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Abstract

Given finitely many non zero rational numbers which are not ±1,
we prove, under the assumption of Hypothesis H of Schinzel, necessary
and sufficient conditions for the existence of infinitely many primes mod-
ulo which all the given numbers are simultaneously primitive roots. A
stronger result where the density of the primes in consideration was com-
puted was proved under the assumption of the Generalized Riemann Hy-
pothesis by K. Matthew in 1976.

Let S = {a1, . . . , ar} ⊂ Q∗ \ {±1} and denote

PS = {p prime | ∀a ∈ S, a is a primitive root modulo p} .

In the case where S ⊂ Z, assuming the Generalized Riemann Hypothesis for
suitable number fields, it was proved by K. Matthews in 1976 [Mat76] that PS

is finite if and only if at least one of the two following conditions is satisfied:

(α) There exist 1 ≤ i1 < · · · < i2s+1 ≤ r such that ai1 · · · ai2s+1 ∈ (Q∗)2;

(β) There exist 1 ≤ i1 < · · · < i2s ≤ r such that ai1 · · · ai2s
∈ −3(Q∗)2, and

for all primes l ≡ 1 mod 3 there exists at least one element of S which is
a cube modulo l.

In all other cases, not only PS is infinite but it has non zero density (under
GRH). The hypothesis that all the elements of S are integers does not seem
crucial in Matthews work.

The second part of the second condition is verified for example for the sets S
of the form S = {q1b

3
1, q2b

3
2, q1q2b

3
3, q

2
1q2b

3
4} where q1 and q2 are distinct primes

different from 3 and b1, b2, b3, b4 ∈ Q∗.
The goal of this note is to prove the conclusion of Matthews Theorem as-

suming the Schinzel’s Hypothesis H in [SS58]. We will prove the following

Theorem. Let S = {a1, . . . , ar} ⊂ Q and assume

1. For each 1 ≤ i1 < · · · < i2s+1 ≤ r one has that ai1 · · · ai2s+1 6∈ (Q∗)2;

2. If there exist 1 ≤ i1 < · · · < i2s ≤ r such that ai1 · · · ai2s ∈ −3(Q∗)2, then
there exists a prime l ≡ 1 mod 3 such that none of the elements of S is a
cube modulo l.

Then the set PS is infinite.

We recall the statement of the famous Conjecture:
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Hypothesis H (Schinzel, 1959) Let f1, . . . , fk ∈ Z[x] be irre-
ducible polynomials with positive leading coefficients and such that
gcd(f1(n) · · · fk(n) | n ∈ N) = 1. Then there are infinitely many
t ∈ N such that f1(t), . . . , fk(t) are all prime.

When r = 1, the statement that P{a1} is infinite is the Artin Conjecture for
primitive roots. It was proven to hold under the assumption of the Generalized
Riemann Hypothesis by C. Hooley in 1967 [Hoo67]. It was also considered
by Schinzel and Sierpinski in [SS58, page 199] as an example of application of
Hypothesis H that they proved to imply Artin Conjecture.

Let L = {l prime | vl(a) 6= 0 for some a ∈ S}. Then L is clearly finite.
Furthermore set

L′ =

{
L ∪ {−1} if S * Q>0;
L otherwise.

We write L′ = {l1, . . . , ls} and when L′ * Q>0 we assume that l1 = −1. Further
we set L = 4|l1 · · · ls|.

For each j = 1, . . . , r, write aj = l
e1j

1 · le2j

2 · · · lesj
s . Then the matrix

E =

e11 · · · es1

...
...

e1r · · · esr


has coefficients in Z and the first condition in the statement implies that the
sum of an odd number of rows of E is never the zero vector modulo 2. We claim
that this implies that the linear system

E ·

 X1

...
Xs

 =

 1
...
1

 (1)

admits a solution in (Z/2Z)s. Indeed perform a complete Gaussian Elimination
on the rows of the enlarged matrix obtained attaching to E the column of 1’s.
We obtain a reduced row echelon form. The last column has 1 in the rows
that were obtained adding together an odd number of the original rows and 0
in the rows that were obtained adding together an even number of rows. The
first condition in the statement implies that whenever there is a 1 in the last
entry, the rest of the row contains some other 1 entries and therefore the original
system can be solved recursively.

We now need the following

Lemma 1. Assume that (x1, . . . , xs) ∈ (Z/2Z)s is a solution of the linear
system (1). Then there exists an invertible integer m modulo L such that

(i) if p is prime with p ≡ m mod L, then
(

li
p

)
= (−1)xi for all i = 1, . . . , s;

(ii) m 6≡ 1 mod li for all i = 1, . . . , s such that li > 3.

