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ON THE EXPONENT OF THE GROUP OF POINTS

OF AN ELLIPTIC CURVE OVER A FINITE FIELD
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(Communicated by Ken Ono)

Abstract. We present a lower bound for the exponent of the group of rational
points of an elliptic curve over a finite field. Earlier results considered finite
fields Fqm where either q is fixed or m = 1 and q is prime. Here, we let both q
and m vary; our estimate is explicit and does not depend on the elliptic curve.

1. Introduction

Let Fq be a finite field with q = pm elements and let E be an elliptic curve
defined over Fq. It is well known (see for example the book of Washington [7]) that
the group of rational point of E over Fq satisfies

E(Fq) ∼= Zn × Znk,

where n, k ∈ N are such that n | q − 1. The exponent of E(Fq) is

exp(E(Fq)) = nk.

The problem of studying exp(E(Fq)) is a natural one and was started by Schoof
[6] in 1989. He proved that if E is an elliptic curve over Q without complex
multiplication, then for every prime p > 2 of good reduction for E, one has the
estimate

exp(E(Fp)) > CE
√
p

log p

(log log p)2
,

where CE > 0 is a constant depending only on E.
In 2005, Luca and Shparlinski [4] considered the case when q is fixed and they

proved that if E/Fq is ordinary, there exists an effectively computable constant ϑ(q)
depending only on q such that

(1) exp(E(Fqm)) > qm/2+ϑ(q)m/ logm

holds for all positive integers m > 1.
Other lower bounds that hold for families of primes (resp. for families of powers

of fixed primes) with density one were proven by Duke in [2] (resp. by Luca and
Shparlinski in [4]).

Here we let both p and m vary, and we prove the following:
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Theorem. Let E be any elliptic curve over Fpm where m ≥ 3. Then either m = 2r
is even and

E(Fp2r) ∼= Zpr±1 × Zpr±1

or

exp(E(Fpm)) ≥ 2−46pm/2 m1/3

(logm)8/3(log logm)1/3
.

Note that the result also applies to supersingular elliptic curves and that it
improves on that in (1) for values of m which are small with respect to p.

2. Lemmas

The proof is based on estimates for the distance between perfect powers due to
Bugeaud. More precisely, we will apply the following result from [1]:

Lemma 1. Let f ∈ Z[X] be a monic polynomial of degree d ≥ 2 without multiple
roots. Let H be the maximum of the absolute values of its coefficients and D be
its discriminant. Let a, x, y, and m be rational integers satisfying a �= 0, |y| ≥ 2,
m ≥ 2, f(x) = aym. Denote by log2 the logarithm in base 2 and write log∗ x for
max{log x, 1}. The following inequality holds:

m < max
{
d log2(2H + 3), 215(d+6)d7d|D|3/2(log |D|)3d(log∗ |a|)2 log∗ log∗ |a|

}
.

We need the following elementary lemma:

Lemma 2. If q is a prime power and E is an elliptic curve defined over Fq such
that E(Fq) ∼= Zn × Znk, then q = n2k + n� + 1 for some integer � that satisfies

|�| ≤ 2
√
k.

Proof. By the Hasse bound, we can write n2k = q+1− aq for some integer aq that
satisfies a2q ≤ 4q. Using the Weil pairing one also sees that q ≡ 1 (mod n). Hence

aq = 2 + n� for some integer � and q = n2k + n�+ 1. Finally

n2�2 + 4n�+ 4 = a2q ≤ 4q = 4n2k + 4n�+ 4,

and the result follows. �

We will also need the classical characterizations of the group structures due to
Waterhouse (see [7, Theorem 4.3, page 98]) which describes possible cardinalities
#E(Fq) of the set of Fq-rational points of elliptic curves over Fq.

Lemma 3. Let q = pm be a power of a prime p and let N = q + 1 − a. There is
an elliptic curve E defined over Fq such that #E(Fq) = N if and only if |a| ≤ 2

√
q

and a satisfies one of the following:

(i) gcd(a, p) = 1;
(ii) m even and a = ±2

√
q;

(iii) m is even, p �≡ 1 (mod 3), and a = ±√
q;

(iv) m is odd, p = 2 or 3, and a = ±p(m+1)/2;
(v) m is even, p �≡ 1 (mod 4), and a = 0;
(vi) m is odd and a = 0.

For each admissible cardinality, Rück (see Washington [7, Theorem 4.4, page 98])
describes the possible group structures.
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Lemma 4. Let N be an integer that occurs as the order of an elliptic curve over
a finite field Fq, where q = pm is a power of a prime p. Write N = pen1n2 with
p � n1n2 and n1 | n2 (possibly n1 = 1). There is an elliptic curve E over Fq such
that

E(Fq) ∼= Zpe × Zn1
× Zn2

if and only if

(1) n1 = n2 in case (ii) of Lemma 3;
(2) n1|q − 1 in all other cases of Lemma 3.

Finally we need the following numerical statement:

Lemma 5. Assume that α and β are real numbers with α > 4 and β ≥ 4. If

α ≤ β3/2 · (log β)8 · log log β,
then

β ≥ α2/3

(logα)16/3(log logα)2/3
.

Proof. If α ≥ β ≥ 4, then

β ≥
(

α

(log β)8 log log β

)2/3

≥
(

α

(logα)8 log logα

)2/3

.

