algebraic integers of K. But

H(η) ≤ H(β1)H((β2)
−1) ≤ 22(d−1)H2d.

By Lemma 2.2 the number of such units is at most

(2.6) UK(22(d−1)H2d) ≤ c3(logH)r.

Our result now follows from (2.5) and (2.6). �

We remark that if we set u = 1, then Lemma 2.5 gives an upper bound for the
number of algebraic integers in K of norm ±v and of height at most H.

Given integer d ≥ 1, let C∗
d(H) be the set of algebraic numbers α of degree d and

height at most H such that αη is also of degree d for some root of unity η �= ±1,
and let Cd(H) be the set of algebraic integers contained in C∗

d(H). Here, we want
to estimate the sizes of Cd(H) and C∗

d(H).
For this we need some preparation. Given a polynomial f = adX

d+ · · ·+a1X+
a0 ∈ Q[X] of degree d, we call it degenerate if it has two distinct roots whose
quotient is a root of unity. Besides, we define its height as

H(f) = max{|ad|, . . . , |a1|, |a0|},
and we denote by Gf the Galois group of the splitting field of f over Q. Let Sd be
the full symmetric group on d symbols.

Define

Ed(H) = {monic f ∈ Z[X] of degree d : H(f) ≤ H and Gf �= Sd}
and

E∗
d (H) = {f ∈ Z[X] of degree d : H(f) ≤ H and Gf �= Sd}.

The study of the sizes of Ed(H) and E∗
d (H) was initiated by van der Waerden [29].

Here, we recall a recent result due to Dietmann [8, Theorem 1]:

(2.7) |Ed(H)| � Hd−1/2.

Besides, by a result of Cohen [7, Theorem 1] (taking K = Q, s = n+ 1, and r = 1
there), we directly have

(2.8) |E∗
d (H)| � Hd+1/2 logH.

We also put

Fd(H) = {monic f ∈ Z[X] of degree d : H(f) ≤ H, f is degenerate}
and

F∗
d (H) = {f ∈ Z[X] of degree d : H(f) ≤ H, f is degenerate}.

Applying [10, Theorems 1 and 4], we have

(2.9) |Fd(H)| � Hd−1 and |F∗
d (H)| � Hd.

We are now ready to prove the following lemma.
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Lemma 2.6. We have

(i) for any integer d ≥ 1,

|Cd(H)| � Hd(d−1/2) and |C∗
d(H)| � Hd(d+1/2) logH;

(ii) for d = 2 or for d odd,

|Cd(H)| � Hd(d−1) and |C∗
d(H)| � Hd2

.

Proof. Pick an arbitrary element α ∈ Cd(H). We let f be its minimal polynomial
over Z, and let the d roots of f be α1, . . . , αd with α1 = α. Since α is of height at
most H, by (2.2) we have

H(f) ≤ (2H)d.

By definition, there is a root of unity η �= ±1 such that αη is also of degree d.
If η ∈ Q(α), then under an isomorphism sending α to αi, η is mapped to one of its
conjugates ηi in Q(αi), which implies that η ∈ Q(αi) for any 1 ≤ i ≤ d. Indeed, the
image ηi of η in Q(αi) multiplicatively generates the same group as η, and thus η

is a power of ηi, so η ∈ Q(αi). Hence,
⋂d

i=1 Q(αi) �= Q, so we must have Gf �= Sd,
that is,

(2.10) f ∈ Ed((2H)d).

Furthermore, since f is irreducible, in this case d �= 2. We also note that since η is
of even degree ϕ(k), where k > 2 is the smallest positive integer with ηk = 1, this
case does not happen when d is odd.

Now, we assume that η �∈ Q(α). Let K = Q(η, α1, . . . , αd), and let G be the
Galois group Gal(K/Q), whereK is indeed a Galois extension over Q. We construct

a disjoint union G =
⋃d

i=1 Gi, where

Gi = {φ ∈ G : φ(α) = αi}.

So, for each 1 ≤ i ≤ d,

Giαη = {φ(αη) : φ ∈ Gi} = {αiφ(η) : φ ∈ Gi}.

Since αη is of degree d, we have

(2.11)

∣∣∣∣∣
d⋃

i=1

Giαη

∣∣∣∣∣ = d.

Note that α1 = α; then G1 = Gal(K/Q(α)). Since η �∈ Q(α), there exist two
morphisms φ1, φ2 ∈ G1 such that φ1(η) �= φ2(η). That is, |G1αη| ≥ 2. Trivially,
|Giαη| ≥ 1 for 2 ≤ i ≤ d. We now see from (2.11) that there are two distinct
indices i, j such that Giαη ∩Gjαη �= ∅, which implies that αi/αj is a root of unity
and thus f is degenerate, that is,

(2.12) f ∈ Fd((2H)d).

