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Abstract

We define an operation called transposition on words of fixed length. This operation arises naturally when the letters of a word
are considered as entries of a matrix. Words that are invariant with respect to transposition are of special interest. It turns out that
transposition invariant words have a simple interpretation by means of elementary group theory. This leads us to investigate some
properties of the ring of integers modulo n and primitive roots. In particular, we show that there are infinitely many prime numbers
p with a primitive root dividing p + 1 and infinitely many prime numbers p without a primitive root dividing p + 1. We also
consider the orbit of a word under transposition.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider a word w of length pq where p and q are positive integers. Construct a p × q matrix A by
filling the entries with consecutive letters of w row by row, and then transpose it. The entries of AT read row by row
correspond to another word, which we will denote by wT. The process of transposing a word to obtain a new word
is the inspiration of this paper. If w is invariant with respect to the transposition, we express this by saying that w is
p ×q-invariant. Words that are p ×q-invariant for every appropriate p and q are called transposition invariant. These
words are the main topic and inspiration of this paper.

In Section 2 we introduce the formal definitions and give some examples. Section 3 contains some introductory
results, such as the fact that the power-of-2 length prefixes of the infinite Thue–Morse word are transposition invariant.
We also show that any word with at least two different letters can be extended periodically so that the resulting word
is nontrivially transposition invariant. In Section 4 we switch to a more number theoretic aspect of the topic and give
a characterization of transposition invariant words. Section 5 considers two questions: How many distinct letters can
a transposition invariant word have? How long an orbit does a word travel when we iterate the transposition operation
with respect to a fixed p × q matrix? The last part of this paper, Section 6, considers primitive roots modulo a prime
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number. Namely, the characterization of transposition invariant words gives rise to a classification of prime numbers
into two disjoint sets that we call favorable and unfavorable prime numbers. We show that both sets are infinite.

2. Definitions

Let w = w0w1 · · ·wn be a word, that is, a string of symbols over some alphabet Σ . The length of w is denoted by
|w|, so that |w| = n + 1. Assume then that |w| = n + 1 = pq for some integers p, q > 0, and consider the p × q
matrix

A =


w0 w1 · · · wq−1
wq wq+1 · · · w2q−1
...

...
. . .

...

w(p−1)q w(p−1)q+1 · · · wpq−1

 .

By reading the entries of this matrix row by row starting from the upper left corner, we obtain the word w. When
reading the entries column by column, we get another word

wT
= w0wq · · ·w(p−1)q w1wq+1 · · ·w(p−1)q+1 · · ·wq−1w2q−1 · · ·wpq−1.

Equivalently, we obtain wT by reading the entries in the transpose matrix AT row by row.
If wT

= w, we say that w is p × q-invariant. The word w is transposition invariant if it is p × q-invariant for all
integers p, q > 0 such that pq = |w|. If the subword w1w2 · · ·wn−1 of w is unary or if |w| is a prime number, then
w is trivially transposition invariant. In the former case, we say that w is trivial.

The Finnish word möhömahat – the people with a big belly – is a 3 × 3-invariant word. Examples of the same
length in English are Malayalam and votometer. Note that, as 9 has only one proper factorization, 3 · 3, these words
are transposition invariant. A more complicated instance of transposition invariant words in natural language is given
by the Latin sentence below.

S A T O R
A R E P O
T E N E T
O P E R A
R O T A S

This translates roughly as “Seed man Arepo holds wheels in his work”. Our last example comes from classic
cryptography. Namely, transposition invariant words are the messages that cannot be encrypted using the rail fence
cipher without padding.

Sometimes it is more convenient to write w = w(0)w(1) · · ·w(n) instead of w = w0w1 · · ·wn ; we will use both
notations. We conclude this section with the following lemma, which could have been taken as a formal definition of
p × q-invariance. The proof is immediate, so we omit it.

Lemma 1. The word w is p × q-invariant if and only if

w(i p + j) = w( jq + i) (1)

for all 0 ≤ i < q and 0 ≤ j < p.

