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Let % be a conjugation class of permutations of a finite field F,. We consider the
function Ny(q) defined as the number of permutations in % for which the associated
permutation polynomial has degree <g — 2. In 1969, Wells proved a formula for
Np31(q) where [k] denotes the conjugation class of k-cycles. We will prove formulas for
Niy(q) where k = 4,5,6 and for the classes of permutations of type [2 2],[3 2],[4 2],
[3 3] and [2 2 2]. Finally in the case ¢ = 2", we will prove a formula for the classes of
permutations which are product of 2-cycles.  © 2002 Elsevier Science (USA)

1. INTRODUCTION

Let ¢ be a power of a prime and denote with [, the finite field with ¢
elements. If ¢ is a permutation of the elements of [F,, then one can associate
to ¢ the polynomial in [[x]

[ = o)1 —(x—o) ). (1)

cely
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The following properties are easy to verify:

1. f5(b) = a(b) for all b e F;
2. The degree 0(f;) < ¢—2 (since the sum of all the elements of F, is
Zero).

Notice that f; is the unique polynomial in [F, with these two properties.
Such polynomials are called permutation polynomials.

Basic literature on permutation polynomials can be found in the book of
Lidl and Niederreiter [5]. Various applications of permutation polynomials
to cryptography have been described. See for example [1,2]. Lidl and Mullen
n [3,4] (see also [6]) describe a number of open problems regarding
permutations polynomials: among these, the problem of enumerating
permutation polynomials by their degree.

We denote by

So = {x ey, |o(x)#x}

the set of those elements of [, which are moved by ¢. Our first remark
is that

fs) = q — IS, if o#id. (2)

To see this it is enough to note that the polynomial f;(x) — x has as roots all
the elements of [, fixed by o, that is which are not in S,. Therefore, if not
identically zero, it has to have degree at least ¢ — |S,|. An immediate
consequence is that all transpositions give rise to permutation polynomials
of degree exactly g — 2. This fact was noticed by Wells in [7], where he also
proved the following:

THEOREM 1.1 (Wells [7]). If g > 3, the number of 3-cycles permutations
o of By such that 0(f;) < q — 3 (which in view of (2) implies 0(f;) =g — 3)
is

2(g—1)  if ¢=1(mod3),
0 if ¢ =2(mod3),

%q(q -1 if ¢ =0(mod 3).
The goal of this note is to extend the previous result to the cases of k-
cycles (k = 4,5,6) and to other classes of permutations.

Let 4,(c) denote the coefficient of x9~!~" in the polynomial f;(x) of (1), that is

Fo¥) = A1(0)xT % + Ax(0)xT + -+ + Ay 2(0)x + Ay-1(0).
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From (1) it is very easy to derive the formula for the coefficient of the
leading term

Ai(o) = — Z o(c)c.

cely,

Since the squares of all the elements of [, add up to zero when g > 3, the
previous formula can be written as

t

l
A0) =) (c—a(@e=> (c—aee=Y_ > (cjk—Ciur)cik»  (3)
k=1

cel, ceSy j=1

where we write ¢ as the product of disjoint cycles (of length larger
than 1):

o=(ci1,.. crp)eat, . sc2) . (Chls- v sCil,)

Note that in (3) we set ¢j;,+1 = ¢;,1.

It is well known that a conjugation class of permutations is determined by
a cycle decomposition and we will denote by [/} I, --- []] (;>1) a
conjugation class. For example [k] denotes the class of k-cycle permutations.
Ifoelli I -+ Ii), then |S;| =11+, + -+ .

For a given conjugation class % here we will consider the following
function:

Ng(q) = [{o e €10(fo) <q — 2]

that counts the number of permutations in % whose degree is non-
maximal.

If we denote by 7 the quadratic character of F, (¢ odd) and set 5(0) = 0,
for ¢ > 3, Wells’ result can be written as

1g(q — D(1 + n(-3)) if ¢>3 odd,
Np(g) = ¢ 2" = D)1+ (=1)")  if ¢g=2", ¢>2,
0 if ¢ < 3.