Hence, if α ∈ Cd(H), then we have either (2.10) or (2.12). So, combining (2.7)
with (2.9), we derive the first inequality in (i). If d = 2 or d is odd, by the above dis-
cussion we always have (2.12), and thus the first inequality in (ii) follows from (2.9).
Similar arguments also apply to estimate |C∗

d(H)| by using (2.8) and (2.9). �
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3. Proofs of Propositions 1.3 and 1.5

3.1. Proof of Proposition 1.3. Let c3, c4, . . . denote positive numbers depend-
ing on n and K. Let ν = (ν1, . . . , νn) be a multiplicatively dependent vector of
multiplicative rank s whose coordinates are from K and have height at most H.
Set m = s + 1. Then, there are m distinct integers j1, . . . , jm from {1, . . . , n} for
which νj1 , . . . , νjm are multiplicatively dependent, and there are non-zero integers
kj1 , . . . , kjm for which

(3.1) ν
kj1
j1

· · · νkjm
jm

= 1,

and further, by Lemma 2.3, we can assume that

(3.2) max{|kj1 |, . . . , |kjm |} < c3(logH)m−1.

Let P be the set of indices i for which ki is positive, and let N be the set of indices
i for which ki is negative. Then

(3.3)
∏
i∈P

νki
i =

∏
i∈N

ν−ki
i .

Plainly, either |P | or |N | is at least �m/2�.
Let I = {j1, . . . , jm}, and let I0 be the subset of I consisting of the indices i

for which ki is positive if |P | ≥ �m/2�, and otherwise let I0 be the subset of I
consisting of the indices i for which ki is negative. Note that

(3.4) |I0| ≥
⌈m
2

⌉
.

It follows from (3.3) that

(3.5)
∏
i∈I0

ν
|ki|
i =

∏
i∈I\I0

ν
|ki|
i .

For each coordinate νi, i ∈ I, let ai be the leading coefficient of the minimal
polynomial of νi over the integers. Note that aiνi is an algebraic integer and that
we can rewrite (3.5) as

(3.6)
∏
i∈I0

(aiνi)
|ki| =

∏
i∈I0

a
|ki|
i

∏
i∈I\I0

ν
|ki|
i .

We first establish (1.10). Accordingly, we fix non-zero algebraic integers νi ∈
BK(H) for i from {1, . . . , n}\I0 and estimate the number of solutions of (3.5) in
algebraic integers νi, i ∈ I0, from BK(H). Observe that the number of cases when
we consider an equation of the form (3.5) is, by (3.2), at most(

n

m

)(
2c3(logH)(m−1)

)m

BK(H)n−|I0|

and, by (1.3) and (3.4), is at most

(3.7) c4H
d(n−�m/2�)(logH)c5 .

Let q1, . . . , qt be the primes which divide∏
i∈I\I0

NK/Q(νi),
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where NK/Q is the norm from K to Q. Since the height of νi is at most H, it follows
from (2.2) that

(3.8) |NK/Q(νi)| ≤ (2H)d, i = 1, 2, . . . , n,

and since |I\I0| ≤ n, we see that

(3.9)

∣∣∣∣∣∣
∏

i∈I\I0

NK/Q(νi)

∣∣∣∣∣∣ ≤ (2H)dn.

Let p1, . . . , pk be the first k primes, where k satisfies

p1 · · · pk ≤

∣∣∣∣∣∣
∏

i∈I\I0

NK/Q(νi)

∣∣∣∣∣∣ < p1 · · · pk+1.

Let T denote the number of positive integers up to (2H)d which are composed only
of primes from {q1, . . . , qt}. We see that T is bounded from above by the number
of positive integers up to (2H)d which are composed of primes from {p1, . . . , pk}.
By (3.9), we obtain ∑

prime p ≤ pk

log p � logH,

which, combined with the prime number theorem, yields

pk < c6 logH.

Therefore we have

T ≤ ψ
(
(2H)d, c6 logH

)
,

and thus by Lemma 2.4,

(3.10) T < exp(c7 logH/ log logH).

It follows that if (νi, i ∈ I0) is a solution of (3.5), then |NK/Q(νi)| is composed
only of primes from {q1, . . . , qt}, and so NK/Q(νi) is one of at most 2T integers of

absolute value at most (2H)d. Let a be one of those integers.
By Lemma 2.5, the number of algebraic integers α from K of height at most H

for which

(3.11) NK/Q(α) = a

is at most exp(c8 logH/ log logH). Therefore, by (3.10) and (3.11), the number of
|I0|-tuples (νi, i ∈ I0) that give a solution of (3.5) is at most exp(c9 logH/ log logH).
Recalling m = s+ 1, we see that our bound (1.10) now follows from (3.7).

