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Abstract. The goal of this survey is to explain how to use reciprocity laws to
compute residues. We will concentrate on the case of cubic, quartic and octic

residues and in these cases we will describe algorithms which are analogues

of the classical recursive algorithm for computing Jabobi symbols. We will
illustrate implementations of these algorithms comparing execution timings

in the various case. As a motivation, we will illustrate how to extend the

Goldwasser–Micali probabilistic encryption to general residues.

1. Introduction

The RSA cryptosystem, introduced in 1978 by Rivest, Shamir and Adleman [11],
is one of the most popular ones. Its security is believed to rely on the difficulty
of factorizing integers. The problem of factoring is so old that we can affirm that
Euclid, Gauss and many others contributed in guaranteeing the security of RSA.

Another cryptosystem that uses the difficulty of factoring is the Goldwasser-
Micali probabilistic encryption scheme [5]. Basic facts on probabilistic public–key
systems can be found in [14] and [15].

1.1. Goldwasser - Micali probabilistic encryption scheme. The scheme works
as follows:

Bob chooses an RSA module M = pq, with p and q random primes, and an
integer1 a ∈R (Z/MZ)∗ with the properties that

(
a
M

)
= 1 and a is a quadratic

non–residue modulo M . Then he publishes the public key (M,a).
Alice, in order to encrypt a bit P , picks an element c ∈R (Z/MZ)∗. The

encrypted message C ∈ (Z/MZ)∗ is defined by

C =

{
c2a mod M if P = 1
c2 mod M if P = 0

After this computation Alice transmits C to Bob that will decrypt the message
by computing ε =

(
C
p

)
and setting P = 0, if ε = 1 and P = 1 otherwise.

The Goldwasser–Micali cryptosystem is probabilistic in the sense that the same
message is encrypted in several different ways. The security of the scheme is based
on the problem of quadratic residuosity (see for example [15, §3.4]) that in order to
be able to guess whether an element e in Z/MZ (M composed) with Jacobi symbol(

e
M

)
= 1 is a square, one has to completely factor M .

Date: August 3, 2003.

1991 Mathematics Subject Classification. 11T71, 14G50.
Key words and phrases. probabilistic encryption, identification protocols, reciprocity law;

power residue symbol.
the second author was supported in part by COFIN–PRIN 2002 from MIUR and by GNSAGA

from INDAM.
1the notation ∈R reads ”randomly chosen in“

1



2 A. COSENTINO & F. PAPPALARDI

Decryption in the Goldwasser–Micali requires the computation of a Jacobi sym-
bol. It is very well known that if m,m′ and n are coprime integers with n odd and
JAC(m,n) =

(
m
n

)
is the Jacobi symbol, then the 5 fundamental properties:

(1)
(

m
n

)
=

(
m mod n

n

)
;

(2)
(

mm′

n

)
=

(
m
n

)
·
(

m′

n

)
;

(3)
(−1

n

)
= (−1)(n−1)/2;

(4)
(

2
n

)
= (−1)(n

2−1)/8;
(5)

(
m
n

)
= (−1)(n−1)(m−1)/4

(
n
m

)
if m is also odd (quadratic reciprocity law);

lead to the algorithm
Computing JAC m,n ∈ Z, 2 - n, gcd(m,n) = 1

JAC(m,n) = if (m = ±1) then return
(
m

n−1
2

)
if (2|m) then JAC(m/2, n) ∗ (−1)

n2−1
8

else JAC(n mod m,m) ∗ (−1)
(m−1)(n−1)

4

that runs in quadratic time.

Remark. Here n mod m denotes the (unique) remainder of the division of n by
m. A possibility to speed up a the algorithm is to replace the modular reduction
in the last line with s

n mod m if n mod m ≤ m/2
n mod m−m if n mod m > m/2.

The algorithm implicitly computes the gcd of m and n. In fact one can drop the
hypotheses that m and n are coprime, by adding the line (before the first)

if (m = 0) then return (0)
See [9] for other better inexpensive improvements.

The Goldwasser-Micali probabilistic scheme can be extended in the following
natural way.

1.2. k–residues probabilistic encryption. Let k be a fixed small integer (in
practice k = 2, 3, 4, 6, 8).

Bob computes an RSA module M = pq with the extra property that p ≡ 1 mod k
and q ≡ 1 mod k. Further he fixes two prime ideals p and q of the ring of cyclotomic
integers Z[ζ] (ζ = e2πi/k is a primitive k–th root of 1) with p|p and q|q.