If 4 < α ≤ β,

β ≥ α ≥ α2/3

(logα)16/3(log logα)2/3
.

�

3. Proof of the Theorem

Assume that E(Fpm) ∼= Zn × Znk. Then, by Lemma 2, we have that

pm = kn2 + �n+ 1 for some � with |�| ≤ 2
√
k.

If � = ±2
√
k, then k must be a perfect square, and we write k = M2 so that

� = ±2M . Therefore in the above identity we have

pm = (Mn± 1)2,

which implies that m = 2r is even and that Mn = pr∓1. Furthermore, in this case

pm + 1−#E(Fpm) = �n+ 2 = ±2Mn+ 2 = ±2pm/2.

This happens precisely in case (ii) of Lemma 3. Note also that in this case p �

#E(Fpm). Hence, by case (1) in Lemma 4, we have that n = nk so that k = 1.

We conclude that if l = ±2
√
k, then k = 1, n = pr ∓ 1 and finally

E(Fp2r) ∼= Zpr±1 × Zpr±1.

From now on, we can assume that |�| < 2
√
k. We apply Lemma 1 with the

following data:

f(X) = X2 + �X + k, d = 2, |D| = 4k − �2, H = k,

x = kn, y = p and a = k.

Note that since |�| < 2
√
k, we have that D �= 0 so that f has two distinct roots.
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From the identity kpm = (kn)2 + �(kn) + k and from Lemma 1, it follows that

m ≤ max{2 log2(2k + 3), 2134(4k)3/2(log 4k)6(log∗ k)
2(log∗ log∗ k)}.

Since we can assume that k ≥ 2, it follows that

m ≤ 2134(4k)3/2(log 4k)8 log log 4k.

If 4 ≤ m ≤ 2136, then m1/3/(245(logm)8/3(log logm)1/3) < 1/4, and the state-
ment of the Theorem is vacuous since exp(E(Fq)) ≥

√
q − 1 for every q.

If m > 2136, we apply Lemma 5 with α = m/2134 > 4 and β = 4k, and we obtain

k ≥ 1

4
· (m/2134)2/3

(log∗
m

2134 )
16
3 (log∗ log∗

m
2134 )

2
3

≥ 1

2
274
3

· m2/3

(logm)16/3(log logm)2/3
,

and so

exp(E(Fpm) = nk ≥ (
√
pm − 1)

√
k ≥ pm/2 m1/3

246(logm)8/3(log logm)1/3
.

This concludes the proof of the Theorem. �
The constant 2−46 can be slightly improved with a more careful analysis, but

this is not too important.

4. Conclusion

To construct curves with a small exponent one can consider a recent result of
Matomäki in [5] that states that, for any ε > 0, there exist infinitely many primes
p of the form p = an2 + 1 with a < p1/2+ε.

Let p > 3 be one such prime. Since p + 1 − an2 = 2 and p is odd, part (i)
of Lemma 3 assures that there exists an ordinary elliptic curve E over Fp with
#E(Fp) = an2 points. Furthermore, since p ≡ 1 mod n, part (2) of Lemma 4
assures that one can choose E in such a way that

E(Fp) ∼= Zn × Zna.

This implies that there exists an infinite sequence of primes p, each with an ordinary
elliptic curve E/Fp such that

exp(E(Fp)) = an < p3/4+ε.

One can also consider, for a prime p, the identity

p3 + 1− (p+ 2)(p− 1)2 = 3p− 1.

Since 3p−1 is coprime to p and 3p−1 ≤ 2
√
p3, part (i) of Lemma 3 can be applied

with q = p3 and N = (p+ 2)(p− 1)2. It follows that there exists an elliptic curve
E over Fp3 with #E(Fp3) = (p + 2)(p − 1)2 points. Furthermore, if p ≡ 7 mod 9,

we can write N = n1n2, where n1 = 3(p− 1) and n2 = (p+2)(p−1)
3 . It is clear that

n1 | n2 and that n1 | p3 − 1, so part (2) of Lemma 4 can be applied. It follows that
for every prime p ≡ 7 mod 9, there exists an ordinary elliptic curve over Fp3 such
that

E(Fp3) ∼= Z3p−3 × Z (p+2)(p−1)
3

.

We immediately conclude that there exists a infinite sequence of distinct q with
an elliptic curve E/Fq such that

(2) exp(E(Fq)) =
q2/3

3
(1 + o(1)).
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This should be compared on one side with Schoof’s result in [6] that (assum-
ing GRH) if E is an elliptic curve over Q, there exists a constant cE such that
exp(E(Fp)) < cEp

7/8 log p for infinitely many primes p and on another side with
Luca, McKee and Shparlinski’s results in [3] that there exists an absolute constant
ρ > 0 such that if E/Fq is a fixed elliptic curve, the inequality

exp(E(Fqm)) < qm exp
(
−mρ/ log logm

)

holds for infinitely many positive integers m.
We wonder if, for every ε > 0, one can construct an infinite family of prime

powers q, each with an elliptic curve E/Fq such that

E(Fq) �∼= Z√
q±1 × Z√

q±1

and
exp(E(Fq)) 
ε q

1/2+ε

or if the 2/3 in (2) can be improved.
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[6] Schoof, René, The exponents of the groups of points on the reductions of an elliptic curve.
Arithmetic algebraic geometry (Texel, 1989), 325–335, Progr. Math., 89, Birkhäuser Boston,
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