3. Motivating results

First we show that any prefix of length 2k of the celebrated Thue–Morse word (see [1] or [7]) is transposition
invariant. The Thue–Morse word, denoted by t, is defined as the limit of an infinite iteration of the morphism
µ : 0 7→ 01, 1 7→ 10 on the letter 0. Thus

t = lim
n→∞

µn(0) = 01101001100101101001 · · · .

Proposition 2. For all integers k ≥ 1, the prefix of length 2k of the Thue–Morse word is transposition invariant.
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Proof. Let us denote t = t (0)t (1)t (2) · · ·. It can be proved that t (i) is the number of occurrences of the letter 1 in
the binary expansion of i modulo 2 (see [7]). Using this property it is easy to see that, for all integers e, i ≥ 0 and
0 ≤ j < 2e, we have

t (i2e
+ j) = t (i)+ t ( j)mod 2.

Here – as well as later in this paper – “mod 2 ” denotes the operation of taking the least nonnegative integer modulo 2;
when dealing with congruences, we use “ (mod 2)” instead.

Let u be the prefix of t of length 2k . We have to show that u is p × q-invariant whenever pq = |u| = 2k , that is,
p = 2e and q = 2 f with e + f = k. To do this, assume 0 ≤ i < q = 2 f and 0 ≤ j < p = 2e. Then

u(i p + j) = t (i2e
+ j) = t (i)+ t ( j)mod 2 = t ( j2 f

+ i) = u( jq + i).

By Lemma 1, the word u is p × q-invariant. Since this is true for all appropriate p and q, the word u is transposition
invariant. �

As a simple corollary we get the following result, which could easily be proved directly as well.

Corollary 3. There exist infinitely many nontrivial transposition invariant words of composite length.

Note that the requirement that the length be a composite number is essential since the statement is trivial for prime
number lengths.

Next we will show that any non-unary word can be extended to a transposition invariant word of composite length.
Again, we want the length to be composite; otherwise the problem is trivial.

Suppose α = a/b is a rational number in its lowest terms. Suppose furthermore that w is a word such that b divides
|w|. Then wα denotes the word wkw′, where k = bαc, wk

= ww · · ·w (k times), and w′ is a prefix of w such that
|wkw′

| = α|w|. A word u is a prefix of w if w = uv for some word v.

Proposition 4. For any non-unary word w, there exists a rational number α ≥ 1 such that wα is a nontrivial
transposition invariant word of composite length.

Proof. Assume |w| = m. Choose two positive integers k and p such that p is prime and km +1 = p. There exist such
integers by Dirichlet’s theorem on primes in arithmetic progressions (see [2]). In fact, we can choose p = O(m5.5)

by a result of Heath-Brown [4].
Now set α = p2/m, so that |wα| = α|w| = p2. We show thatwα is p× p-invariant. To do so, assume 0 ≤ i, j < p.

Using the fact that wα has a period m, we get

wα(i p + j) = wα (ikm + i + j) = wα(i + j) = wα( jkm + j + i) = wα( j p + i).

By Lemma 1, wα is p × p-invariant and, moreover, transposition invariant since p is prime. The word wα is nontrivial
because w is not unary and α ≥ 2. Finally, the proof is completed by observing that |wα| is a composite integer. �

4. A characterization of transposition invariant words

In this section we prove a number theoretic criterion for p × q-invariance, which then allows us to give a
characterization of transposition invariant words. But let us first fix some further notation for this and forthcoming
sections.

We define w = w0w1 · · ·wn and |w| = n + 1 = pq, where p, q ≥ 1 are integers. We will be working in Zn , the
ring of integers modulo n. Integers 0, 1, . . . , n − 1 are considered both as positions of letters in w and as elements
of Zn . For a subset S ⊆ Z∗

n , where Z∗
n denotes the unit group of Zn , 〈S〉 denotes the multiplicative subgroup of

Z∗
n generated by S. If S = {p}, we will leave the braces out and simply write 〈p〉. Note that 〈p〉 = 〈q〉 because

p = q−1 in Z∗
n . Note also that the last position of w, namely n, is not included in Zn , and thus will be left out from

our considerations. However, it is not a problem since wn maps to itself in transposition. We define

k〈p〉 = { ka : a ∈ 〈p〉 }

for all k ∈ Zn . Note that k〈p〉 is a generalization of the usual definition; see, e.g., the example and its tables in the end
of the next section.