Next he picks a ∈R (Z/MZ)∗ with the properties that
(1) a is not a k–residue modulo M ;

(2)
[

a
p

]
k

=
[

a
q

]−1

k
is a primitive root of unity.

Here
[ ·
·
]
k

is the k–th residue symbol and it is defined in the following way (for
details see for example [8]).

Definition 1.1. Let p be a prime ideal of Z[ζ] such that p - k and consider
the residue finite field Z[ζ]/pZ[ζ] with N(p) elements. The k–th roots of unity
ζ, ζ2, . . . , ζk = 1 have distinct image, therefore for any α ∈ Z[ζ] we have the iden-
tity

α
N(p)−1

k = ζj (mod p)
for a unique j = j(α) ∈ Z/kZ. For such j, we define the k–residue symbol[

α

p

]
k

= ζj .
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Note that N(p) = pf ≡ 1 mod k. If f = 1 (i.e. p ≡ 1 mod k) and α ∈ Z, then all
the k possible values of

[
α
p

]
k

are equiprobable.

Bob’s public key is now (M,a).
In order to encrypt a message P (represented as an element of Z/kZ), Alice

picks c ∈R (Z/MZ)∗ and encrypts it according to the rule

C = E(P ) ≡ ck · aP mod M.

Finally, Bob decrypts the message by computing the k–residue symbol[
C

p

]
k

= ζj ,

and setting
P = D(C) = j · t∗ mod k

where
[

a
p

]
k

= ζt and t∗ is the inverse of t module k.

Note that the scheme works since (by the properties of k–residue symbols that
will be reviewed later) [

E(P )
p

]
k

=
[

c

p

]k

k

[
a

p

]P

k

= ζtP .

As for the classical Goldwasser-Micali scheme, the k–residues probabilistic scheme
is based on the k–residuosity assumption that will be stated later in Section 2.

The probability that a third party, trying to decrypt the message sent by Alice,
guesses the right values is 1

k while, when using Goldwasser-Micali scheme, the
probability is 1

2 .
In order to be practical, the k–residue probabilistic encryption requires a fast

way to compute residues. Although is generally know that higher reciprocity laws
allow one fast computations of k–residue symbols at least for small values of k (see
[13]), much to our surprise we could not find any reference in which the necessary
algorithms are explicitly stated.

The goal of this note is to survey such algorithms deducing them from the clas-
sical theory and compare their relative efficiency.

1.3. Fast Legendre identification protocol and its k–residue analogue. The
principle of the Goldwasser–Micali scheme is also behind the fast Legendre identifi-
cation protocol FLIP that was considered by Banks, Lieman and Shparlinski in [2]
and works as follows:

Irina chooses an RSA module M = pq with p and q random primes, and integers
a, b ∈ (Z/MZ)∗ with the properties that

(
a
p

)
=

(
a
q

)
= 1 and

(
b
p

)
=

(
b
q

)
= −1.

She then publishes her public key (M,a, b).
Victor, in order to test the identity of Irina, picks c1, . . . , cl ∈R (Z/MZ)∗,

and a sequence (d1, . . . , dl) ∈R {a, b}l. After having computed Ci ≡ c2
i di mod M

for i = 1, . . . , l, he transmits C1, . . . , Cl to Irina that will prove her identity by
computing εi =

(
Ci

p

)
for i = 1, . . . , l and sending the resulting sequence (ε1, . . . , εl)

of bits to Victor. Finally Irina’s identity is verified if, for all i, εi = 1 when di = a
and εi = −1 when di = b.

We observe that FLIP is fast, for the party who’s proving its identity, because
the only calculations that Irina has to perform are Legendre symbols calculations.

The identification protocol FLIP can be extended in the following natural way.
Irina computes an RSA module M = pq with the extra properties that p ≡ 1 mod k
and q ≡ 1 mod k. Further she fixes two prime ideals p and q of the ring of cyclotomic
integers Z[ζ] (ζ = e2πi/k is a primitive k–th root of 1) with p|p and q|q.
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Next she chooses a1 . . . ak ∈ (Z/MZ)∗ that verify the following:[
aj

p

]
k

= ζj =
[
aj

q

]−1

k

, j = 1, . . . k.

The public key is now (M,a1, . . . , ak).
In order to test Irina’s identity, Victor picks

c1, . . . , cl ∈R Z/MZ, (d1, . . . , dl) ∈R {a1, . . . , ak}l.

Then he computes and sends

Ci ≡ ck
i · di (mod M), i = 1, . . . , l.