We now establish (1.11). We first remark by (2.2) and Lemma 2.1 that

(3.12) 0 < ai ≤ (2H)d

and

(3.13) H(aiνi) ≤ 2d−1Hd,

for i = 1, . . . , n. Moreover, without loss of generality we can assume that I \ I0 is
not empty. Indeed, if I \ I0 is empty, then we can replace an arbitrary coordinate
νi, i ∈ I, by its inverse ν−1

i .
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In view of (3.6), we proceed by fixing ai for i in I0 and νi for i in {1, . . . , n}\I.
Since I\I0 is non-empty, say that it contains i1. We further fix νi for i in I\I0 with
i �= i1, and then the corresponding leading coefficient ai is also fixed. Let

β =
∏
i∈I0

a
|ki|
i

∏
i∈I\I0
i 	=i1

(aiνi)
|ki|,

which is actually a fixed non-zero algebraic integer; then NK/Q(β) is a fixed non-
zero integer. Note that the left-hand side of (3.6) is an algebraic integer, so βνi1
is an algebraic integer, and then NK/Q(βνi1) is also an algebraic integer. Thus,
the leading coefficient ai1 divides NK/Q(β). It follows that the prime factors of ai1
divide ∏

i∈I0

ai
∏

i∈I\I0
i 	=i1

NK/Q(aiνi).

Since the heights of ν1, . . . , νn are at most H, we see, as in the proof of the es-
timate (3.10), that there are at most exp(c10 logH/ log logH) possibilities for the
leading coefficient ai1 . Note that by (2.2) there are at most 2(2H)d possibilities
for the constant coefficient of the minimal polynomial of νi1 . Thus, by Lemma 2.5,
there are at most

(3.14) Hd exp(c11 logH/ log logH)

possible values of νi1 that we need to consider. In total we have, by (1.5), (3.12),
and (3.14), at most(

n

m

)(
2c3(logH)(m−1)

)m

(2H)d|I0|H2d(n−|I0|−1)Hd

exp(c11 logH/ log logH)

equations of the form (3.6). Since |I0| ≥ �m
2 �, the number of such equations is at

most

(3.15) H2dn−d(�m
2 �+1) exp(c12 logH/ log logH).

Let us put

(3.16) γ0 =
∏
i∈I0

a
|ki|
i

∏
i∈I\I0

(aiνi)
|ki|

and

γ1 =
∏

i∈I\I0

a
|ki|
i .

Notice that once νi is fixed for i in I\I0, so is ai, and thus γ1 is fixed. Then, (3.6)
can be rewritten as

(3.17) γ1
∏
i∈I0

(aiνi)
|ki| = γ0,

and we seek an estimate for the number of solutions of (3.17) in algebraic numbers
νi from B∗

K(H) with leading coefficient ai for i ∈ I0.
Note that γ0 is an algebraic integer and γ1 is an integer. Let q1, . . . , qt be the

prime factors of ∏
i∈I0

ai
∏

i∈I\I0

NK/Q(aiνi).
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Then, by (3.16) and (3.17), for each index i ∈ I0 the prime factors of NK/Q(aiνi)
are from {q1, . . . , qt}. It follows from (3.12), (3.13), and (2.2) that∣∣∣∣∣∣

∏
i∈I0

ai
∏

i∈I\I0

NK/Q(aiνi)

∣∣∣∣∣∣ ≤ (2H)d|I0|(2dHd)d|I\I0| ≤ (2H)d
2n.

We can now argue as in our proof of (1.10) that the number of solutions of (3.17)
in algebraic integers aiνi, i ∈ I0, from K of height at most 2d−1Hd is at most
exp(c13 logH/ log logH). The result (1.11) now follows from (3.15).

3.2. Proof of Proposition 1.5. Let c3, c4, . . . denote positive numbers depending
on n and d. Let ν = (ν1, . . . , νn) be a multiplicatively dependent vector of multi-
plicative rank s whose coordinates are from A∗

d(H). Set m = s + 1. Then, there
are m distinct integers j1, . . . , jm from {1, . . . , n} for which νj1 , . . . , νjm are multi-
plicatively dependent, and there are non-zero integers kj1 , . . . , kjm for which (3.1)
holds, and by Lemma 2.3, we can suppose that (3.2) holds. Let I = {j1, . . . , jm}
and I0 be defined as in the proof of Proposition 1.3, so that (3.4) and (3.5) hold.

We first establish (1.22). Fixing non-zero algebraic integers νi ∈ Ad(H) for
i ∈ {1, . . . , n}\I0, we want to estimate the number of solutions of (3.5) in algebraic
integers νi ∈ Ad(H) for i ∈ I0. The number of cases when we consider an equation
of the form (3.5) is, by (3.2), at most(

n

m

)(
2c3(logH)m−1

)m
Ad(H)n−|I0|,

which, by (1.12), is at most

(3.18) c4H
d2(n−|I0|)(logH)m(m−1).

For each i ∈ I0, by (3.5) the prime factors of NQ(νi)/Q(νi) divide∏
j∈I\I0

NQ(νj)/Q(νj).