380 A. Lepistö et al. / Theoretical Computer Science 380 (2007) 377–387

Proposition 5. The word w is p × q-invariant if and only if

w(h) = w(k) (2)

for all k ∈ Zn and h ∈ k〈p〉.

Proof. We only need to prove the implication

k = jq + i H⇒ i p + j = kp mod n (3)

whenever 0 ≤ i < q , 0 ≤ j < p, and 0 ≤ k < n. For if (3) holds true, then by applying it repeatedly we easily obtain
an equivalence between (2) and Lemma 1. For future reference, observe that (3) tells us that the letter at the position
k is mapped to the position pk mod n in transposition.

To prove the implication in (3), we note that pq ≡ 1 (mod n), and hence

k = jq + i H⇒ k ≡ jq + i (mod n) H⇒ kp ≡ j + i p (mod n).

Since we have k < n, it follows that j + i p < n, and so the last congruence gives i p + j = kp mod n. This completes
the proof. �

Now we are ready to establish a number theoretic characterization for transposition invariant words. With the same
trouble we can prove a somewhat more general result that goes as follows.

Let Sn be the set of all positive divisors of n + 1, that is,

Sn = { d ≥ 1 : d | (n + 1) } .

Let S ⊆ Sn . We say that the word w is S-invariant if it is p × (n + 1)/p -invariant for all p ∈ S. Then the concepts
p × q-invariant and transposition invariant coincide with {p}-invariant and Sn-invariant, respectively.

Theorem 6. Let S ⊆ Sn . Then the word w is S-invariant if and only if, for every k ∈ Zn , all letters at positions
indicated by the set k〈S〉 are the same.

Proof. Supposew is S-invariant, that is,w is p×(n+1)/p-invariant for every p ∈ S. Let r, s ∈ S. Using the condition
(2), we see that kr i s j

∈ kr i
〈s〉 implies w(kr i s j ) = w(kr i ), and moreover, kr i

∈ k〈r〉 implies w(kr i ) = w(k). Thus,
for all elements h ∈ k〈r〉〈s〉 = k〈r, s〉, we have w(h) = w(k). Using this argument repeatedly, we see that, for every
h ∈ k〈S〉, w(h) = w(k).

Conversely, assume that w(h) = w(k) for every h ∈ k〈S〉. Then, because 〈p〉 ⊆ 〈S〉 for all p ∈ S, it certainly
holds that w(h) = w(k) for every h ∈ k〈p〉. According to Proposition 5, the word w is p × (n + 1)/p-invariant for
every p ∈ S, that is, S-invariant. �

5. Maximum number of letters and the orbit of a word

It is natural to ask how many distinct letters a transposition invariant word can have. To answer this question, we
need the following auxiliary observation which can be proved in a standard manner.

Lemma 7. Let S ⊆ Z∗
n and k, h ∈ Zn . Then either

k〈S〉 = h〈S〉 or k〈S〉 ∩ h〈S〉 = ∅.

Hence every subset S ⊆ Z∗
n induces a partition of Zn by means of the subgroup 〈S〉. More precisely, there exist

integers k1, k2, . . . , kr ∈ Zn such that

Zn =

⋃
1≤i≤r

ki 〈S〉

and the sets ki 〈S〉 and k j 〈S〉 are disjoint if i 6= j . We denote this partition generated by the set S by Partn(S), that is,

Partn(S) = {k1〈S〉, . . . , kr 〈S〉} .

It follows from Theorem 6 that the maximal number of distinct letters in an S-invariant word is the number of elements
in #Partn(S)+ 1 (remember that the position of the last letter of w is not in Partn(S)).
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Assume that S ⊆ Z∗
n , and let d ≥ 1 be a divisor of n. In what follows, we use the notation 〈S〉d for the subgroup

generated by S in the group Z∗

d , when the elements of S are viewed as elements of Z∗

d . The order of the quotient group
Z∗

d
/
〈S〉d is denoted by

[
Z∗

d : 〈S〉d
]
.