Finally, Irina proves her identity by computing and sending the k–residues sym-
bols [

Ci

p

]
k

= ζji , i = 1, . . . , l.

Victor knows that Irina is really Irina only if di = aji
for all i = 1, . . . , l.

The probability that a third party, trying to convince Victor that he is Irina,
guesses all the right values j1, . . . , jl is 1

kl while, when using FLIP, the probability
is 1

2l . From this observation we deduce, that with “equal security” but under
different hardness assumption (k–residuosity for different values of k), the k-residues
identification protocols needs a value of l which is approximately log 2

log k times the
value required for FLIP. If for example k = 4, then, with the quartic residues
identification protocol, only half of the residues need to be computed by Irina.
Finally it would be desirable to be able to compute a k–residue symbol in at most
log k
log 2 times the time needed to compute a Jacobi symbol.

2. k–dimensional residue symbols

As we observed above, if p is any non trivial prime ideal of Z[ζ] with p - k (ζ a
primitive k–th root of 1), and α ∈ Z[ζ], then the k–dimensional residue symbol is
defined by the identity [

α

p

]
k

≡ α
N(p)−1

k (mod p).

and it is understood that
[

α
p

]
= 0 if p|α.

The fact that, in general, Z[ζ] is not Euclidean makes things more technical in
the general case. For this reason, from now on, we will restrict our attention here
to the values of k:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24

which are the values of k for which Z[ζ] is known to be Euclidean (see [7] for a
complete account on the problem).

If p = (π), with π ∈ Z[ζ] irreducible, then we will use the symbol
[ ·

π

]
k

for
[
·
p

]
k

so that if π1 and π2 are associated, then for any α ∈ Z[ζ],[
α

π1

]
k

=
[

α

π2

]
k

.

It is clear from the definition that
[

α
π

]
k

can be computed in cubic time by a
modular exponentiation. However this is unsatisfactory for the practical purposes.

Consider a non-unit β ∈ Z[ζ] such that no prime dividing k contain (β). As for
the Legendre Symbol with the Jacobi symbol, we extend the k–dimensional residue
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symbol to β by the rule: [
α

β

]
k

=
t∏

j=1

[
α

πj

]aj

k

where β = πa1
1 · · ·πat

t is the factorization of β into irreducibles. If β is a unit, we
also set

[
α
β

]
k

= 1. Note that from the definition follows immediately that[
α

β

]
k

=
[
α mod β

β

]
k

,

[
α1α2

β

]
k

=
[
α1

β

]
k

·
[
α2

β

]
k

,[
α

β

]
k

= 0 if gcd (α, β) 6= 1 and
[

α

β1

]
k

=
[

α

β2

]
k

if β1 and β2 are associated.
To achieve a fast algorithm to compute

[
α
β

]
k

one needs four ingredient:

• a reciprocity law;
• a formula to compute

[
α
β

]
k

when α is a product of ramified primes in Z[ζ];

• a formula to compute
[

α
β

]
k

when α is a unit Z[ζ];

• an efficient algorithm to compute the Euclidean division in Z[ζ].
A lengthy literature addresses these problems but to our knowledge there is not

yet a general answer. However the Eisenstein reciprocity law [8] provides the first
ingredient at least in the case when k is prime. As for the last ingredient, see for
example [16, 17]

We conclude this section by stating the
The k–residuosity assumption: Given α, β ∈ Z[ζ] (where β is not a unit and
such that no prime dividing k contain (β)) with

[
α
β

]
k

= 1, to determine if α is a

k–power modulo β is as hard as to factor the norm N(β).

3. Classical Reciprocity Laws and derived algorithms

We will analyze the three possible values k = 3, 4, 8. A similar analysis can be
done for k = 6.

3.1. Cubic residues - the ring Z[(−1+
√
−3)/2]. Let ω = −1+

√
−3

2 be a complex
cubic root of 1. The Euclidean domain Z[ω] contains 6 units, namely ±1,±ω and
±ω2.

The prime 1 − ω of Z[ω] satisfies the relation (1 − ω)2 = −3ω, that will be
useful for the cubic residue computation. From the definition of norm N(a+ωb) =
(a + b)2 − 3ab, we deduce that if α = a + bω ∈ Z[ω], then 1 − ω|α if and only if
3|a + b. Furthermore

α

1− ω
=

2a− b

3
+

a + b

3
ω.