Sometimes it is also useful to denote the class of those permutations that
are the product of m cycles of length 1, m, cycles of length 2,...,m, cycles
of length ¢, as (mj;my;...;m;) where m; + 2my + --- + tm; = g. With this
notation we have that if ¢ € € then |S;| = ¢ — m; and

_ q'
%1 = my ! 1My 12me oo N

(4)
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Now for & =[I; --- lf]and ¢ = [} + - - - + [} consider the polynomial in ¢
indeterminates (cf. (3))

Ag(x1, .. xe) = > (i = xie1)x;

i=1
id {11,011 +1,....c}
k
+ Z (x11+...+l,- — X[ 4t 1+1)x11+~--+[,- (5)

i=1

From the above discussion we deduce that

Ng(g) = [{x e [F;: x has coordinates

mp12m2 .\
all distinct and A¢(x) = 0}]. (6)

Indeed by (3) every permutation counted by N¢(gq) gives rise to a root of (5);
furthermore, by cyclically permuting the elements of every cycle and by
permuting different cycles of the same length we get different roots of (5)
that correspond to the same element of Ng(g).

2. 4-CYCLE POLYNOMIALS

Let us now consider the case of 4-cycles. We will show the following:

THEOREM 2.1.  Suppose q > 3 is odd. Then
Nuy(q) = 39(q — 1(g — 5 = 2n(=1) — 4n(=3)).
Suppose g = 2" with n > 2. Then

Ng(2") =2"2" = DQ" = 41 + (—=1)").

Proof. By (6), any a,b,c,d € [, (all distinct) such that the 4-cycle (a b
¢ d) is counted by Nyj(q), have to satisfy the equation:

(@a—bya+(b—c)b+(c—de+(d—ad=0. 7)

For every of the g(¢g — 1) fixed choices of a and b distinct in [y, substituting
into (7) ¢ = x(b — a) + a, d = y(b — a) + a, we obtain the equation

(1—x)+ (x—yx+ > =0. )

Since the conditions that a, b, ¢ and d are all distinct, are equivalent to the
conditions that x, y ¢ {0, 1} and x # y, taking into account that every circular
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permutation of a solution of (7) gives rise to the same 4-cycle, we have

Nuy(q) = 39(g — DP4(g),

where
Pa(@) = [{(6, ) 1%,y e B0, 1}, x#y, (1—x)+ (x — p)x + 7 = 0}].
Assume ¢ odd. The affine conic (1 — x) + (x — y)x 4+ »> = 0 has
q—n(=3) ()]

rational points over F,. This can be seen by noticing that the associated
projective conic has ¢+ 1 points and its points at infinity over [, are
[1,»,0], [1,0%0] (where w,w*eF, are the roots of 7> —T+1, ie.
o = (=1 + 1/—3)/2) which are rational if and only if n(—3)# — 1.

From (9) we have to subtract the number of rational points (x, y) verifying
one of the conditions x, y € {0, 1} or x = y. All these conditions give rise to
the following (at most) 10 points over [F,:

(0,19), 0, 1), (I+14,1), 1-141),

(Lo), (Lo, (@0, (@0, (o), (@,

where i is a root of T2 + 1. The number of the above points which are
rational over [, is

2[1 4+ n(=1)]+ 3[1 + n(=3)].

Subtracting the above quantity from (9), we obtain the statement for ¢ odd.
If ¢ = 2", then first note that the affine transformation y=Y 4+ 1, x =
X + Y maps the affine conic (8) to

X247 +XY=0.

Therefore, the number of solutions of (8) is 2"*! — 1 if n is even and 1 if n is
odd. We can write this number with one formula by

(I+(=D"2" = (=1)".

Finally, the five conditions x,y#0,1 and x#y are equivalent to
Y#0,1, X#Y,X#Y + 1 and X #1. So the total number of rational points
over Fy» that have to be removed is 1+ 3(1 4+ (—1)"). This concludes the
proof. m
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3. PRODUCT OF TWO DISJOINT TRANSPOSITION
POLYNOMIALS

Let us now consider the case of permutations which are product of two
disjoint transpositions, that is whose conjugation class is [2 2]. In his paper
of 1969, Wells announces the following formula. For completeness we will
prove it here.

THEOREM 3.1. Suppose g > 3 is odd. Then
Np 2(q) = 2a(g — (g — H{1 + n(—1)} (10)
and if ¢ = 2", then
Np (2") = 22" = 12" - 2).