Proposition 8. Let S ⊆ Z∗
n . Then

#Partn(S) =

∑
d|n

[
Z∗

d : 〈S〉d
]

=

∑
d|n

ϕ(d)
#〈S〉d

,

where ϕ denotes the Euler totient function.

Proof. For all ki 〈S〉 ∈ Partn(S), write ki = ai di , where di = gcd(ki , n) and ai = ki/di , so that

Partn(S) = {a1d1〈S〉, . . . , ar dr 〈S〉}.

We need a few auxiliary results to prove the claim. They are numbered accordingly.
If gcd(a, n) = 1, then adi ≡ ad j (mod n) if and only if di ≡ d j (mod n), and thus

(1) #ad〈S〉 = #d〈S〉.

Consider next the mapping d〈S〉 −→ 〈S〉n/d defined by di 7→ i . Firstly, this mapping is well defined because
gcd(i, n) = 1 implies gcd(i, n/d) = 1. Moreover, it is injective, which is easily seen by using the equivalence
di ≡ d j (mod n) if and only if i ≡ j (mod n/d). Consequently,

(2) #d〈S〉 ≤ #〈S〉n/d .

Now, let ψ be the mapping

ψ : Partn(S) −→

⋃
d | n

Z∗

n/d
/
〈S〉n/d , ad〈S〉 7→ a〈S〉n/d ,

so that ψ associates the elements of Partn(S) with conjugacy classes of the quotient groups Z∗

n/d
/
〈S〉n/d , where d | n.

We leave it to the reader to verify that ψ is both well defined and injective. Next, consider the number αd of the sets
in Partn(S) of the form ad〈S〉 with gcd(a, n) = 1. Clearly

αd = #{i : d =
ki

ai
},

so that∑
d|n

αd = #Partn(S). (4)

It follows from the definition and injectivity of ψ that αd is at most the number of elements in the quotient group
Z∗

n/k
/
〈S〉n/d , that is to say,

(3) αd ≤ [Z∗

n/d : 〈S〉n/d ].

Now we are ready to employ these observations. Recall that Partn(S) is a partition of Zn , and hence

n =

∑
ad〈S〉∈Part(S)

#ad〈S〉
1)
=

∑
ad〈S〉∈Part(S)

#d〈S〉

=

∑
d | n

αd #d〈S〉
2) , 3)
≤

∑
d | n

[Z∗

n/d : 〈S〉n/d ] #〈S〉n/d

=

∑
d | n

ϕ
(n

d

)
= n. (5)

(For the last equality, see [2, Th. 2.2].) Thus the inequality in (5) is actually an equality. Consequently, also inequalities
in (2) and (3) are equalities. Hence αd = [Z∗

n/d : 〈S〉n/d ], and this together with (4) proves the claim. �
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Let us introduce the notation

ιn(S) =

∑
d|n

ϕ(d)
#〈S〉d

.

So by Proposition 8, ιn(S) denotes the number of elements in the partition of Z∗
n induced by S.

By combining the previous considerations and Theorem 6, we can sum up our discussion about S-invariant words
as follows:

Theorem 9. Let S ⊆ Sn . A word w of length n + 1 is S-invariant if and only if, for every set P ∈ Partn(S), the letters
occupying the positions in P are the same. Hence there exists, up to renaming the letters, a unique alphabetically
maximal S-invariant word, and it has ιn(S)+ 1 distinct letters.

Next we discuss the behavior of the function ιn(Sn). The following result tells us that its values fluctuate heavily.

Theorem 10. We have

lim inf
n−→∞

ιn(Sn)

n
= 0 and lim sup

n−→∞

ιn(Sn)

n
= 1.

Proof. The value lim infn−→∞
ιn(Sn)

n = 0 follows immediately from the fact that there exist infinitely many prime
numbers n with a primitive root that divides n + 1. We will prove this fact in Theorem 17.

