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Abstract. We extend results of [1, 2, 3] on the visibility problem for lattice

points in Zd to the case of function fields over finite fields which are related to
important questions regarding the corresponding q-Jacobsthal function.

Résumé. Nous étendons résultats de [1, 2, 3] sur le probleme de la visibilité
des points du réseau entier Zd au cas des corps de fonctions sur un corps fini,

en rapport avec la fonction de q-Jacobsthal.

1. Introduction

Denote by Fq[x] the ring of polynomials with coefficients in the fixed finite field
Fq. Furthermore for n ∈ N set

∆n = ∆n(q) =
{

(f, g) ∈ Fq[x]2, such that deg f ≤ n and deg g ≤ n
}
.

Clearly |∆n| = q2(n+1). Given distinct P1 = (f1, g1), P2 = (f2, g2) ∈ ∆n, as in the
classical case, we say that P1 is visible from P2 if (f1 − f2, g1 − g2) = 1. This is
equivalent to say that there are no elements of ∆n in the line connecting P1 and
P2. Similarly, if S ⊆ ∆n, we say that ∆n is visible from S if for any P ∈ ∆n, there
is Q ∈ S such that P is visible from Q. We are interested in the following function:

Fq(n) = min {|S|, S ⊆ ∆n,∆n is visible from S} .(1)

We will prove the following result which is analogous to [2, Theorem 1]:

Theorem 1. Let q be fixed and let βq > 4q2/(1−αq)2 (where αq = α3
q is defined in

part (2) Lemma 1) be any number. Then for all n large enough one can explicitly
construct a subset Xn(q) of ∆n such that ∆n is visible from Xn(q) and

|Xn(q)| ≤ βq
n log log n

logq n
.

Therefore, in particular Fq(n) ≤ βq n log logn
logq n

, for all n large enough.

It is natural to generalize the concept of visibility to the d–dimensional space.
If we write ∆d

n =
{

(f1, . . . , fd) ∈ (Fq[x])d,deg fi ≤ n
}
, then |∆d

n| = qd(n+1). It
is obvious what one means by saying that two points of ∆d

n are visible from each
other.

We will prove, as in the [3, Theorem 3], that Theorem 1 can be improved in the
higher dimensional case:
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Theorem 2. Let q be fixed, d ≥ 3 and let γq > q/(1 − αdq) be any number. Then
for all n large enough one can explicitly construct a subset Xd

n(q) of ∆d
n such that

∆d
n is visible from Xd

n(q) and |Xd
n(q)| ≤ γq

n
logq n

. Therefore, if we define Fdq (n) as

the minimum number of elements in a subset of ∆d
n, from which ∆d

n is visible, we
have for n large enough,

Fdq (n) ≤ γq
n

logq n
.

Further, let δq < 1
q be any positive number. Then for all n large enough

Fdq (n) ≥ δq
n

logq n
.

We will need the following facts about distribution of polynomials in finite fields.
The proofs can be found in the book of Lidl and Nieddereiter [10]. See also the
book of Shparlinski [12]. The last statement can be found in [6]:

Lemma 1. Let q be a fixed power of a fixed prime and denote by I(q) the set
of monic irreducible polynomials in Fq[x], by Ik(q) the set of irreducible monic
polynomials of degree k and by Ik(q) the order |Ik(q)|. Then

1. Ik(q) = 1
k

(
qk +O(qk/2)

)
;

2. If d ≥ 3, the series αdq =
∑∞
k=1

Ik(q)
q(d−1)k converges to a number less than 1;

3.
∑
k≤m

Ik(q)
qk

= (1 + o(1)) logm;
4.
∑
k≤m kIk(q) = q

q−1q
m +O(qm/2).