Proof. Following the same lines of previous section, if ¢ is odd, by (3), a
permutation (a b) (¢ d) with degree <g — 2 has to satisfy the equation:

(a— by +(c—d)*=0. (11)

It is clear that this equation has a (admissible) solution if and only if —1is a
square in F,. In this case, if ¢ is odd, for any of the g(g — 1) fixed choices of
the first two variables (ag, bg) we have the linear equations:

c=d i vV —](ao — b()),
where d can assume all possible values except the ones in the set
{ao, bo,ao F v —1(ao — bo), by ¥ vV —1(ap — bo)}.

This analysis yields 2g(qg — 1)(¢ — 4) solutions. If ¢ = 2" with n > 2, then
(11) becomes

P+ ++d>=(a+b+c+dP=0

and for any of the g(¢ — 1)(¢ — 2) choices of a,b,c, the valued =a+b+c¢
is not equal to @ or b or c.
Finally, regardless of the characteristic, since the 8 solutions

(a) b) c) d)’ (b) a) c! d)’ (a’ b! d, C)’ (b5 a’ d? C)’

(c.d,a,b),  (d,c,a,b),  (c,d,b,a),  (d,c,b,a)

give rise to the same permutation, we deduce the formula for Np 2(g). m
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4. 5-CYCLE POLYNOMIALS

In this section we will see the limits of the approach under consideration.

THEOREM 4.1. Let g be a power of a prime p. Then

Nisi(q) = Lq(g — DAs|(g),

where
Bsi(q) = ¢* — (9 = n(5)g + 26 + 5n(=7) + 159(=3) + 15n(—1) if p>3,
B5(3") = 32" — (9 — 6(—1)")3" 4 26 + 35(—1)", (12)

P5(2) = (2" =3 - (=1))Q2" = 6 = 3(=1)").

Proof. Using, as in the previous sections, identity (6) and a transforma-
tion that eliminates two of the variables, we deduce that

Nisi(@) = $a(g — DPsi(9),
where Ps5)(¢) is the number of solutions (x, y,z) of
l—x+x>—xy+)y’—yz4+2=0 (13)

with x, y,z¢ {0, 1}, x#y, y#z and z#x.
If ¢ is odd, the affine transformation

oy —y4+z—2"x—z=2"1y—-27hH
yields to the quadric
Py 4+ =5/4

which has the same number of rational points of (13). Therefore, the number
of rational points on (13), which can be calculated with the standard
formulas that can be found in [5, Theorem 6.27], is

a + qn(5). (14)

If ¢ is even then the quadric (13) is equivalent via the transformation x =
X+Y+Z y=Y+1, z=X+7Y + 1 to the quadric

X+YZ+Y>+72=0

which has clearly ¢* points.
From (14) we have to subtract the number of points on the 9 quadratic
curves obtained intersecting the previous surface with the following 9
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TABLE I
Number of points
Plane  Curve (6,9) =1 qg=173" q=2"
I x=0 1+ —)z+2=0 g—n(=3) 31+ (=D 2= (="
2 x=1 1l—-y+y*—y+22=0 qg—n(=3) 3" 2"+ (=1)") = (=1
3 y=0 1-x+x+22=0 g—n(=1) A +ED))-(=D" 2"
4 y=1 2-%+x*-z+22=0 g—n(=1) 3"A+E=DH—-(=n" 2
5 z=0 1-x+x*-xy+1>=0 g—n(=3) 3" 21(1 + (= 1)) — (=1)"
6 =1 2-xtX-xp4r-y=0 g-n(=3) FU+(D) 2 -1y
7 x=y l-x+x*-xz+2=0 qg—n(=3) 3" 2'(1 4+ (=1)") — (=1)"
8 x=z l—z4222-2yz+)>=0 qg—n=1) 3A+EDH)—-(=D" 20
9 y=z l-x+x*-xz4+2=0 qg—n(=3) 3 27(1+ (=) = (=1)"
planes:

x=0, x=1, y=0, y=1, z=0,

z=1, X =y, xX=z, y=z.

Note that all these quadrics are non-degenerate, except in characteristics 2
and 3: hence the cases (6,9) = 1, ¢ = 2" and ¢ = 3" have to be considered
separately. The equations of the 9 curves obtained in this way and the
number of their points (calculated again with the formulas in [5, Theorems
6.26-6.32]) are listed in Table I.