Furthermore conclusion (ii). above also holds for li = 3 when {−1, 3} * L′ and
also when {−1, 3} ⊆ L′ but xi 6= x1.

2



Proof. We will first determine a congruence class for m modulo 4 and then its
congruence class modulo each li such that li > 2. If 2 ∈ L we will also define a
class modulo 8. Then we will apply the Chinese Reminder Theorem and deduce
the existence of a congruence class modulo L with the required properties.

The congruence class m4 for m modulo 4 is defined by the following:

m4 =


(−1)x1 if − 1 ∈ L′;
−1 if {−1, 3} ∩ L′ = ∅;
(−1)xi+1 if 3 ∈ L′,−1 6∈ L′ and li = 3.

In the event that 2 ∈ L and that lj = 2, then let m8 be the unique invertible
congruence class modulo 8 with the properties that m8 ≡ m4 mod 4 and when
p ≡ m8 mod 8 then

(
2
p

)
= (−1)xj .

For all other odd primes li in L, note that by the quadratic reciprocity law:(
li
p

)
= (−1)(p−1)(li−1)/4

(
p

li

)
.

Therefore for p ≡ m4 mod 4 we have (li − 1)/2 choices for a congruence class
mli modulo li such that if p ≡ mli mod li, then

(
li
p

)
= (−1)xi . Indeed it is

enough to chose any class M such that
(

M
li

)
= (−1)xi+(m4−1)(li−1)/4.

If li > 3, then there is always a choice for such a class mli with mli 6= 1
while if li = 3, then in order to have m3 = 2 one needs to have

−1 =
(

2
3

)
= (−1)xi+(m4−1)/2. (2)

Identity (2) is automatically verified when −1 6∈ L′ as a consequence of
the definition of m4 (since (−1)(m4−1)/2 = (−1)xi+1 in this case) while when
l1 = −1 ∈ L′ then (2) is verified if and only if x1 6= xi. This ends the proof of
the Lemma.

An immediate consequence of Lemma 1 is that for any prime p ≡ m mod L,(
aj

p

)
=

s∏
i=1

(
li
p

)eji

= (−1)ej1x1+...+ejrxs = −1.

So each ai is a quadratic non residue modulo p.
Let us now deduce the statement of the Theorem in the case when {−1, 3} *

L′ and also in the case when {−1, 3} ⊆ L′ and it exists a solution (x1, . . . , xs) ∈
(Z/2Z)s of the linear system (1) where the components relative to −1 and to 3
are distinct. Let f1(X) = m+LX where L = 4|l1 · · · ls| and m is the congruence
class postulated by Lemma 1. Furthermore let

f2(X) =


(m− 1)/2 + L/2X if m ≡ 3 mod 4;
(m− 1)/4 + L/4X if m ≡ 5 mod 8;
(m− 1)/8 + L/8X if m ≡ 1 mod 8.

We claim that the three integers

f1(0)f2(0), f1(1)f2(1), f1(2)f2(2)
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are always coprime. Indeed let q is a prime dividing the gcd(
m(m− 1)
(m− 1, 8)

,
(m + L)(m− 1 + L)

(m− 1, 8)
,
(m + 2L)(m− 1 + 2L)

(m− 1, 8)

)
.

If q = 2, then 2 | (m−1)/(m−1, 8) but 2 - (m−1+L)/(m−1, 8) because 16 - L
therefore 2 | (m + L) and this contradicts the fact that m is odd. Similarly if
q|m(m − 1) and q is odd then either q | m or q | m − 1. In the first instance
q - m+L and q - m+2L and if it happened that q | (m−1+L) and q | (m−1+2L)
then q | L which is a contradiction. In the second instance q - m − 1 + L and
q - m − 1 + 2L because of the properties of m postulated in the Lemma. If
q | (m + L) and q | (m + 2L) then q | L which is again a contradiction.