5. Let m ∈ Fq[x], and denote by ωq(m) the number of distinct monic irreducible
polynomials which divide m. If the degree of m is at most n, then if n is large
enough, we have

ωq(m) ≤ n

logq n− 3
.�

Lemma 2. Given a, b ∈ Fq[x], the number of polynomials with degree up to s which
are congruent to a modulo b is at most qs+1−deg b + 1. �

2. Proof of the lower bound in Theorem 2

We follow the proof of Abbott [1]. Suppose S ⊂ ∆d
n is visible from every point of

∆d
n, assume that |S| = r and S = {f

1
, . . . , f

r
} where we write f

i
= (fi1, . . . , fid)

(i = 1, . . . , d). Let m be the least integer defined by the property that∑
k≤m

Ik(q) ≥ r(2)

and let p1, . . . , pr be monic irreducible polynomials with degree less or equal than
m. Next consider polynomials f01, . . . f0d which are respectively the solutions of
the system of equations{

X ≡ fi1 mod pi
i = 1, . . . , r . . . and

{
X ≡ fid mod pi
i = 1, . . . , r

with the property that f
0

= (f01, . . . f0d) 6∈ S. Indeed, by the chinese remainder
theorem one can find such a solution with deg f0j ≤ ([logq r]+1)+

∑
i≤r deg pi, j =

1, . . . , d. In fact if f̃
0

= (f̃01, . . . f̃0d) is a fundamental solutions and P = p1 · · · pr,
then the set of solutions {(f̃01 +hP, . . . , f̃0d +hP ) | deg(h) ≤ [logq r] + 1} contains
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more then r elements therefore it contains one at least outside S. Now from part
(4) Lemma 1 and from the inequality (2) above we deduce∑

i≤r

deg pi ≤
∑
k≤m

kIk(q) = (1 + o(1))
q

q − 1
qm.

Furthermore r ≥
∑
k≤m−1 Ik(q) ≥ 1

m−1

∑
k≤m−1 kIk(q) = (1 + o(1)) qm+1

q(q−1)(m−1) im-
plies that ([logq r] + 1) +

∑
i≤r deg pi ≤ (q+o(1))r logq r. Therefore all deg f01, . . . ,

deg f0d are less than or equal to (q + o(1)) r logq r, which is smaller than n for
r ≤ ( 1

q + o(1)) n
logq n

.

Finally if r < δq
n

logq n
and n is large enough, f

0
∈ ∆d

n. Therefore r ≥ δq
n

logq n

and this completes the proof. �

3. Proof of Theorem 1

We will need the following:

Lemma 3. Suppose that n is large enough, let β > 0 be any fixed number and let t
be the least integer such that qt+1 ≥ β log log n. Then for every given f ∈ ∆n there
exists g ∈ Fq[x] with deg g ≤ t such that∑

p∈I(q)
p|f−g

1
qdeg p

< αq +
1
β

+ o(1).(3)

Proof of Lemma 3. Consider the sum∑
deg g≤t
g 6=f

∑
p∈I(q)
p|f−g

1
qdeg p

.(4)

We split the sum in three sums Σ1, Σ2 and Σ3 where Σ1 counts the irreducibles
p with deg p ≤ t, the second counts those with t < deg p ≤ (log n) log log n and the
third counts those with (log n) log log n < deg p ≤ n.

Now Σ1 ≤
∑
p∈I(q)
deg p≤t

∑
deg g≤t

g 6=f,p|f−g

1
qdeg p

≤
∑
p∈I(q)
deg p≤t

1
qdeg p

(
qt+1

qdeg p
+ 1
)

=
∑
k≤t

(
qt+1 Ik(q)

q2k
+
Ik(q)
qk

)
by Lemma 2 and from Lemma 1 we obtain

Σ1 ≤ qt+1(αq + o(1)) + (1 + o(1)) log t) = qt+1(αq + o(1)).(5)

As for Σ2, note that there are no irreducible dividing f − g′ and f − g′′ with
degree larger then t. Therefore, from part (3) of Lemma 1,

Σ2 ≤
∑
p∈I(q)

deg p≤logn log logn

1
qdeg p

= (1 + o(1)) log logn.(6)

Furthermore

Σ3 ≤
∑

deg g≤t
g 6=f

1
qlogn log logn

∑
p∈I(q)
p|f−g

1� qt+1

qlogn log logn

n

log n
= o(1)(7)
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Finally by (5), (6) and (7) we deduce that the sum in (4) is

≤ qt+1(αq + o(1)) + (β + o(1)) log logn+ o(1) ≤ qt+1(αq +
1
β

+ o(1)).