Therefore, the total number of points to subtract from (14) is

9g — 6n(—3) — 3n(-1) if (6,q) =1,
9.3" 4+ 5(—1)"3" — 3(—1)" if ¢=73"; (15)
9-2" +4(-1)"2" —6(-1)" if g=2".

The final step is to add back the number of points that we have subtracted
too many times, that is the points that lie in the intersection of two or more
of the previous curves.

If the characteristic is odd, consider the following 19 pairs of points (see
Table II) of the quadric (13) over F,. Beside each pair of points we have
written the number of quadrics of Table I to which the points belong.

The total number of points that has to be subtracted from (15) is therefore

26 + Sn(—=7) + 12n(—1) + 9n(-3) if (6,9) =1 (16)
and

26+ 17(=1y  if g =3". (17)
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TABLE II
1 (0,0, +1) 3
1+4/-7
2 <0,l, 3 > 2
3 (0, +1,0) 3
1+4/-7
4 (0, Y ,1) 2
6 (1,1, 0% 3
7 (1,0, 0) 2
8 (1,1 +41) 3
9 (0*!, ot wth 3
10 (0T, w*!,0) 2
1 (A +i1+i1) 2
12 0, +i, +i) 2
13 (1,0t wth 2
14 <‘i§/3,0,1i§/;> 2
s (315‘/7—7,1’34;}/7_7) 5
16 (1 +4,1,0) 2
7
17 ( Y ,0,1) 2
18 (@*1,0,0) 3
19 1+41,1) 3

539

If the characteristic is even and ¢ is a root of T2+ T+ 1 in Fy,
then the corresponding points lying on more than one of the quadrics

1-9 are:
0,0,1), 0,1,0), 0,1,1), (1,0,1)
each lying on 4 quadrics,
(€.69, (50,0, (1,L,¢
each lying on 3 quadrics and
(1,&,0), (&0,  (1,&9)

each lying on 2 quadrics. The total number of points to be subtracted when

qg=2"1is

124+9(1 + (—-1)"),

(18)
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because & € [y if and only if n is even.
Collecting together the various quantities, we obtain the formulas. m

The same argument applied to permutations that are the product
of a 3-cycle and a 2-cycle lead to the following result whose proof
we omit.

THEOREM 4.2. Let g be a power of a prime p. Then

Ne 31(9) = $4(q — DP2 3(g)

where
(> — O +n(=3)+3n(-1))q if p>3;
P B e R L CH RGO
BALTN (14 (12— 9.3 4 24) if q=3
2" =3-(=D"H2"-6) if ¢q=2"

5. GENERAL CONJUGATION CLASSES OF PERMUTATIONS

It is not difficult in principle to generalize the inclusion—exclusion
argument of the previous sections to any conjugation class of permutation.

For example, if we want to compute Nyj(g), the number of k-cycles
permutations ¢ of [, such that 0f; <q — 2, then (see (5)), we want to count
the number of ¢ = (ay,as,...,a;) for which

(a1 — )’ + (a2 —a3)* + -+ (a1 — @)’ + (@ —ar1)* = 0.

We perform the transformation a;1» = x;(a; —a) +a;,i=1,...,k— 2 and
simplify (a; — a»)*. Taking into account that there are ¢ possibilities for a;
and ¢ — 1 for a; and that circular permutations of the a;’s give rise to the
same ¢, we have that Ny(q) = g(g — 1)/k times the number of rational
points of the quadric hypersurface

T+ — D2+ 0o —x)? 44 (s —x 2 +x ,=0 (19)

with the (k+ 1)(k —2)/2 conditions that x;#0,1, x;#x;, for i,j=1,...,
k—2and i#j.