We say that α = a+bω ∈ Z[ω] is primary if α ≡ 1 mod 3. That is if a ≡ 1 mod 3
and 3 | b. The only primary unit of Z[ω] is 1. For any α ∈ Z[ω] with 1 − ω - α,
among the six associates of α

α = a + bω, −α = −a− bω, ωα = −b + (a− b)ω,

−ωα = b + (b− a)ω, ω2α = (b− a)− aω, −ω2α = (a− b) + aω

there is a unique primary one. Therefore, if 1− ω - α, we can write

α = ±ωc(α)P (α)
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where P (α) and c(α) are uniquely determined by the requirements that P (α) ∈ Z[ω]
is primary and c(α) ∈ Z/3Z. Concretely, if (a′, b′) ∈ Z/3Z× Z/3Z is the reduction
of (a, b) modulo 3 then in the following table we can read out the values
(a′, b′) (1, 0) (2, 0) (2, 2) (1, 1) (0, 1) (0, 2)

P (α) a + ωb −a− bω −b + (a− b)ω b + (b− a)ω (b− a)− aω (a− b) + aω

c(α) 0 0 2 2 1 1

From this table we deduce that the computation of P (α) and that of c(α) can be
done in linear time.

Primary elements play an important role in the reciprocity law. The following
statement can be found in several references as for example [1, 6, 8].

Theorem 3.1 (Cubic reciprocity law). Let α, β ∈ Z[ω] be relatively prime and
primary β = c + dω. Then[

α

β

]
3

=
[
β

α

]
3

,

[
ω

β

]
3

= ω(1−c−d)/3,

[
1− ω

β

]
3

= ω(c−1)/3,

[
3
β

]
3

= ωd/3,

[
±1
β

]
3

= 1.�

From the above discussion and from (1) we deduce the following algorithm for

CR(α, β) =
[
α

β

]
3

:

α = a + ωb, β = c + ωd ∈ Z[ω]
Computing CR 1− ω - β, β = P (β)

gcd(α, β) = 1

CR(α, β) = if (α = 1) then return (1)
if (1− ω|α) then CR(α/(1− ω), β) ∗ ω(c−1)/3

else s = c(α), α = P (α)
CR(β (modα), α) ∗ ω(s(1−c−d))/3

With the notation β (modα) we denote any remainder of the Euclidean division
of β by α. That is an element γ in Z[ω] such that γ ≡ β ( mod α) and N(γ) < N(α).
In general there is more then one such element. The best is to choose the one with
least norm. The element γ equals β − ρ · α where ρ is an the element of the lattice
Z[ω] which is closest to β

α .
We can speed up the algorithm by adding between the first and the second line

if (3|α) then CR(α/3v3(α), β) ∗ ωdv3(α)/3

where v3(α) denotes the exponent of the largest power of 3 dividing α.

3.2. Quartic residues - the ring Z[i]. The units of Euclidean domain Z[i] are
±1 and ±i. In Z[i], 1+i is a special prime and has the property that 2 = −i(1+i)2.
If α = a + ib ∈ Z[i], then it is immediate to see that 1 + i|α if and only if 2|a + b
(i.e. a and b have the same parity). In that case

α

1 + i
=

a + b

2
+

a− b

2
i.

We say that α = a + bi ∈ Z[i] is primary if α ≡ 1 (mod 2 + 2i). If α is primary,
then 1 + i - α and also α is primary if and only if

a− 1 ≡ b ≡ 0 mod 4 or a− 1 ≡ b ≡ 2 mod 4.
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The only primary unit of Z[i] is 1. Furthermore for any α ∈ Z[i] with 1 + i - α,
among the four associates of α

α = a + bi, −α = −a− bi, iα = −b + ai, −iα = b− ai

there is exactly a primary one. Therefore, if 1 + i - α, we can write

α = ic(α)P (α)

where P (α) and c(α) are uniquely determined by the requirements that P (α) ∈ Z[i]
is primary and c(α) ∈ Z/4Z. Concretely, if (a′, b′) ∈ Z/4Z× Z/4Z is the reduction
of (a, b) modulo 4 then in the following table we can read out the values of c(α)
and P (α):

(a′, b′) (1, 0), (3, 2) (0, 1), (2, 3) (1, 2), (3, 0) (2, 1), (0, 3)
P (α) a + bi b− ai −a− bi −b + ai
c(α) 0 1 2 3

The computation of P (α) and that of c(α) takes a linear number of bit operations.
Primary elements play again an important role in the reciprocity law. The

following statement can be found in several references as for example [1, 6, 8].