The latter equality is trivial: Consider the values n = p − 1 with p a prime number. Now, 〈Sn〉d = 〈1〉 for all d | n,
so

ιn(Sn) =

∑
d|n

ϕ(d)
#〈Sn〉d

=

∑
d|n

ϕ(d) = n,

and hence lim supn−→∞ ιn(Sn)/n = 1. The proof is now complete. �

The last topic of this section was inspired by a question of J. Cassaigne at the WORDS’05 conference. So far we
have only considered words that are invariant under transposition. But it is also natural to consider the orbit that a
word w makes when the transposition operation is iterated with respect to some fixed p × q matrix. More precisely, if
f p,q : Σ n+1

→ Σ n+1 is defined by f p,q(w) = wT, where transposition is carried out in a p × q matrix, then the orbit
we are interested in is the set

Orbp,q(w) =

{
f i

p,q(w) : i ≥ 0
}
.

We will characterize the possible sizes of these orbits in Theorem 12, but first we need the following lemma.

Lemma 11. Let G be a subgroup of Z∗
n . Then for any a ∈ Zn , the order of the set aG = { ax : x ∈ G } divides the

order of G.

Proof. Note that, for a ∈ Z∗
n , the claim is Lagrange’s theorem on orders of subgroups. Let us define

Fixa(G) = { x ∈ G : ax = a } .

Clearly, Fixa(G) is a subgroup of G, so we can form the quotient group G
/

Fixa(G). Let Ψ : G
/

Fixa(G) → aG be
the mapping defined by b · Fixa(G) 7→ ab. It is easy to show that Ψ is well defined and bijective. Hence

|G| = #Fixa(G) · #aG,

and the claim follows. �

Now we are ready for the last result of this section.

Theorem 12. Let w be a word of length n + 1, and suppose n + 1 = pq. Then #Orbp,q(w) divides #〈p〉. Conversely,
if d ≥ 1 divides #〈p〉, then there exists a word w such that #Orbp,q(w) = d.
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Proof. As was seen in the proof of Proposition 5, the letter at the position k moves to the position kp mod n in
transposition. Hence, the letters at positions k〈p〉 travel on an independent orbit, and therefore #Orbp,q(w) equals the
least common multiple of the sizes of orbits of letters occupied at positions k〈p〉 for all k ∈ Zn .

Now consider the orbit k〈p〉, and let r = #k〈p〉. Let a1, a2, . . . , ar denote the letters of w at positions
k, kp, kp2, . . . , kpr−1 modulo n, respectively. After each iteration of f p,q on w, the mutual arrangement of these
letters in the positions k〈p〉 changes as follows:

a1a2 · · · ar−1ar → ar a1a2 · · · ar−1 → · · · → a2a3 · · · ar a1 → a1a2 · · · ar−1ar .

Hence when the orbit of these letters is full, the corresponding words give rise to the word equation uv = vu, where
u = a1a2 · · · ai and v = ai+1ai+2 · · · ar . One of the fundamental theorems of combinatorics on words (see [7]) says
that two words commute if and only they are powers (repetitions) of some common word. Hence the length of the
orbit of the letters at positions k〈p〉 ,|u|, divides #k〈p〉 (=|uv|), and so by Lemma 11, it divides #〈p〉. Since #Orb(w)
is the least common multiple of #k〈p〉 with k ∈ Zn , it follows that also #Orb(w) divides #〈p〉.

Conversely, suppose d divides #〈p〉 = #〈q〉. Define a word w = w0w1 · · ·wn as follows:

wi =

{
1 if i is of the form i = qd j mod n for some j ≥ 0,
0 otherwise.