Hence, for some g ∈ Fq[x] with deg g < t, (3) is satisfied. �

We define the q–Jacobsthal function of m ∈ Fq[x] as follows

Jq(m) = min{t | ∀a ∈ Fq[x],∃h ∈ Fq[x],deg h < t, gcd(a+ h,m) = 1}.(8)

It is immediate to see that Jq(m) is well defined and that Jq(m) < degm. Indeed,
for any a ∈ Fq[x], if r is the remainder of the division of 1− a by m, then it clear
that deg r < degm and gcd(a+ r,m) = 1. We will need the following:

Lemma 4. Suppose m ∈ Fq[x] and that γ =
∑

p∈I(q)
p|m

1
qdeg p < 1. Then for n large

enough, qJq(m)+1 ≤ (1− γ)−1
ωq(m).

Proof of Lemma 4. For any a ∈ Fq[x], consider the set S = {a + h | h ∈
Fq[x],deg h ≤ k}. Then |S| = qk+1. We want to estimate the size of the set

Sm = {y ∈ S | gcd(y,m) 6= 1}.
Note that by Lemma 2

#Sm ≤
∑
p∈I(q)
p|m

#{h ∈ Fq[x] | deg h < k, p|h+ k}

≤
∑
p∈I(q)
p|m

(
qk+1−deg p + 1

)
≤ qk+1γ + ω(m).

which is smaller than qk+1 if qk+1 > (1− γ)−1ω(m). Finally, there is an element of
S not in Sm if k satisfies the above, so that

qJq(m)+1 ≤ (1− γ)−1ω(m). �
We are now ready to prove Theorem 1. Consider the set

Xn(q) = {(f, g) ∈ ∆n,deg f ≤ t,deg g ≤ s}
where t is the least integer such that qt+1 > 2

1−αq log log n and s is the least integer

such that qs+1 > ( 1−αq
2 + ε) n

logq n−3 where ε > 0 is small and will be chosen later.
Then (if ε is small enough)

|Xn(q)| = qs+1qt+1 ≤ βq
n log log n

logq n
.

We need to show that ∆n is visible from Xn for n large enough. Indeed, for
(a, b) ∈ ∆n, from Lemma 3 we know that there exists g ∈ Fq[x] with deg g ≤ t
such that

∑
p∈I(q)
p|a−g

1
qdeg g ≤ (αq + 1)/2 + o(1). Furthermore Lemma 4 implies that

qJq(a−g)+1 ≤ (1−αq)/2+o(1))ωq(a−g). Note that from the fifth part of Lemma 1,
for n large enough(

1− αq
2

+ o(1)
)
ωq(a− g) ≤

(
1− αq

2
+ ε

)
n

logq n
≤ qs+1.

Therefore Jq(a− g) ≤ s and this implies that there exists h ∈ Fq[x] with deg h ≤ s
such that gcd(a− g, b− h) = 1. So, (a, b) and (f, h) are visible from each other and
this concludes that proof. �
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4. Proof of the upper bound in Theorem 2

In this section we follow the method of [3] to investigate the concept of visibility
in higher dimensional space. For d ≥ 3, consider the set

Xd
n =

{
(g1, . . . , gd−1, gd) ∈ (Fq[x])d,deg gi ≤ s for i < d and deg gd = 0

}
.