Theorem 3.2 (Quartic reciprocity law). Let α, β ∈ Z[i] be relatively prime and
primary with α = a + bi and β = c + di. Then[

α

β

]
4

=
[
β

α

]
4

i(1−a) 1−c
2 = (−1)

bd
4 ,

[
i

β

]
4

= i(1−c)/2,

[
1 + i

β

]
4

= i(c−d−d2−1)/4,

[
2
β

]
4

= i−d/2.�

From the above discussion and from (1) we deduce the following algorithm for

QR(α, β) =
[
α

β

]
4

:

α = a + ib, β = c + id ∈ Z[i]
Computing QR 1 + i - β, β = P (β)

gcd(α, β) = 1

QR(α, β) = if (α = 1) then return (1)
if (1 + i|α) then QR(α/(1 + i), β) ∗ i(c−d−d2−1)/4

else s = c(α), α = P (α)
QR(β (modα), α) ∗ i(1−a+s)∗(1−c)/2

Further, note that

(c− d− d2 − 1)/4 (mod 4) =

{
(c− d− 1)/4 (mod 4) if 4|d,

(c− d− 5)/4 (mod 4) if 2‖d.

Also here, with the notation β (modα), we denote any remainder of the Eu-
clidean division in Z[i] of β by α. That is an element γ in Z[i] such that γ ≡
β (modα) and N(γ) < N(α). In general there is more then one such element. We
can speed up the algorithm by adding between the first and the second line

if (2|α) then QR(α/2v2(α), β) ∗ i−dv2(α)/2

where v2(α) denotes the exponent of the largest power of 2 dividing α.
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3.3. Octic residues - the ring Z[
√

2
2 (1 + i)]. Let τ =

√
2

2 (1 + i) and α = a +
bτ + cτ2 + dτ3 ∈ Z[τ ]. The norm N(α) of α ∈ Z[τ ] is N(α) = α1α3α5α7, with
αn = a + bτn + cτ2n + dτ3n. The domain Z[τ ] is a Euclidean ring and 1 + τ is a
prime. It has the property that

(1 + τ)4(1 +
√

2)−2τ6 = 2.

Note that ε = 1 +
√

2 = 1 + τ + τ7 is a fundamental unit of infinite order in Z[τ ]
so that every unit can be written uniquely as τ sεt, with s ∈ Z/8Z and t ∈ Z. If
α = a + bτ + cτ2 + dτ3 ∈ Z[τ ], then it is immediate to see that 1 + τ |α if and only
if 2|a + b + c + d. In that case, if e = (a + b + c + d)/2

α

1 + τ
= (e− c) + (e− a− d)τ + (e− b)τ2 + (e− a− c)τ3.

We say that α = a + bτ + cτ2 + dτ3 ∈ Z[τ ] is primary if α ≡ 1 (mod 2 + 2τ). This
is equivalent to

a− 1 ≡ b ≡ c ≡ d ≡ 0 (mod2) and a + b + c + d ≡ 1 mod 4.

The ring Z[τ ]/(2 + 2τ)Z[τ ] has 32 elements and the 32 classes can be represented
either by the 16 elements

τ sεt(1 + τ), s ∈ Z/8Z, t ∈ {0, 1}
that are 0 divisors, or by the 16 elements τ sεt, s ∈ Z/8Z, t ∈ {0, 1} that are
units. From this observation we deduce that if α ∈ Z[τ ] with 1 + τ - α, then there
exists s(α) ∈ Z/8Z, t(α) ∈ {0, 1} such that

α ≡ τ s(α)εt(α) (mod 2 + 2τ).

So, α has an associate of the form

α = τ s(α)εt(α)P (α),

where P (α), s(α) and t(α) are uniquely determined by the requirements that
P (α) ∈ Z[τ ] is primary, s(α) ∈ Z/8Z and t(α) ∈ {0, 1}. Note that from the
fact that the unit 3 − 2