Exactly as in the proof of Proposition 1.3, we can apply (2.2) and Lemma 2.4
to conclude that, for i ∈ I0, NQ(νi)/Q(νi) is one of at most T integers, where, as
in (3.10),

T < exp(c5 logH/ log logH).

Then, estimating the number of possible choices of the minimal polynomial of νi
over the integers by using (2.2), we see that there are at most

(3.19) d
(
2(2H)d + 1

)d−1
exp(c5 logH/ log logH)

possible values of each νi for i ∈ I0. We now fix |I0|−1 of the terms νi with i in I0.
Let i0 ∈ I0 denote the index of the term which is not fixed. Then, νi0 is a solution
of

(3.20) x|ki0
| = η0,

where
η0 =

∏
i∈I0
i 	=i0

ν
−|ki|
i

∏
i∈I\I0

ν
|ki|
i .

If νi0 and μi0 are two solutions of (3.20) from Ad(H), then νi0/μi0 is a
|ki0 |-th root of unity. But the degree of νi0/μi0 is at most d2, and so there are
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at most c6 possibilities for νi0/μi0 when d is fixed. It follows from (3.19) that each
equation (3.5) has at most

(3.21) Hd(d−1)(|I0|−1) exp(c7 logH/ log logH)

solutions. Thus by (3.18) and (3.21), we have

(3.22) Mn,d,s(H) < Hd2(n−|I0|)+d(d−1)(|I0|−1) exp(c8 logH/ log logH).

Further, by (3.4),

(3.23) d2(n− |I0|) + d(d− 1)(|I0| − 1) ≤ d2(n− 1)− d
(⌈m

2

⌉
− 1

)
.

Now, (1.22) follows from (3.22) and (3.23).
We next establish (1.23). For each i ∈ I, let ai denote the leading coefficient of

the minimal polynomial of νi over the integers. Without loss of generality, we can
assume that I \ I0 is not empty. Indeed, if I \ I0 is empty, then we can replace an
arbitrary coordinate νi, i ∈ I, by its inverse ν−1

i .
In view of (3.6), we proceed by first fixing positive integers ai for i ∈ I0. Since

I\I0 is non-empty, say that it contains i1. We next fix νi for i in i ∈ {1, . . . , n}\I0
with i �= i1, and then the corresponding ai is also fixed. Let

β =
∏
i∈I0

a
|ki|
i

∏
i∈I\I0
i 	=i1

(aiνi)
|ki|,

which is a fixed non-zero algebraic integer. Notice that the left-hand side of (3.6)
is an algebraic integer, so βνi1 is also an algebraic integer, and thus as in the proof
of (1.11) the prime factors of the leading coefficient ai1 divide∏

i∈I0

ai
∏

i∈I\I0
i 	=i1

NQ(νi)/Q(aiνi).

Since the heights of ν1, . . . , νn are at most H and their degrees are all equal to d,
we see, as in the proof of (3.10), that there are at most exp(c9 logH/ log logH)
possibilities for the leading coefficient ai1 . Then, combining this result with (2.2),
we know that the number of the possibilities for the minimal polynomial of νi1 is
at most

Hd2

exp(c10 logH/ log logH).

Thus, there are at most

(3.24) Hd2

exp(c11 logH/ log logH)

possible values of νi1 that we need to consider.
Hence, the number of cases of the equation (3.6) to be considered is, by (3.2),

(3.12), and (3.24), at most(
n

m

)(
2c3(logH)m−1

)m
(2H)d|I0|A∗

d(H)n−|I0|−1Hd2

exp(c11 logH/ log logH),

which, by (1.13), is at most

(3.25) Hd(d+1)(n−|I0|−1)+d|I0|+d2

exp(c12 logH/ log logH).
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We now estimate the number of solutions of (3.6) in algebraic numbers νi ∈
A∗

d(H) for i ∈ I0 with minimal polynomial having leading coefficient ai. It follows
from (3.6) that for each i ∈ I0 the prime factors of NQ(νi)/Q(aiνi) divide∏

j∈I0

aj
∏

j∈I\I0

NQ(νj)/Q(ajνj).

