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We prove an asymptotic formula for the number of permutations for which the

associated permutation polynomial has degree smaller than q� 2. # 2002 Elsevier

Science (USA)
Let Fq be a finite field with q ¼ pf > 2 elements and let s 2 SðFqÞ be a
permutation of the elements of Fq. The permutation polynomial fs of s is

fsðxÞ ¼
X
c2Fq

sðcÞð1� ðx� cÞq�1Þ 2 Fq½x�:

fs has the property that fsðaÞ ¼ sðaÞ for every a 2 Fq and this explains its
name.
For an account of the basic properties of permutation polynomials we

refer to the book of Lidl and Niederreiter [5].
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From the definition, it follows that for every s

@ðfsÞ � q� 2:

A variety of problems and questions regarding permutation polynomials
have been posed by Lidl and Mullen [3,4]. Among these there is problem of
determining the number Nd of permutation polynomials of fixed degree d. In
[6,9] Malvenuto and the second author address the problem of counting the
permutations that move a fixed number of elements of Fq and whose
permutation polynomials have ‘‘low’’ degree.
Here, we consider all permutations and we want to prove the following:

Theorem 1. Let

N ¼ #fs 2 SðFqÞ j @ðfsÞ5q� 2g:

Then,

jN � ðq� 1Þ!j �
ffiffiffiffiffiffiffiffiffiffi
2e=p

p
qq=2:

This confirms the common belief that almost all permutation polynomials

have degree q� 2.
The first few values of N are listed below:

q 2 3 4 5 7 8 9 11

N 0 0 12 20 630 5368 42 120 3 634 950
ðq� 1Þ! 1 2 6 24 720 5040 40 320 3 628 800

Proof. The proof uses exponential sums and a similar argument as the
one in [2].
By extracting the coefficient of xq�2 in fsðxÞ, we obtain that the degree of

fsðxÞ is strictly smaller than q� 2 if and only ifX
c2Fq

csðcÞ ¼ 0:

For a fixed subset S of Fq, we introduce the auxiliary set of functions

NS ¼ f j f : Fq ! S; and
X
c2S

cf ðcÞ ¼ 0

( )

and set nS ¼ #NS . By inclusion exclusion, it is easy to check that

N ¼
X
SFq

ð�1Þq�jSjnS : ð1Þ
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Now if epðuÞ ¼ e2piu=p, consider the identity

nS ¼
1

q

X
a2Fq

X
f : Fq!S

ep
X
c2Fq

Trðacf ðcÞÞ

0
@

1
A

0
@

1
A;

which follows from the standard property

1

q

X
a2Fq

epðTrðaxÞÞ ¼
1 if x ¼ 0;

0 if x=0:

(

By exchanging the sum with the product, we obtain

nS ¼
1

q

X
a2Fq

Y
c2Fq

X
t2S

epðTrðactÞÞ

0
@

1
A:

By isolating the term with a ¼ 0 in the external sum and noticing that the
internal product does not depend on a (for a=0), we get

nS ¼
jSjq

q
þ
1

q

X
a2F *

q

Y
b2Fq

X
t2S

epðTrðbtÞÞ

0
@

1
A:

Finally,

nS ¼
jSjq

q
þ

q� 1

q

Y
b2Fq

X
t2S

epðTrðbtÞÞ: ð2Þ

Now let us insert Eq. (2) in Eq. (1) and obtain

N �
X
SFq

ð�1Þq�jSj

q
jSjq ¼

q� 1

q

X
SFq

ð�1Þq�jSj
Y
b2Fq

X
t2S

epðTrðbtÞÞ:

Note that inclusion–exclusion givesX
SFq

ð�1Þq�jSj

q
jSjq ¼ ðq� 1Þ!