√
2 is primary, follows that every element has infinitely

many primary associates.
Suppose α ∈ Z[τ ] is such that 1 + τ - α and let vα ∈ (Z/4Z)4 be the vector

obtained reducing the components of α modulo 4. We can always read the values
of P (α), s(α) and t(α) from the following table:

vα (1, 0, 0, 0), (3, 2, 2, 2) (0, 1, 0, 0), (2, 3, 2, 2) (0, 0, 1, 0), (2, 2, 3, 2) (0, 0, 0, 1), (2, 2, 2, 3)
(1, 2, 2, 0), (3, 0, 0, 2) (0, 1, 2, 2), (2, 3, 0, 0) (2, 0, 1, 2), (0, 2, 3, 0) (2, 2, 0, 1), (0, 0, 2, 3)
(1, 2, 0, 2), (3, 0, 2, 0) (2, 1, 2, 0), (0, 3, 0, 2) (0, 2, 1, 2), (2, 0, 3, 0) (2, 0, 2, 1), (0, 2, 0, 3)
(1, 0, 2, 2), (3, 2, 0, 0) (2, 1, 0, 2), (0, 3, 2, 0) (2, 2, 1, 0), (0, 0, 3, 2) (0, 2, 2, 1), (2, 0, 0, 3)

P (α) a + bτ + cτ2 + dτ3 b + cτ + dτ2 − aτ3 c + dτ − aτ2 − bτ3 d − aτ − bτ2 − cτ3

s(α) 0 1 2 3
t(α) 0 0 0 0

vα (1, 2, 0, 0), (3, 0, 0, 0) (2, 1, 0, 0), (0, 3, 2, 2) (2, 0, 1, 0), (0, 2, 3, 2) (2, 0, 0, 1), (0, 2, 2, 3)
(1, 0, 2, 0), (3, 2, 0, 2) (0, 1, 2, 0), (2, 3, 0, 2) (0, 2, 1, 0), (2, 0, 3, 2) (0, 2, 0, 1), (2, 0, 2, 3)
(1, 0, 0, 2), (3, 2, 2, 0) (0, 1, 0, 2), (2, 3, 2, 0) (0, 0, 1, 2), (2, 2, 3, 0) (0, 0, 2, 1), (2, 2, 0, 3)
(1, 2, 2, 2), (3, 0, 2, 2) (2, 1, 2, 2), (0, 3, 0, 0) (2, 2, 1, 2), (0, 0, 3, 0) (2, 2, 2, 1), (0, 0, 0, 3)

P (α) −a − bτ − cτ2 − dτ3 −b − cτ − dτ2 + aτ3 −c − dτ + aτ2 + bτ3 −d + aτ + bτ2 + cτ3

s(α) 4 5 6 7
t(α) 0 0 0 0

vα (1, 1, 0, 1), (3, 3, 2, 3) (1, 3, 1, 0), (3, 1, 3, 2) (0, 1, 3, 1), (2, 3, 1, 3) (3, 0, 1, 1), (1, 2, 3, 3)
(3, 1, 0, 3), (1, 3, 2, 1) (1, 1, 3, 0), (3, 3, 1, 2) (0, 3, 1, 1), (2, 1, 3, 3) (1, 0, 3, 1), (3, 2, 1, 3)
(1, 3, 0, 3), (3, 1, 2, 1) (3, 1, 1, 0), (1, 3, 3, 2) (0, 1, 1, 3), (2, 3, 3, 1) (1, 0, 1, 3), (3, 2, 3, 1)
(3, 3, 0, 1), (1, 1, 2, 3) (3, 3, 3, 0), (1, 1, 1, 2) (0, 3, 3, 3), (2, 1, 1, 1) (3, 0, 3, 3), (1, 2, 1, 1)

P (α) k0 + k1τ + k2τ2 + k3τ3 k1 + k2τ + k3τ2 − k0τ3 k2 + k3τ − k0τ2 − k1τ3 k3 − k0τ − k1τ2 − k2τ3

s(α) 0 1 2 3
t(α) 1 1 1 1

vα (3, 1, 0, 1), (1, 3, 2, 3) (3, 1, 1, 0), (1, 3, 3, 2) (0, 3, 1, 1), (2, 1, 3, 3) (3, 0, 1, 1), (1, 2, 3, 3)
(1, 3, 0, 1), (3, 1, 2, 3) (1, 3, 1, 0), (3, 1, 3, 2) (0, 1, 3, 1), (2, 3, 1, 3) (1, 0, 3, 1), (3, 2, 1, 3)
(1, 1, 0, 3), (3, 3, 2, 1) (1, 1, 3, 0), (3, 3, 1, 2) (0, 1, 1, 3), (2, 3, 3, 1) (1, 0, 1, 3), (3, 2, 3, 1)
(3, 3, 0, 3), (1, 1, 2, 1) (3, 3, 3, 0), (1, 1, 1, 2) (0, 3, 3, 3), (2, 1, 1, 1) (3, 0, 3, 3), (1, 2, 1, 1)

P (α) −k0 − k1τ − k2τ2 − k3τ3 −k1 − k2τ − k3τ2 + k0τ3 −k2 − k3τ + k0τ2 + k1τ3 −k3 + k0τ + k1τ2 + k2τ3

s(α) 4 5 6 7
t(α) 1 1 1 1
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where

k0 = −a + b + d k1 = a− b + c
k2 = b− c + d k3 = −a + c− d.