Thus, by (2.2), Lemma 2.1, and Lemma 2.4, as in the proof of (3.10), there is a set
of at most T integers, where

T < exp(c13 logH/ log logH),

and NQ(νi)/Q(aiνi) belongs to that set. Since ai is fixed, the norm NQ(νi)/Q(νi) also
belongs to a set of cardinality at most T for i ∈ I0. Notice that for the minimal
polynomial of νi, i ∈ I0, if NQ(νi)/Q(νi) is fixed, then the constant coefficient is also
fixed, because the leading coefficient ai has already been fixed. Hence, counting
possible choices of the minimal polynomial of νi by using (2.2), we see that there
are at most

(3.26) Hd(d−1) exp(c14 logH/ log logH)

possible values of νi for i ∈ I0. We now fix |I0| − 1 of the coordinates νi with i ∈ I0
and argue as before to conclude from (3.26) that each equation (3.6) has at most

(3.27) Hd(d−1)(|I0|−1) exp(c15 logH/ log logH)

solutions. Thus, by (3.25) and (3.27), we obtain

M∗
n,d,s(H) < Hd(d+1)(n−|I0|−1)+d|I0|+d2+d(d−1)(|I0|−1)

exp(c16 logH/ log logH).
(3.28)

Observing that

d(d+ 1)(n− |I0| − 1) + d |I0|+ d2 + d(d− 1)(|I0| − 1)

= d(d+ 1)(n− 1)− d(|I0| − 1),

our result (1.23) now follows from (3.4) and (3.28).

4. Proof of main results

4.1. Proof of Theorem 1.1. By (1.9) and (1.10), there is a positive number c
which depends on n and K such that

Ln,K(H) = Ln,K,0(H) + Ln,K,1(H)

+O(Hd(n−1)−d exp(c logH/ log logH)).
(4.1)

Each such vector ν of multiplicative rank 0 has an index i0 for which νi0 is a
root of unity. Accordingly, we have

nw(BK(H)− w − 1)n−1 ≤ Ln,K,0(H) ≤ nwBK(H)n−1,

and thus by (1.3)

Ln,K,0(H) = nwC1(K)n−1Hd(n−1)(logH)r(n−1)

+O
(
Hd(n−1)(logH)r(n−1)−1

)
.

(4.2)

We next estimate Ln,K,1(H). Each such vector ν of rank 1 has a pair of indices
(i0, i1), two coordinates νi0 and νi1 from BK(H), and non-zero integers ki0 and ki1
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such that ν
ki0
i0

ν
ki1
i1

= 1. There are n(n − 1)/2 pairs (i0, i1). By Lemma 2.3, the
number of such vectors associated with two distinct such pairs (i0, i1) and (i2, i3)
is

(4.3) O
(
BK(H)n−2(logH)4

)
.

We now estimate the number of n-tuples ν whose coordinates are from BK(H)
for which

ν
ki0
i0

ν
ki1
i1

= 1

with (ki0 , ki1) equal to (t, t) or (t,−t) for some non-zero integer t. We have
(BK(H) − w − 1)n−2 choices for the coordinates of ν associated with indices dif-
ferent from i0 and i1, because they are non-zero and not roots of unity. Also there
are BK(H)−w− 1 choices for the i0-th coordinate, and once it is determined, say
νi0 , then the i1-th coordinate is of the form ηνi0 or ην−1

i0
, where η is a root of unity

from K. Note that

H(ηνi0) = H(νi0) = H(ην−1
i0

),

and that ην−1
i0

is only counted when νi0 is a unit in the ring of algebraic integers
of K. Thus, we have

(4.4) (BK(H)− w − 1)n−2 ((BK(H)− w − 1)w + (UK(H)− w)w)

such vectors of rank 1 associated with (i0, i1). So, by (1.3), (4.3), (4.4), and
Lemma 2.2, the number of such vectors of rank 1 associated with an exponent
vector k with ki0 = t, ki1 = ±t for t a non-zero integer is

n(n− 1)

2
wC1(K)n−1Hd(n−1)(logH)r(n−1)

+O
(
Hd(n−1)(logH)r(n−1)−1

)
.

(4.5)

It remains to estimate the number of such vectors of multiplicative rank 1 associ-
ated with an exponent vector k with ki0 = t1 and ki1 = t2 with t1 �= ±t2 and t1 and
t2 non-zero integers. Let ν1, ν2 ∈ BK(H) be associated with t1,−t2 respectively. In
this case

νt11 = νt22 .

We first consider the case when t1 and t2 are of opposite signs. Then, ν1 and ν2
are units in the ring of algebraic integers of K, and so by Lemma 2.2 the number
of such vectors is

(4.6) O
(
(logH)2rBK(H)n−2

)
.

It remains to consider the case when t1 and t2 are both positive. Without loss
of generality, we assume that 0 < t1 < t2, and also t2 � logH by Lemma 2.3.

If t2 = 2t1, then ν1 is determined by ν22 up to a root of unity contained in K, and
also we have H(ν2) ≤ H1/2. So, the number of such pairs (ν1, ν2) is O(Hd/2(logH)r)
by using (1.3), and thus the number of such vectors of rank 1 is

(4.7) O
(
Hd/2(logH)rBK(H)n−2

)
.

If t1 divides t2 and t2/t1 ≥ 3, then we have H(ν2) ≤ H1/3, and so as in the above
the number of such vectors of rank 1 is

(4.8) O
(
Hd/3(logH)r+1BK(H)n−2

)
.