Therefore the conditions for Schinzel’s Hypothesis H in [SS58] are satisfied
and so there exists infinitely many x such that f1(x) and f2(x) are both primes.
These primes p verify p ≡ m mod L and have the form

p =


1 + 2qX if m ≡ 3 mod 4;
1 + 4qX if m ≡ 5 mod 8;
1 + 8q if m ≡ 1 mod 8,

where q is also prime.
We want to conclude by showing that all the a1, . . . , ar are primitive roots

modulo such primes. Let p be sufficiently large so that none of the ai’s can have
as order a divisor of 8 (It will be enough to require that p > max{|bi − ci|8, i =
1, . . . , r} where ai = bi/ci). From the condition

−1 =
(

ai

p

)
≡ a

(p−1)/2
i mod p

we deduce that the order of ai cannot be a divisor of (p− 1)/2. Therefore each
ai is a primitive root modulo p and this concludes the proof of the particular
case of the Theorem.

We are left with the last case when {−1, 3} ⊆ L′ and all the solutions
(x1, . . . , xs) ∈ (Z/2Z)s of the linear system (1) are such that components relative
to −1 and to 3 are equal. First of all, let us prove the following

Lemma 2. Let E be a matrix with s columns, r rows and entries in Z/2Z.
Assume that the first two columns of E is non zero and that the linear system

E ·

X1

...
Xs

 =

1
...
1


is solvable in (Z/2Z)s and such that each solution (x1, . . . , xs) verifies x1 = x2.
Then there exists an even number of rows of E such that their sum is the vector
(1, 1, 0, . . . , 0) ∈ (Z/2Z)r.

Proof. After performing a complete Gaussian Elimination, we will obtain an
extended matrix in reduced form such that there will 1’s in the first two entries
of the first row. Therefore any solution of the system will verify a linear equation
of the form:

X1 + X2 + . . . + Xk = C
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where C ∈ Z/2Z and the variables which do not appear in the equation are
independent. The only possibility for the above equation to produce solutions
where the first two components are always equal is that k = 2 and that C = 0.
The equality C = 0 implies that the first row of the reduced matrix was produced
by the original matrix summing an even number of rows, and this leads to the
statement of the lemma.

From the lemma we deduce that when {−1, 3} ⊆ L′ and all the solutions
(x1, . . . , xs) ∈ (Z/2Z)s of the linear system (1) are such that components relative
to −1 and to 3 are equal then there exists an even number of indexes 1 ≤ i1 <
· · · < i2s ≤ r such that ai1 · · · ai2s ∈ −3(Q∗)2.

The second condition in the statement of the Theorem implies that there
exists a prime l ≡ 1 mod 3 such that none of a1, . . . , ar is a perfect cube modulo
l. Now we need the following:

Lemma 3. Let a1 . . . ar ∈ Q∗ \ {±1} and suppose that

(a) for every 1 ≤ i1 < . . . < i2t+1 ≤ r, ai1 · · · ai2t+1 6∈ (Q∗)2;

(b) there exists 1 ≤ j1 < . . . < j2t ≤ r such that aj1 · · · aj2t
∈ −3(Q∗)2;

(c) there exists a prime l ≡ 1 mod 3 such that each of a1, . . . , ar is a cubic
non residue modulo l.

Then there exists another prime q ≡ 1 mod 3 such that each of a1, . . . , ar is both
a cubic non residue and a quadratic non residue modulo q.

Proof. Let

K0 = Q(
√
−3), K1 = K0(a

1/3
1 , . . . , a1/3

r ) and K2 = Q(a1/2
1 , . . . , a1/2

r ).

We have that K0 ⊂ K2 in virtue of hypothesis (b) in the statement. Furthermore
the two field extensions K1/K0 and K2/K0 are abelian and linearly disjoint. Let
λ be a prime of K0 above l and consider the Artin symbol σλ ∈ Gal(K1/K0).
By definition σλ(a1/3

i ) 6= a
1/3
i for all i = 1, . . . , r. Similarly let p ≡ 1 mod 3 be

a prime such that
(

ai

p

)
= −1 for all i = 1 . . . , r. The existence of such a p is

guaranteed by Lemma 1. If π is a prime of K0 above p, then the Artin symbol
σπ ∈ Gal(K1/K0) verifies σπ(a1/2

i ) = −a
1/2
i for all i = 1, . . . , r. Since

Gal(K1K2/K0) ∼= Gal(K1/K0)×Gal(K2/K0),

by the Chebotarev Density Theorem (see for example [Rib02, page 552]), there
exists a prime η of K0 such that (σλ, σπ) = ση. Finally the prime q = N(η) ∈ Z
will have the required properties.