From this table we deduce that the computation of P (α) and that of s(α) can
be done in linear time.

As for the quartic and cubic case, primary elements play an important role in
the octic reciprocity law. The octic reciprocity law was exposed by Goldscheider in
[4]. The following statement can be found in [8].

Theorem 3.3. Let α, β ∈ Z[τ ] be relatively prime and primary with α = a + bτ +
cτ2 + dτ3 and β = e + fτ + gτ2 + hτ3. Consider the auxiliary functions:

A = Aα = a2 − c2 + 2bd, B = Bα = b2 − d2 − 2ac,
C = Cα = a2 − b2 + c2 − d2, D = Dα = ab− bc + cd + da,
E = Eα = a2 + b2 + c2 + d2, F = Fα = ab + bc + cd− da.

Then [
α

β

]
8

=
[
β

α

]
8

τDα∗Fβ−Dβ∗Fα+(N(α)−1)(N(β)−1)/16.

Furthermore[ τ

α

]
8

= τ (A−1+4B+2BD+2D2)/4,

[
1 + τ

α

]
8

= τ (A−1+B+6D+B2+2BD+D4/2)/4,

[ ε

α

]
8

= τ (D−3B−BD−2D2)/2.�

A special discussion needs to be made for the symbol
[

θ
α

]
8

where θ is a primary
unit of Z[τ ]. In this case it can be seen that θ = ε2r, where

r = rθ ≡


0 (mod 4) if θ ≡ 1 (mod 8)
1 (mod 4) if θ ≡ ε (mod 8)
2 (mod 4) if θ ≡ 1 + 4

√
2 (mod 8)

3 (mod 4) if θ ≡ 3 + 6
√

2 (mod 8).

From the above we deduce the following algorithm for

OR(α, β) =
[
α

β

]
8

:

α = a + bτ + cτ2 + dτ3,
β = e + fτ + gτ2 + hτ3 ∈ Z[τ ]

Computing OR 1 + τ - β, β = P (β)
gcd(α, β) = 1

OR(α, β) = if (N(α) = 1) then θ = α (mod8), r = rθ

return
(
τ2r∗Z

)
if (1 + τ |α) then OR(α/(1 + τ), β) ∗ τW

else s = s(α), t = t(α), α = P (α)
OR(β (modα), α) ∗ τX+s∗Y +t∗Z

where
W = (A− 1 + B + 6D + B2 + 2BD + D4/2)/4
X = Dα ∗ Fβ −Dβ ∗ Fα + (N(α)− 1)(N(β)− 1)/16,
Y = (A− 1 + 4B + 2BD + 2D2)/4,
Z = (D − 3B −BD − 2D2)/2.
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4. Conclusion

The algorithms for cubic and quartic residues of Section 3.1 and Section 3.2 have
been implemented. The programs were written in C with the auxiliary help of the
library functions of PARI [3]. Tests were performed in the Linux environment on a
Pentium III (1100Mhz/256Mb RAM) platform. The codes are available at

http://www.mat.uniroma3.it/users/pappa/RESIDUES.zip.

4.1. Test 1. For each n ∈ {500, 600, 700, 800, 900, 1000, 1100, 1200}, we considered
3000 random pairs of elements in Z[ω] (resp. Z[i]). Each pair (x, y) was constructed
in such a way that x = x1 + x2ω, y = y1 + y2ω (resp. x = x1 + x2i, y = y1 + y2i)
and x1, x2, y1, y2 each have n

2 bits.

The following two tables represent the total time in milliseconds to compute
[

x
y

]
3

and x
Ny−1

3 (mod y) (resp.
[

x
y

]
4

and x
Ny−1

4 (mod y)) for all 3000 random pairs.
The third row contains the ratio of the times and indicates how much faster is

to use reciprocity with respect to exponentiation. Note that the factor is at least
13 for cubic residues (resp. 43 for biquadratic residues).