Licensed to Universita Degli Studi Roma Tre. Prepared on Fri Jan 11 06:22:14 EST 2019 for download from IP 193.205.142.115.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6238 F. PAPPALARDI, M. SHA, I. E. SHPARLINSKI, AND C. L. STEWART

Now, we assume that t1 does not divide t2. Let t be the greatest common divisor
of t1 and t2. Note that t1/t ≥ 2 and t2/t ≥ 3. Put

(4.9) γ = νt11 = νt22 ,

and let β be a root of xt1t2 − γ. Observe that

βt1 = η1ν2 and βt2 = η2ν1

for some t1t2-th roots of unity η1 and η2. There exist integers u and v with ut1 +
vt2 = t, and so

βt = βt1uβt2v = ηu1 ν
u
2 η

v
2ν

v
1 = ηα

for η a t1t2-th root of unity and α an algebraic integer of K. Therefore

(4.10) (ηα)t2/t = βt2 = η2ν1,

and so

(4.11) H(α)t2/t = H(ν1).

Since H(ν1) ≤ H, we see, from (4.10) and (4.11), that ν1 is determined up to a
t1t2-th root of unity, by an algebraic integer of K of height at most Ht/t2 ≤ H1/3.
Thus, by (1.3) and Lemma 2.3, the number of such pairs (ν1, ν2) is

O(Hd/3(logH)r+3);

hence the number of such vectors of rank 1 is

(4.12) O
(
Hd/3(logH)r+3BK(H)n−2

)
.

Thus, by (1.3), (4.5), (4.6), (4.7), (4.8), and (4.12), we get

Ln,K,1(H) =
n(n− 1)

2
wC1(K)n−1Hd(n−1)(logH)r(n−1)

+O
(
Hd(n−1)(logH)r(n−1)−1

)
.

(4.13)

The estimate (1.6) now follows from (4.1), (4.2), and (4.13).
Finally, assume that K is the rational number field Q or an imaginary quadratic

field. Then, r = 0, and so BK(H) = C1(K)Hd +O(Hd−1) by (1.4). Repeating the
above process, we obtain

Ln,K,0(H) = nwC1(K)n−1Hd(n−1) +O(Hd(n−1)−1)

and

Ln,K,1(H) =
n(n− 1)

2
wC1(K)n−1Hd(n−1) +O

(
Hd(n−3/2)

)
,

where the second error term comes from (4.7) (and also (4.4) when d = 2). Hence,
noticing (4.1) and d = 1 or 2, we obtain (1.7).

4.2. Proof of Theorem 1.2. By (1.9) and (1.11), we have

L∗
n,K(H) = L∗

n,K,0(H) + L∗
n,K,1(H)

+O
(
H2d(n−1)−d exp(c2 logH/ log logH)

)
.

(4.14)

As in the proof of Theorem 1.1, we obtain, by using (1.5) in place of (1.3),

(4.15) L∗
n,K,0(H) = nwC2(K)n−1H2d(n−1) +O

(
H2d(n−1)−1(logH)σ(d)

)
,

where σ(1) = 1 and σ(d) = 0 for d > 1.
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Similarly, we find that

L∗
n,K,1(H) = n(n− 1)wC2(K)n−1H2d(n−1)

+O
(
H2d(n−1)−1(logH)σ(d)

)
,

(4.16)

where the main difference from the proof of (4.13) is that the contribution from
the exponent vectors (ki0 , ki1) equal to (t, t) is the same as when (ki0 , ki1) is equal
to (t,−t).

The desired result now follows from (4.14), (4.15), and (4.16) by noticing that

L∗
2,K(H) = L∗

2,K,0(H) + L∗
2,K,1(H).

4.3. Proof of Theorem 1.4. We first establish (1.15). By (1.21) and (1.22), we
have

Mn,d(H) = Mn,d,0(H) +Mn,d,1(H)

+O
(
Hd2(n−1)−d exp(c1 logH/ log logH)

)
.

(4.17)

Note that each such vector ν of multiplicative rank 0 has a coordinate which is
a root of unity of degree d. So, in view of the definition of w0(d) in (1.14) we have

nw0(d) (Ad(H)− w0(d))
n−1 ≤ Mn,d,0(H) ≤ nw0(d)Ad(H)n−1,

and thus by (1.12) and (1.14),

Mn,d,0(H) = nw0(d)C5(d)
n−1Hd2(n−1)

+O
(
Hd2(n−1)−d(logH)ρ(d)

)
.

(4.18)

We remark that Mn,d,0(H) = 0 if w0(d) = 0.
Moreover, arguing as in the proof of Theorem 1.1, we find that the main con-

tribution to Mn,d,1(H) comes from vectors associated with an exponent vector k
which has two non-zero components, one of which is t and the other of which is
±t with t a non-zero integer. Notice that the number Ud(H) of algebraic integers
which are units of degree d and height at most H satisfies (by using (2.2))

(4.19) Ud(H) = O
(
Hd(d−1)

)
.