Clearly |Xd
n| = q(d−1)∗(s+1)+1.

We want to show that for a suitable choice of s, ∆d
n is visible from Xd

n. Clearly
all the elements of ∆d

n which have a degree 0 polynomial in the last coordinate are
visible from Xd

n. Therefore fix (f1, . . . , fd) ∈ ∆d
n such that deg fd ≥ 1. We want to

estimate the size of the set

A =
{

(g1, . . . , gd−1, gd) ∈ Xd
n,deg((f1 − g1, f2 − g2, . . . , fd − gd)) ≥ 1

}
.

First of all, we observe that

|A| ≤
∑

g1,... ,gd−1
deg gi≤s, gd∈Fq

∑
p∈I(q)

p| gcd(f1−g1,f2−g2,... ,fd−gd)

1

=
∑
gd∈Fq

∑
p∈I(q)
p|fd−gd

∑
g1,... ,gd−1

deg gi≤s,p|(fi−gi)

1 =
∑
gd∈Fq

∑
p∈I(q)
p|fd−gd

d−1∏
i=1

 ∑
deg gi≤s,p|(fi−gi)

1

 .

From Lemma 2 we deduce that

|A| ≤
∑
gd∈Fq

∑
p∈I(q)
p|fd−gd

(
1 +

qs+1

qdeg p

)d−1

.

Now we have

|A| ≤
∑
gd∈Fq

∑
p∈I(q)
p|fd−gd

d−1∑
j=0

(
d− 1
j

)(
qs+1

qdeg p

)j

≤
∑
gd∈Fq

∑
p∈I(q)
p|fd−gd

1 +
∑
p∈I(q)

deg(p)≤n

d−2∑
j=1

(
d− 1
j

)(
qs+1

qdeg p

)j
+ |Xd

n|
∑
p∈I(q)

1
q(d−1) deg p

.

We evaluate each of the three terms separately. For the last one, we have to use
part (2) of Lemma 1. For the middle one just uses part (3) of Lemma 1 observing
that ∑

p∈I(q)
deg(p)≤n

d−2∑
j=1

(
d− 1
j

)(
qs+1

qdeg p

)j
≤ 2d−1q(s+1)(d−2)

∑
p∈I(q)

deg(p)≤n

1
qdeg p

≤ 2d−1q(s+1)(d−2)
∑
j≤n

Ij(q)
qj

≤ (1 + o(1))2d−1

(
|Xd

n|
q

)(d−2)/(d−1)

log n,

and for the first sum we use the fifth part of Lemma 1. Putting all these together
we obtain:

|A| ≤ q n

logq n− 3
+ αdq |Xd

n|+ (1 + o(1)) log n
(
|Xd

n|
q

)(d−2)/(d−1)
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Finally, in order to have |A| < |Xd
n| for n large enough, it is enough to choose s

in such a way that (1− αdq)|Xd
n| > q n

logq n−3 . and this gives the claim. �

5. Final remarks. The order of the q-Jacobsthal function.

The classical Jacobsthal function has been investigated in [4, 7, 8, 9, 13, 14].
We have already defined in (8) the natural analogue of the Jacobsthal function for
Fq[x]. If we set

Yn =
{

(0, h) ∈ ∆n,deg h ≤ max
g∈Fq [x],deg g≤n

Jq(g)
}
,

then clearly ∆n is visible from Yn as for every (f, g) ∈ ∆n there is an h ∈ Yn (also
−h ∈ Yn) and gcd(f, g − h) = 1 so that (f, g) is visible from (0, h).

It is conjectured (see [11]) that for any m ∈ Fq[x], Jq(m) ≤ logq degm. This
would imply that Fq(n) ≤ n. which is weaker than the upper bound in Theorem 1.

Acknowledgements. The major part of the work had been done when the second
author was visiting Harish-Chandra Research Institute, Allahabad, India. The
work was completed when the first author came to Università Roma Tre. They are
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