Let us assume for simplicity that ¢ is odd. Then we can asso-
ciate to the quadratic hypersurface in (19) the (k—1)x(k—1)
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matrix:

Mi=| . . (20)
: B
12 -1
0 -1 2

It is easy to see that the determinant of My is k. If (¢,k — 1) = 1, then the
transformation of variables:

( ) k—2 k—3 1
X1,X2, 00, Xk X— TR T T2 T
brings (19) to
2 2 2 k
x1+(X2—X1) +"‘+(Xk,3—Xk72)+xk72+m=0

which has matrix

k/k—1) 0 - 0
0

: M
0
From [5, Theorems 6.26 and 6.27] we find that if (¢,(k — 1)) = 1, the
number of rational points of (19) equals

g3 + g*=3I2p((—1)* D) if k is odd,
ar(q) = k-2)/2 o @D
g3 + o(k)g® 9 2(=1)*ED2(k — 1)) if k is even,

where v(k) = —1if (¢,k) =1 and v(0) = ¢ — 1.
If (g,(k — 1)) > 1, then k = 1 in [,. In this case we can count the number

of points on (19) as follows:

1 ! "
ag) = gy~ ),
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where &' is the number of solutions of the non-degenerate quadric
Xt 4 (1 —x0) + (o —x) s — 2 X, =0
and &” is the number of solutions of the degenerate quadric
GG —x) ey X, =0
which is equivalent to the quadric (non-degenerate in £ — 3 variables)
B+ (s —x) 4 (s —x2)’ +xp, =0
via the transformation
(1, %2, .o xk_2) (X, x0 — 2, x3 — 3x1 ..., xpe_p — (K — 2)x)).

Note that &’ is the number of projective solutions of the projective quadric
associated to (19) and «” is the number of its solutions at infinity (i.e. on the
hyperplane xy = 0).

From [5, Theorems 6.26 and 6.27] we have that

k—2

o+ (g = Dg* I (=1 D) if ks odd,
a =
q if k is even

and

g3 if k is even.

i = {q“ + (g = Dg* (=) V) il ks odd,
Therefore, we obtain that a;(q) = ¢~ when (¢, k — 1) > 1.
In all cases, if ¢ is odd, we have the upper bound

qlg —1)

Niy(g) < 3

a(q).

To compute Nyj(g), we have to subtract from ax(g) the number of points
in the (k + 1)(k — 2)/2 quadratic varieties obtained intersecting (19) with the
hyperplanes x; =0, x; =1, x;, =x;, fori,j =1,...,k— 2, i#j and so on. In
each step we have to compute the number of solutions of some quadric
equations over [F,. However, we are not able to control how the discriminant
of the quadrics behaves in the generic step.

In the case when ¥ =[/; --- [] is a general conjugation class (after a
transformation which reduces the number of variables to ¢ — s, being ¢ =
Iy + -+ + [, the number of elements moved by any permutation in %), one
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will have to consider a quadric hypersurface whose matrix will be

M, 0

My,
(22)

0 M,

s

with determinant /; --- /. This can be used to deduce an upper bound for

Ne(q)-
If we use the other notation introduced in Section 1 for a conjugation
class € = (m;my;...;m;), then we have that

-1
Ne(g) = q(g—1)

< ) = cee =3
= WPY(‘I) and Py(q) = ap + a1q + +ac-3q- 7,

where, when ¢ is odd, each q; is an expression of the form
a; = apn(oy) + -+ + ayn(o;,)

with a;;,0;; € Z. Furthermore, a._3 = 1 for g large enough with respect to c.
Finally, note that o;; is, up to a sign, the discriminant of a quadratic form
which is the intersection of (19) with a number of hyperplanes among
x;=0,1,x;=x;,i,j=1,...,k — 2. This implies that there are finitely many
possibilities for o;;. Hence, the expressions Pyz(g) can be calculated by
computing Ng(g) for sufficiently many values of ¢ and by solving linear
equations. For example using Pari [8] we calculated, if ¢ = p” and p> 3:

Be(q) = q° — 14¢7 +[68 — 6n(5) — 61(50)lg — [154 + 66 (—3)
+93n(=1) + 129(=2) + 54n(=7)),

Py 2(q) = ¢ —[14—3(Q)lg* +[71 4 12n(—=1) 4 n(=2) + 4n(—3) — 8n(50)lq
—[148 4 100(—1) 4 24 n(—2) + 44n(—3) + 40 n(—7)],

Ps 3(q) = ¢° — 13¢% +[62 + In(—1) + 4 n(=3)]q
—[150 4 995(—1) + 42n(=3) + 72n(=7)],