We then deduce from (1.12), (1.14), (4.19), and Lemma 2.6 that

(4.20) Mn,d,1(H) = n(n− 1)C5(d)
n−1Hd2(n−1) + O

(
Hd2(n−1)−d/2

)
.

If furthermore d = 2 or d is odd, then

(4.21) Mn,d,1(H) = n(n− 1)C5(d)
n−1Hd2(n−1) +O

(
Hd2(n−1)−d logH

)
.

Here, we need to note that for an algebraic integer α of degree d and a root of unity
η �= ±1, αη might not be of degree d.

The desired asymptotic formula (1.15) now follows from (4.17), (4.18), and (4.20).
In order to show (1.16), we use (4.21) instead of (4.20). Besides, (1.17) follows
from (4.18) and (4.21) by noticing that

M2,d(H) = M2,d,0(H) +M2,d,1(H).
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Finally, we prove (1.18), (1.19), and (1.20). By (1.21) and (1.23), we have

M∗
n,d(H) =M∗

n,d,0(H) +M∗
n,d,1(H)

+O
(
Hd(d+1)(n−1)−d exp(c2 logH/ log logH)

)
.

(4.22)

As before, we have, by using (1.13),

M∗
n,d,0(H) = nw0(d)C6(d)

n−1Hd(d+1)(n−1)

+O
(
Hd(d+1)(n−1)−d(logH)ϑ(d)

)
.

(4.23)

As in (4.20) and (4.21), we find that

M∗
n,d,1(H) = 2n(n− 1)C6(d)

n−1Hd(d+1)(n−1)

+O
(
Hd(d+1)(n−1)−d/2 logH

)
.

(4.24)

If furthermore d = 2 or d is odd, we have

M∗
n,d,1(H) = 2n(n− 1)C6(d)

n−1Hd(d+1)(n−1)

+O
(
Hd(d+1)(n−1)−d(logH)ϑ(d)

)
.

(4.25)

So, (1.18) follows from (4.22), (4.23), and (4.24); then using (4.25) instead of
(4.24) gives (1.19). In order to deduce (1.20), we apply (4.23) and (4.25) and notice
that

M∗
2,d(H) = M∗

2,d,0(H) +M∗
2,d,1(H).

5. Lower bound

In this section, we prove that (1.10) is sharp, apart from a factor Ho(1), when
n = s+ 1 is even.

In order to estabish the case K = Q, we need the following slight extension
of [19, Lemma 2.3].

Lemma 5.1. Let k and q be integers with k ≥ 2 and q ≥ 2. Let γ = (γ1, . . . , γk)
with γ1, . . . , γk positive real numbers. Then, there exists a positive number Γ(q, γ)
such that for T → ∞, we have∑

. . .
∑

a1···ak=b1···bk
gcd(aibi,q)=1
1≤ai,bi≤Tγi

i=1,...,k

1 ∼ Γ(q, γ)T γ(log T )(k−1)2 ,

where γ = γ1 + · · ·+ γk.

Proof. The proof proceeds along the same lines as in the proof of [19, Lemma 2.3].
The only difference is that the primes p which divide q are now excluded from the
Euler products that appear in [19]. �

We show that apart from the factor exp(c1 logH/ log logH) the estimate (1.10)
in Proposition 1.3 is sharp when n is even, s = n− 1, and K = Q.

Theorem 5.2. Let n = 2k, where k is an integer with k > 1. Then, for sufficiently
large H, there exists a positive number c depending only on n such that

Ln,Q,n−1(H) ≥ cHk(logH)(k−1)2 .
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Proof. Fix n − 2 distinct odd primes pi, qi, i = 2, . . . , k. Given positive integers
a1, . . . , ak, b1, . . . , bk, we first set

ν1 = 2p2 · · · pka1 and νk+1 = 2q2 · · · qkb1.

After this we set

νi = qiai and νk+i = pibi, i = 2, . . . , k.

Clearly, if a1 · · · ak = b1 · · · bk with gcd(aibi, 2p2q2 · · · pkqk) = 1 for any 2 ≤ i ≤ k,
then the integer vector ν = (ν1, . . . , νn) is multiplicatively dependent of rank n− 1
by noticing that ν1 · · · νk = νk+1 · · · νn and that there is no non-empty subset
{i1, . . . , im} of {1, . . . , n} of size less than n for which

ν
ji1
i1

· · · νjimim
= 1,

with ji1 , . . . , jim non-zero integers.
For sufficiently large H, we choose such integers ai, bi ≤ c1H for some positive

number c1 depending only on the above fixed primes such that we have |νi| ≤ H
for each 1 ≤ i ≤ n. Then, each such vector ν contributes to Ln,Q,n−1(H). Now
applying Lemma 5.1 to count such vectors (taking T = c1H and γi = 1 for each
i = 1, . . . , k), we derive

Ln,Q,n−1(H) ≥ cHk(logH)(k−1)2 ,

where c is a positive number depending on n. �

To get a more general result, we need the following result, which might be of
independent interest.