Then, by the construction, the orbit of w consists of exactly d distinct words. The proof is now complete. �

Here is an example of the situation of the previous theorem. Let us consider a word w = w0w1w2 · · ·w45 of length
46 in a 2 × 23 matrix. In this case n = 45, p = 2, and q = 23. The mapping f2,23 generates nine separate orbits for
letters wi in w which are obtained from 〈2〉 except the trivial one that corresponds to the last symbol w45:

orbit corresponding subword

0〈2〉 : 0 w0
1〈2〉 : 1, 2, 4, 8, 16, 32, 19, 38, 31, 17, 34, 23 w1w2w4w8w16w32w19w38w31w17w34w23
3〈2〉 : 3, 6, 12, 24 w3w6w12w24
5〈2〉 : 5, 10, 20, 40, 35, 25 w5w10w20w40w35w25
7〈2〉 : 7, 14, 28, 11, 22, 44, 43, 41, 37, 29, 13, 26 w7w14w28w11w22w44w43w41w37w29w13w26
9〈2〉 : 9, 18, 36, 27 w9w18w36w27

15〈2〉 : 15, 30 w15w30
21〈2〉 : 21, 42, 39, 33 w21w42w39w33

last symb. : 45 w45

As described in the proof of Theorem 12, the length of the orbit of the letters in k〈p〉, say rk , divides #k〈p〉. More
precisely,

zk = zk0 · · · zk#k〈p〉−1 = urk
k ,

where zki = wkpi −1 mod n and uk is the shortest word such that zk ∈ u+

k . Thus, by simple combinatorics, we obtain

#Orb(w) = lcm
k∈Zn

(rk).

If we let

w = aabbcacabacacbbaabbccbbbbccbcacabbccacbbabbacc,

we have
i xi length of period

0〈2〉 z0 = a 1
1〈2〉 z1 = abcbabcbabcb 4
3〈2〉 z3 = bccb 4
5〈2〉 z5 = accacc 3
7〈2〉 z7 = abcabcabcabc 3
9〈2〉 z9 = abab 2

15〈2〉 z15 = ac 2
21〈2〉 z22 = bbbb 1

Moreover, by above observation, #Orb(w) = 12.
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6. Favorable prime numbers

In this section we study the lengths, or integers, such that the only transposition invariant words of that length are
of the form ab∗c. For example, 4, 6, 12, and 14 are such lengths, as is readily verified.

We begin with an example. Let w be a word of length n + 1 over four-letter alphabet A = {a, b, c, d} defined by

wi =


a if i = 0,
b if gcd(i, n) = 1,
c if gcd(i, n) > 1 and i < n,
d if i = n

for all 0 ≤ i ≤ n. Then w is transposition invariant. For if 0 ≤ i, j ≤ n, where gcd(i, n) = 1 and gcd( j, n) > 1,
then i〈S〉 ∩ j〈S〉 = ∅. Moreover, if n is composite, then both letters b and c occur in w, and thus w is nontrivial. We
conclude that if a positive integer n is composite, then there always exist nontrivial S-invariant words of length n + 1
for every S ⊆ Sn . This leads us to the next result.

Theorem 13. Let S ⊆ Sn . There exist only trivial S-invariant words of length n + 1 if and only if n is prime and
〈S〉 = Z∗

n .

Proof. Assume there exist only trivial S-invariant words of length n + 1. This is equivalent to the condition that
the partition of Zn generated by 〈S〉 has only two elements, {0} and {1, 2, . . . , n − 1}, which then have to be 0〈S〉

and 1〈S〉, respectively. This is equivalent to 〈S〉 = Zn \ {0}, which in turn, happens exactly when n is prime and
〈S〉 = Zn \ {0} = Z∗

n . �

Motivated by Theorem 13, we say that a prime number n is favorable (for the existence of nontrivial transposition
invariant words) if there exists a nontrivial transposition invariant word of length n + 1, that is, if 〈Sn〉 6= Z∗

n . Next we
will prove that there exist infinitely many favorable primes. This is done with the help of quadratic residues (see [2,
6]). To do that, we need the following lemma.

Lemma 14. If a positive integer n is prime and n ≡ 7 (mod 8), then every integer dividing n + 1 is a quadratic
residue modulo n.