Pa 2 o(q) = ¢ — [14 + 3n(=D]g* + [70 + 36n(—1) + 6n(—2)lq

—[136 + 120(—1) + 487(—2) + 8 n(—=3)],
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Be(3") = 3% — [14 + 2(=1)"13%" + [71 + 39(—1)"]3" — [162 + 147(—1)"],
Py 2)(3") = 3% — [14 + 3(—1)"]3%" + [72 + 40(—1)"]3" — [164 + 140(—1)"],
P3 3(3") = (1 +(=1)")3% — [14 + 15(—1)"]3%" + [71 + 81(—1)"]3"
—[150 + 171(=1)",
Pp 2 (3") = 33" —[14 4 3(—=1)"]3%" +[76 + 36(—1)"]3" — [168 + 120(—1)"]

and
Pg(2") = (2" =3 = (=12 = (11 = (=1)")2" + (41 + 7(=1)")),
P (2") = (2" =3 — (=1)")2* — 112" + 37 + (=1)"),
P3 3(2") = (2" =3 = (=D = (10 = (=1)")2" + 45 = 3(=1)")),
P22 (2") = (2" = 2)2" — 4)(2" - 8).
As a last consequence of the above discussion we have that

PROPOSITION 5.1.  Suppose € is a fixed conjugation class of permutations.

Then
e—1
p 1
Ny =—ma il o\ '
¢(q) Cz!zcz.--ct!tcl( - (‘I))

Therefore, since by (4)

9 1
“=—9 (110
¢l cl2e ~c,!tcf< + (q))’

the probability that an element of o € € is such that 0f,<q — 2 is
1 1
Lo(l)
q q
6. PERMUTATIONS OF F» THAT ARE PRODUCT OF 2-CYCLES

A permutation has order 2 if and only if its cycle decomposition consists
only of cycles of length 2. Let 4, =[2 2 ... 2] be the conjugation class of
those permutations of F, which have a cycle decomposition consisting
of r cycles of length 2.

THEOREM 6.1.  Let g =2". Then Np)(2") = 0 and the following recursive
relation holds:

g! (g =2(r—1)@2r —1)
r127(g — 2r 4+ 1)! 2r

N7.(q) = Nz, (q)
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Therefore (in accordance with the formulas already proven):

(27 = 2'(2" = 2" - 2),
Np 2 2(27) = £27(2" — 12" — 2)(2" — 4)(2" - 8),

Np 222" = m2n(2” — 12" = 2)(2" — 4)(2" — 6)(2*" —15-2" 4+ 71).

Proof. We have observed in the Introduction that all transpositions have
permutation polynomial with degree exactly ¢ — 2 so

N(2") =0

The polynomial A of (5) is in this case:

2r

Ap(x) =Y xilxi — x,+1)+§jx2,<x2, (x2-1))

i=1
i odd

.
2
= E x;+2 E X0iX2i—1
i=1 i1

_ (fi )

From this, applying (6), we have that

1

Nz.(q) = L

2r
{)_c € [Fi’: x has coordinates all distinct and Z X = O} ‘
i=1

For simplicity, call ./ the last set above. Let start selecting arbitrarily
2r — 1 distinct values (xy, ..., xp-_) for the first 2» — 1 coordinates of x € I]Zﬁr:
this can be done in g(¢ — 1) --- (¢ — (2r — 2)) ways. For each such choice, the
value of the last coordinate is uniquely determined by xo, = >, 5, x; if we
want to have x e ./".. However, a value for x,. is not admissible if it
coincides with one of the previous coordinates. There are 2r — 1 possible
indices jo where this can happen and if > <2 X = Xop = X, then

2r— 2r—
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that is (x1,...,%j—1,Xjy+1,...,X2-—1) € A_1. So for each choice of index jj,
the number of possible values for {xl,...,xZ,_l}\{x_,-o} above is [A7_1].
Taking into account that for any choice of an element in ./,_;, there are
g — 2r + 2 choices for x;,, we deduce that

q!

| A = G_2rxDl (g —2(r = D)2r = DA 1],

which, in view of the fact that

is equivalent to the statement. This concludes the proof. m

7. CONCLUSION

In a forthcoming paper we will deal with the problem of counting
permutation polynomials with minimal possible degree in a fixed conjuga-
tion class. Note also that S. Konyagin and the second author have recently
proved that if

A" = |{o permutation of [, such that df, <g — 2}|,

2
=g = D <[ Z g
(L

which confirms the common belief that almost all permutation polynomials
have degree ¢ — 2. A similar result has been proven independently by Pinaki
Das.

then
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