TABLE 1
n 500 600 700 800 900 1000 1100 1200

# of ms to compute
[

x
y

]
3

5240 6840 8940 11160 14000 16860 19830 22770

# of ms to compute 69150 108770 152540 221310 287550 388410 508390 623010

x
Ny−1

3 (mod y)
Exponential/cubic
symbol times ratio 13.196 15.902 17.062 19.830 20.539 23.037 26.637 27.361

TABLE 2
n 500 600 700 800 900 1000 1100 1200

# of ms to compute
[

x
y

]
4

1430 1810 2550 2990 3980 4460 5370 6220

# of ms to compute 62180 97300 136660 199110 260630 351620 460240 564210

x
Ny−1

4 (mod y)
Exponential/biquadratic
symbol times ratio 43.482 53.757 53.592 66.592 65.485 78.838 85.706 90.709

4.2. Test 2. For each n = t · 100 with t = 5, . . . , 25, we considered 100000 random
pairs of elements in Z[ω] (resp. Z[i]).

Each pair (x, y) was constructed in such a way that x = x1, y = y1 + y2ω (resp.
x = x1 + x2i, y = y1 + y2i), x and y are coprime, x1 has n bits (resp. x1, x2 each
have n

2 bits) and y1, y2 each have n
2 bits.

The following four tables represent the total time in milliseconds to compute[
x
y

]
3

and
[

x
p

]
2

(resp.
[

x
y

]
4

and
[

q
p

]
2
) for all 100000 random pairs. To compute the

Jacobi symbol we used the native PARI function (we thought that was the best)
with p = N(y) (resp. q = N(x) and p = N(y)).

The third row contains the ratio of the times and indicates how much slower
it is to compute cubic symbol (resp. biquadratic symbol) with respect to Jacobi
symbol. Note that the factor is at most 15 for cubic residues (resp. at least 4 for
biquadratic residues).

TABLE 3-1
n 500 600 700 800 900 1000 1100 1200 1300 1400 1500
# of ms

to compute
[

x
y

]
3

174890 229440 295560 371130 454910 549790 657350 775330 908860 1054690 1214610

# of ms

to compute
[

x
p

]
2

11030 15420 18930 23370 28000 34650 39600 45380 52670 59150 67210

Cubic/Jacobi
symbol times ratio 15.855 14.879 15.613 15.880 16.246 15.866 16.599 17.085 17.255 17.830 18.071
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TABLE 3-2
n 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
# of ms

to compute
[

x
y

]
3

1395120 1594930 1809680 2042350 2286100 2556210 2833340 3134690 3452360 3787850

# of ms

to compute
[

q
p

]
2

74960 84050 92530 102030 111800 123130 131570 144800 158310 173280

Cubic/Jacobi
symbol times ratio 18.611 18.975 19.558 20.017 20.448 20.760 21.534 21.648 21.807 21.859

TABLE 4-1
n 500 600 700 800 900 1000 1100 1200 1300 1400 1500
# of ms

to compute
[

x
y

]
4

44100 55750 69750 89600 109990 131860 155430 179370 202980 228360 255340

# of ms

to compute
[

q
p

]
2

11820 15270 19160 24960 30150 36850 43320 51860 60500 67250 78250

Biquadratic/Jacobi
symbol times ratio 3.731 3.651 3.640 3.590 3.648 3.578 3.588 3.459 3.355 3.396 3.2631

TABLE 4-2
n 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
# of ms

to compute
[

x
y

]
4

283110 311020 340510 371720 404980 438020 472970 508140 547250 236480

# of ms

to compute
[

x
p

]
2

86670 97960 107110 118420 133050 144030 157970 170000 184190 200330

Biquadratic/Jacobi
symbol times ratio 3.266 3.175 3.179 3.139 3.044 3.041 2.994 2.989 2.971 2.914

4.3. Final Remarks. The bottleneck of the reciprocity algorithms is the reduction
of an element modulo another. We have partially overcome this aspect by replacing
a mod b with a ± b, where the sign is chosen so to minimize the bit size. We
recognize that in order to obtain a serious implementation of the algorithms one
should consider more efficient implementations of the Euclidean-chain. For example
one could use the Lehmer’s trick, k–ary algorithms or even methods based on the
Schönage’s half gcd technique.
Acknowledgements: The idea that FLIP can be extended to higher dimensional
residue symbols is contained in the original paper of Banks, Lieman and Shparlinski
[2].

A non recursive version of the algorithm for cubic residues is also contained in
the paper of R. Scheidler [12] where she defines a cryptosystem that uses pure cubic
fields. After this paper was completed we also found out about the result in [18]
which deal with efficient implementation of the biquadratic symbol.
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