Proof. Since the product of two quadratic residues modulo n is a quadratic residue, it is enough to show that each
prime divisor of n + 1 is a quadratic residue modulo n. So assume that p is prime and p | n + 1. It is well known that
2 is a quadratic residue modulo prime n exactly when n ≡ ±1 (mod 8). Hence the case p = 2 is clear. Suppose then
that p > 2. Now, by using the basic principles of residue calculation, we get( p

n

)
= (−1)

p−1
2 ·

n−1
2

(
n
p

) (
law of quadratic reciprocity

)
= (−1)

p−1
2

(
n
p

) (
n ≡ 7 (mod 8) implies

n − 1
2

odd
)

= (−1)
p−1

2

(
−1
p

) (
n ≡ −1 (mod p)

)
= (−1)

p−1
2 · (−1)

p−1
2

((
−1
p

)
= (−1)

p−1
2

)
.

= 1.

Hence p is a quadratic residue modulo n, and the claim follows. �

Theorem 15. There exist infinitely many favorable primes.

Proof. Let n be a prime number with n ≡ 7 (mod 8). Dirichlet’s theorem on arithmetic progressions (see [2]) says that
there exist infinitely many such primes n. By Lemma 14, every integer in the set Sn is a quadratic residue modulo n.
Thus every integer in the set 〈Sn〉 also is a quadratic residue. But exactly half of all the integers in Z∗

n are quadratic
residues modulo n; the other half is the set of quadratic nonresidues modulo n. Therefore, 〈Sn〉 6= Z∗

n , and nontrivial
transposition invariant words of length n + 1 exist, so that n is favorable. �
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The other direction, the infinitude of unfavorable primes, is more difficult, and requires some more advanced
techniques. We prove that there exist infinitely many primes p with a primitive root dividing p + 1, which is stronger
statement than just unfavorability of p. The proof is a little application of Heath-Brown’s [3] ideas. To present the
proof, we need some technical definitions and a lemma.

Suppose α, δ > 0 and α+ δ < 1
2 . The notation n = P2(α, δ)means that either n is prime, or n = p1 p2 with p1, p2

primes and nα ≤ p1 ≤ n
1
2 −δ .

In what follows, p always denotes a prime number. The notation f (x) � g(x)means the same as f (x) = O(g(x)).
Finally, expp(a) denotes #〈a〉p. The following lemma is proved in [3].

Lemma 16. Let k = 1, 2, or 3, and put K = 2k . Suppose u and v are coprime integers such that K | u − 1, 16 | v,
and

(
u−1

K , v
)

= 1. Then there exist α ∈ ( 1
4 ,

1
2 ) and δ ∈ (0, 1

2 − α) such that the set

S(x) =

{
p ≤ x : p ≡ u (mod v),

p − 1
K

= P2(α, δ)

}
,

satisfies

#S(x) �
x

log2 x
.

Theorem 17. There exist infinitely many primes p with a primitive root that divides p + 1.

Proof. By setting u = 2 · 3 · 7 · 11 − 1 = 461, v = 16 · 3 · 7 · 11 = 3696, and k = 2, we can apply Lemma 16, since
u, v, and k clearly satisfy its conditions.

We will show that there are infinitely many primes p such that p ≡ u (mod v) and either 3, 7, or 11 is a primitive
root mod p. This will then attest to the claim because each of 3, 7, 11 is a divisor of p + 1.

First we show that if p ∈ S(x), then 4 divides each of expp(3), expp(7), and expp(11). Since 4 | p − 1, the law of
quadratic reciprocity gives(

3
p

)
=

(
7
p

)
=

(
11
p

)
= −1.

Now, let a denote some primitive root modulo p, and suppose ak
≡ 3(mod p) for some k. A well-known result (see

[2, Lemma 1 on p. 206]) gives

expp(3) =
p − 1

gcd(k, p − 1)
.

Since 3 is a quadratic nonresidue modulo p, k must be odd. Thus, since p − 1 is divisible by 4, so is expp(3). The
same reasoning applies for 7 and 11.

Next we analyze different possibilities that can occur with p ∈ S(x). We have either p = 4q +1 with q a prime, or
p = 4p1 p2 + 1 with p1, p2 primes. If p = 4q + 1 and p > 114, then ordp(3) | 4q = p − 1 implies ordp(3) = p − 1.
Hence if limx→∞ S(x) contains infinitely many primes of the form 4q + 1, we are done.