Therefore,

N � ðq� 1Þ! ¼
q� 1

q

X
SFq

ð�1Þq�jSjjSj
Y
b2F *

q

X
t2S

epðTrðbtÞÞ:

Using the fact that for b 2 F*
qX

t2S

epðTrðbtÞÞ ¼ �
X
t =2 S

epðTrðbtÞÞ
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and grouping together the term relative to S and the term relative to FqWS,
we get

jN � ðq� 1Þ!j �
q� 1

2q

X
SFq

jq� 2jSjj
Y
b2F *

q

X
t2S

epðTrðbtÞÞ

�����
�����: ð3Þ

Now let us also observe that

X
b2Fq

X
t2S

epðTrðbtÞÞ

�����
�����
2

¼ qjSj;

so that

X
b2F *

q

X
t2S

epðTrðbtÞÞ

�����
�����
2

¼ ðq� jSjÞjSj:

From the fact that the geometric mean is always bounded by the
arithmetic mean (i.e. ð

Qk
i¼1 jaij

2Þ1=k � 1
k

Pk
i¼1 jaij

2Þ, we have that

Y
b2F *

q

X
t2S

epðTrðbtÞÞ

�����
����� � 1

q� 1

X
b2F *

q

X
t2S

epðTrðbtÞÞ

�����
�����
2

0
@

1
A
ðq�1Þ=2

¼
ðq� jSjÞjSj

q� 1

� �ðq�1Þ=2

: ð4Þ

Furthermore, using (3) and (4) we obtain

jN � ðq� 1Þ!j �
q� 1

2qðq� 1Þðq�1Þ=2
X
SFq

jq� 2jSjjððq� jSjÞjSjÞðq�1Þ=2: ð5Þ

We want to estimate the above sum. Consider the inequality

ððq� jSjÞjSjÞðq�1Þ=2 �
q
2

� �q�1
; ð6Þ

and the identity

X
SFq

jq� 2jSjj ¼ 2q
q� 1

½q=2�

 !
; ð7Þ
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which holds since

2
X
SFq;
jSj�q=2

ðq� 2jSjÞ ¼ 2
X½q=2�
j¼0

q

j

 !
ðq� jÞ �

X½q=2�
j¼1

q

j

 !
ðjÞ

" #

¼ 2q
X½q=2�
j¼0

q� 1

j

 !
�
X½q=2�
j¼1

q� 1

j� 1

 !" #
¼ 2q

q� 1

½q=2�

 !
:

From the standard inequality

2n

n

 !
�

ffiffiffi
2

p

r
22nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1=2
p ;

which can be found for example in [1], we deduce

q� 1

½q=2�

 !
�

ffiffiffi
2

p

r
2q�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� 1=2

p : ð8Þ

Therefore, (5), (6), (7) and (8) imply

jN � ðq� 1Þ!j �
q� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q� 1=2
p ffiffiffi

q
p

 ! ffiffiffi
2

p

r
q

q� 1

� �ðq�1Þ=2

qq=2

and in view of the inequalities

q� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� 1=2

p ffiffiffi
q

p 51;
q

q� 1

� �ðq�1Þ=2

5
ffiffiffi
e

p
;

we finally obtain

jN � ðq� 1Þ!j �

ffiffiffiffiffi
2e
p

r
qq=2

and this completes the proof. &

CONCLUSION

Computations suggest that a more careful estimate of the sum in (5)
would yield to a constant

ffiffiffiffiffiffiffiffiffiffi
e=2p

p
instead of

ffiffiffiffiffiffiffiffiffiffi
2e=p

p
as coefficient in qq=2 in

the statement of Theorem 1. However, we feel that such a minor
improvement does not justify the extra work.
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The ideas in the proof of Theorem 1 can be used to deal with the
analogous problem of enumerating the permutation polynomials that have
the ith coefficient equal to 0 and also to the problem of enumerating the
permutation polynomials with degree less than q� k (for fixed k). However,
the exponential sums that need to be considered are significantly more
complicated.
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Note added in proof. Recently the asymptotic estimate in Theorem 1 for a prime q (with

slightly weaker remainder term) has been proved in the paper ‘‘The number of permutation

polynomials of a given degree’’ by Pinaki Das (to appear in this journal). The author uses

algebraic arguments rather than exponential sums.
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