Lemma 4. Let S = {a1 . . . ar} ⊂ Q∗ \ {±1} for which the hypotheses of
Lemma 3 are satisfied and let q ≡ 1 mod 3 be a prime such that each of a1, . . . , ar

is both a cubic non residue and a quadratic non residue modulo q. Let η be a
primary prime in Z[ω] (ω = (−1 +

√
−3)/2) on norm q. Then there exists

L′ ∈ Z such that for all primes π ∈ Z[ω] such that π ≡ η mod α, one has that,
if p = N(π), then each of a1, . . . , ar is both a cubic non residue and a quadratic
non residue modulo p.
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Proof. Let us show that as L′ one can take

L′ = 12 ·
∏

l prime:
∃a∈S,vl(a) 6=0

l = 3L.

We want to show that any π is a primary prime in Z[ω] such that π ≡ η mod L′

satisfies the required properties.
To this end, set

L = {ω, 1− ω} ∪ {λ ∈ Z[ω], λ primary prime and ∃a ∈ S, vλ(a) 6= 0}

and write L = {λ1, λ2, λ3, . . . , λs} , where λ1 = ω, λ2 = 1− ω. We have

ai = ±λe1i
1 · · ·λesi

s ,

[
aj

η

]
3

= ωtj (with tj ∈ {±1}).

For any i = 3, . . . , s we have that π ≡ η mod L′ implies π ≡ η mod λi. So by
cubic reciprocity (see for example [Adh00, IR90])[

λi

η

]
3

=
[
λi

π

]
3

.

While π ≡ η mod 9 implies[
ω

η

]
3

=
[ω

π

]
3

and
[
1− ω

η

]
3

=
[
1− ω

π

]
3

.

So, automatically we have that[
aj

η

]
3

=
[aj

π

]
3

∀j = 1, . . . , r,

which implies that none of the ai’s is a cube modulo N(π).
We also claim that if p = N(π), then for all i = 1, . . . , r(

ai

q

)
=

(
ai

q

)
= −1.

Indeed since π = η+3Lα for a suitable α ∈ Z[ω], we have p = N(π) ≡ q mod 3L
and by applying one more time the quadratic reciprocity law, we obtain the
claim.

If η, α ∈ Z[ 1+
√
−3

2 ] are the elements in Lemma 4, then let

f(X) = N(η + αX) = N(α)X2 + Tr(αη)X + q ∈ Z[X].

It is clear from the definition of α and η that f(X) ≡ 1 mod 3 and whenever
x ∈ N is such that p = f(x) is prime, then each of ai, . . . , ar is both a cubic
and a quadratic non residue modulo p. Furthermore let

g(X) =


(f(X)− 1)/6 if q ≡ 3 mod 4;
(f(X)− 1)/12 if q ≡ 5 mod 8;
(f(X)− 1)/24 if q ≡ 1 mod 8.
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In a very similar way as we did above, we can check that the conditions of
Schinzel’s Hypothesis H in [SS58] are satisfied for f and g and therefore there
exists infinitely many x such that f(x) and g(x) are both primes. These primes
p have the form

p =


1 + 6q if m ≡ 3 mod 4;
1 + 12q if m ≡ 5 mod 8;
1 + 24q if m ≡ 1 mod 8,

where q is also prime and moreover none of the ai’s is either a square or a cube
modulo p.

Let now p be sufficiently large so that none of the ai’s can have as order a
divisor of 24. Since in this case for each i, a

(p−1)/2
i ≡ −1 mod p and a

(p−1)/3
i 6≡

1 mod p, each ai is a primitive root modulo p and this concludes the proof on
the Theorem.

Acknowledgements: This paper was inspired by a suggestion of A. Granville
at the Centre de Recherches Mathématiques of Montréal in January 2006. The
paper was translated in russian by Dr. Denis R. Akhmetov.

References

[Adh00] Sukumar Das Adhikari. The early reciprocity laws: from Gauss to
Eisenstein. In Cyclotomic fields and related topics (Pune, 1999), pages
55–74. Bhaskaracharya Pratishthana, Pune, 2000.

[Hoo67] Christopher Hooley. On Artin’s conjecture. J. Reine Angew. Math.,
225:209–220, 1967.

[IR90] Kenneth Ireland and Michael Rosen. A classical introduction to modern
number theory, volume 84 of Graduate Texts in Mathematics. Springer-
Verlag, New York, second edition, 1990.

[Mat76] Keith R. Matthews. A generalisation of Artin’s conjecture for primitive
roots. Acta Arith., 29(2):113–146, 1976.

[Rib02] Paulo Ribenboim. Classical theory of algebraic numbers, Universitext.
Springer-Verlag, New York, 2001.
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