Therefore we may assume that S(x) has �
x

log2 x
primes of the form p = p1 p2 + 1. Let us denote by S2(x) this

subset of primes in S(x).
If p ∈ S2(x) and p > 114, then

expp(3), expp(7), expp(11) ∈ {4p1, 4p2, p − 1}.

In what follows, we will show that for infinitely many p ∈ S2(x), one of expp(3), expp(7), expp(11 ) must equal
p − 1.

Suppose that p ∈ S2(x) and expp(3) = 4p1. We make the following auxiliary estimation. Let

T (X) =

{
p ≤ x : expp(3) ≤ 4x1/2−δ

}
.
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Then

#T (x) ≤

∑
e≤4x1/2−δ

#
{

p ≤ x : p | 3e
− 1

}
�

∑
e≤4x1/2−δ

log(3e
− 1)

�

∑
e≤4x1/2−δ

e � x1−2δ.

Since 1−2δ < 1, we have x1−2δ
= o

(
x

log2 x

)
. Now, observe that p is in T (x) because if p ∈ S2(x), then 4p1 ≤ 4x

1
2 −δ .

Hence the number of primes p in S2(x) with expp(3) = 4p1 is o
(

x
log2 x

)
. The same estimate holds for 7 and 11.

Therefore there have to be �
x

log2 x
primes p in S2(x) such that

expp(3), expp(7), expp(11) ∈ {4p2, p − 1}.

If there are infinitely many p ∈ S2(x) such that expp(l) = p − 1 for some l = 3, 7, 11, our proof is done. If not, there
must be �

x
log2 x

primes p ∈ S2(x) such that expp(3) = expp(7) = expp(11) = 4p2. We will derive a contradiction

by showing that the number of these primes is o
(

x
log2 x

)
.

The integers n = 3e
· 7 f

· 11g for 0 ≤ e, f, g ≤ 2x (1−α)/3 all satisfy n4p2 ≡ 1(mod p). Hence by Lagrange’s
theorem, n can have at most 4p2 values. But the number of triples (e, f, g) is at least 8x1−α

≥ 8p1−α
≥ 8p2, so

that there are at least two distinct triples that produce the same n mod p. It follows that p divides the numerator N of
3e

· 7 f
· 11g

− 1 for some triple (e, f, g) with |e|, | f |, |g| ≤ 2x (1−α)/3 and (e, f, g) 6= (0, 0, 0). Clearly, N 6= 0. It
follows that the number of primes p such that p ∈ S2(x) and expp(3) = expp(7) = expp(11) = 4p2 is at most the
number of different triples (e, f, g) with |e|, | f |, |g| ≤ 3x (1−α)/3 times the number of prime divisors of N . Since

log |N | � max (|e|, | f |, |g|) � x (1−α)/3,

N has � x (1−α)/3 prime factors. Thus the number of such primes p in S2(x) is � x (1−α)/3x1−α
= o

(
x

log2 x

)
(observe

that 4(1 − α)/3 < 1). This contradiction shows that there are infinitely many primes in limx→∞ S(x) such that either
3, 7, or 11 is a primitive root mod p. The proof is now complete. �

If we denote by F(x) the number of primes p up to x for which there exists a primitive root modulo p dividing
p + 1, then clearly

F(x) ≥ #{p ≤ x such that 2 is a primitive root modulo p}.

Let N2(x) be the quantity on the right hand side above. A famous result of Hooley [5] states that the Generalized
Riemann Hypothesis implies

N2(x) ∼ A
x

log x
,

where A =
∏

l prime
(
1 − (l2

− l)−1)
= 0.3739558136192 · · · is Artin’s constant. This observation implies

immediately that (on GRH) there exists a positive density of primes p with a primitive root dividing p + 1.
On the other hand numerical evidence suggests that

F(x) ∼ B
x

log x
,

where B ≥ 0.65. We believe that the problem of computing the exact value of B can be tackled via the Generalized
Riemann Hypothesis.
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