Lemma 5.3. Let K be a number field of degree d, and let m be a positive integer.
Assume that m has t distinct prime factors and each prime factor of m is greater
than dt. Then, for sufficiently large H, there exists a positive number c depending
only on m and K such that

|{α ∈ BK(H) : gcd(α,m) = 1}| ≥ cHd(logH)r,

where r is the rank of the unit group of K.

Proof. Applying (1.3), it suffices to show that for each α ∈ BK(H) with gcd(α,m) �=
1, there is a uniform way to construct an element β ∈ BK(cH) with gcd(β,m) = 1,
where the constant c depends only on m and K.

Now, given α ∈ BK(H) with gcd(α,m) �= 1, let αi = α + i for i = 0, 1, . . . , dt.
Assume that for each 0 ≤ i ≤ dt, we have gcd(αi,m) �= 1. Note that in the prime
decomposition of the ideal 〈m〉 in K there are at most dt distinct prime ideals, but
the number of such αi is dt + 1. So, there exist 0 ≤ i < j ≤ dt such that the two
ideals 〈αi〉 and 〈αj〉 have a common prime factor, say p, which corresponds to a
prime factor of m, say p. Then, αi, αj ∈ p, and then αj − αi = j − i ∈ p, and thus
p | j − i, which contradicts the assumption p > dt.

Therefore, there must exist 0 ≤ j ≤ dt such that gcd(α+ j,m) = 1. This in fact
completes the proof. �

Using Lemma 5.3 instead of Lemma 5.1, we can get a slightly weaker but more
general result.
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Theorem 5.4. Let n = 2k, where k is an integer with k > 1, and let K be a number
field of degree d. Then, for sufficiently large H, there exists a positive number c
depending on n and K such that

Ln,K,n−1(H) ≥ cHdk(logH)rk.

Proof. Following the strategy in the proof of Theorem 5.2 and letting ai = bi ∈
BK(H) for each 1 ≤ i ≤ k, one can directly get the desired result by choosing
sufficiently large primes pi, qi and using Lemma 5.3. �

Similarly, to understand the tightness of (1.22), we need the following simple
statement:

Lemma 5.5. Let d and m be two positive integers. Assume that the prime factors
of m are all sufficiently large. Then, for sufficiently large H, there exists a positive
number c depending only on d and m such that

|{α ∈ Ad(H) : gcd(α,m) = 1}| ≥ cHd2

.

Proof. Let the prime factors of m be �1, . . . , �t. Given α ∈ Ad(H), let xd +
ad−1x

d−1 + · · · + a1x + a0 be the minimal polynomial of α over Z. By (2.2),
we have

|ai| ≤ (2H)d, i = 0, 1, . . . , d− 1.

If gcd(α,m) �= 1, then there exists a prime factor, say �j , of m such that �j | a0.
So, counting related minimal polynomials we obtain

|{α ∈ Ad(H) : gcd(α,m) �= 1}|

≤
t∑

j=1

d
(
2(2H)d + 1

)d−1 · 2(2H)d/�j .
(5.1)

Note that when �1, . . . , �t are all sufficiently large, the coefficient of Hd2

in the right-
hand side of (5.1) is less than C5(d) defined in (1.12). Combining (5.1) with (1.12)
completes the proof. �

Now, we are ready to get a partial comparison for (1.22).

Theorem 5.6. Let n = 2k, where k is an integer with k > 1, and let d be a positive
integer. Then, for sufficiently large H, there exists a positive number c depending
on n and d such that

Mn,d,n−1(H) ≥ cHd2k.

Proof. Following the strategy in the proof of Theorem 5.2 and letting ai = bi ∈
Ad(H) for each 1 ≤ i ≤ k, we can obtain the desired result by choosing sufficiently
large primes pi, qi and using Lemma 5.5. �

Notice that from (1.22) and under the assumption in Theorem 5.6, we have

Mn,d,n−1(H) ≤ Hd2(2k−1)−d(k−1)+o(1),

which is still much larger than the lower bound in Theorem 5.6. This suggests that
the optimal exponent of H in (1.22) might be

d2(n− 1)− d2(�(s+ 1)/2� − 1),

which would show that the lower bound in Theorem 5.6 is sharp up to a factor
Ho(1).
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6. Comments

It might be of interest to investigate in more detail how tight our bounds are in
Propositions 1.3 and 1.5. In Section 5 we have taken an initial step in this direction.

It would be interesting to study multiplicatively dependent vectors of polynomi-
als over finite fields. In this case the degree plays the role of the height. While we
expect that most of our results can be translated to this case, many tools need to
be developed, and this should be of independent interest.
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