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COUNTING DIHEDRAL AND QUATERNIONIC EXTENSIONS

ÉTIENNE FOUVRY, FLORIAN LUCA, FRANCESCO PAPPALARDI,
AND IGOR E. SHPARLINSKI

Abstract. We give asymptotic formulas for the number of biquadratic exten-
sions of Q that admit a quadratic extension which is a Galois extension of Q
with a prescribed Galois group, for example, with a Galois group isomorphic
to the quaternionic group. Our approach is based on a combination of the the-
ory of quadratic equations with some analytic tools such as the Siegel–Walfisz
theorem and the double oscillations theorem.

1. Introduction

1.1. Background. The problem of enumerating Galois extensions of a given field
has increasingly attracted the attention of several researchers. Very strong and
difficult conjectures due to Malle (see [11, 12]) predict the precise distribution of
the number of extensions with discriminant in absolute value not exceeding a certain
bound and whose Galois closure over a fixed ground field has a given Galois group.
Here, we take a different point of view; namely, we fix the Galois group but let the
ground field vary.

More precisely, we want to enumerate biquadratic extensions of Q that admit a
quadratic extension with given Galois group over Q. These extensions have been
characterized explicitly by Kiming in [8], where he gives explicit realizations of
several extensions of fields of odd characteristic with given Galois structures. We
use several parts of the work [8] here. The special classical case of quaternionic
extensions has been studied extensively (see, for example, [7, 13, 17]).

Let F be the set of pairs (m,n) of distinct squarefree positive integers with
m > 1, n > 1. For a fixed group H of order 8, we define FH as the subset of
(m,n) ∈ F such that Q(

√
m,

√
n) admits a quadratic extension K with

Gal(K/Q) ∼= H.

It is well known (see, for example, [1, page 170]) that there are 5 possibilities for
H, namely

C2 × C2 × C2, C4 × C2, C8, D4, H,

where Cm stands for the cyclic group of order m, D4 is the group of the symmetries
of the square, and H denotes the quaternionic group.
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It is quite easy to see that FC2×C2×C2
= F . In fact, for any (m,n) ∈ F and any

squarefree integer a > 1 coprime to mn, the extension Q(
√
m,

√
n,

√
a) has Galois

group over Q isomorphic to C2 × C2 × C2. Hence, (m,n) ∈ FC2×C2×C2
.

It is also clear that FC8
= ∅, since the cyclic group C8 cannot admit the noncyclic

quotient C2 × C2.
From now on, we concentrate on the remaining cases of the groups C4 ×C2, D4

and H.

1.2. Our results. For a subset A of N2 and a positive real number T , we write
A(T ) for the set of (a, b) ∈ A with a ≤ T and b ≤ T . Analogously, if B ⊆ N, we
write B(T ) for the set of b ∈ B with b ≤ T .

We recall that

�F(T ) =
36

π4
T 2 +O(T 3/2), as T → ∞

(see [6, Theorem 333]).
Let

(1) ϑ =
1√
2

∏

q prime
q≡3 mod 4

(
1− 1

q2

)−1/2

= 0.764223 . . .

be the Landau–Ramanujan constant. We also define

(2) ρ =
∏

p≥3

(
1 +

1

2p(p+ 1)

)
= 1.084095 . . . .

In this paper, we prove the following results:

Theorem 1. We have

�FC2×C4
(T ) =

(
72ϑ

π4
+ o(1)

)
T 2

√
log T

, as T → ∞,

where ϑ is given by (1).

Theorem 2. We have

�FD4
(T ) =

(
33ρ

π3
+ o(1)

)
T 2

log2 T
, as T → ∞,

where ρ is given by (2).

Theorem 3. We have

�FH(T ) =

(
7ρ

π3
+ o(1)

)
T 2

log2 T
, as T → ∞,

where ρ is given by (2).

Let F̃ be the set of pairs (m,n) of coprime natural numbers, m > 1, n > 1,
which are odd and squarefree. In analogy with the above, for a fixed group H of

order 8 we define F̃H as the set of (m,n) ∈ F̃ such Q(
√
m,

√
n) admits a quadratic

extension K with
Gal(K/Q) ∼= H.

Theorem 4. The following asymptotic formula holds:

� F̃H(T ) =

(
2

π3
+ o(1)

)
T 2

log T
, as T → ∞.
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Theorem 5. The following asymptotic formula holds:

� F̃D4
(T ) =

(
18

π3
+ o(1)

)
T 2

log T
, as T → ∞.

We also point out that there is another way to count the extensions K satisfying

Gal(K/Q) ∼ H.

It consists in ordering the fields K according to the value of |Disc (K/Q)|. Klüners
in [9, Satz 7.2] has shown that for some positive constant c1 one has

� {K ⊆ C ; |Disc (K/Q)| ≤ T, Gal(K/Q) ∼ H} ∼ c1 T
1
4 , as T → ∞.

This proves Malle’s Conjecture [12] for the quaternionic group H. The analogous
conjecture for the group D4 states that there exists a positive constant c2 such that

� {K ⊆ C ; |Disc (K/Q)| ≤ T, Gal(K/Q) ∼ D4} ∼ c2 T
1
4 log2 T, as T → ∞.

This conjecture is still unproven, as far as we know.

1.3. Notation. We recall that U = O(V ), U 
 V and V � U are all equivalent
to the statement that the inequality |U | ≤ c V holds with some constant c > 0.
Sometimes we write U = Oλ(V ), U 
λ V and V �λ U to emphasise that the
implied constant may depend on a certain parameter λ.

For a positive integer n we write μ(n), ω(n), and ϕ(n) with their standard
meaning as being the Möbius function of n, the number of distinct prime factors of
n, and the Euler function of n, respectively.

Finally, we write gcd(a, b) for the greatest common divisor of the integers a and
b.

2. Squarefree numbers with congruence conditions

2.1. Necessary results. Let m and n be two integers, coprime or not, such that
n is nonzero and squarefree. We say that m is a square modulo n if and only if the
equation x2 ≡ m mod n is solvable. This is equivalent to the fact that for every
odd prime p dividing n, we have (mp ) = 0 or 1, where ( •p ) is the Legendre symbol

with respect to p. We write that condition as m ≡ � mod n.
A recent result due to Friedlander and Iwaniec [4, Theorem 1] states that for

any fixed δ > 0 and uniformly for A, B ≥ exp
(
(logAB)δ

)
, we have the estimate

� {(a, b) ; 1 ≤ a ≤ A, 1 ≤ b ≤ B,

μ2(2ab) = 1, a ≡ � mod b& b ≡ � mod a}

=
AB√

logA
√
logB

(
6

π3
+Oδ

(
1

logA
+

1

logB

))
.

(3)

The above result can be interpreted in terms of the solvability of a ternary qua-
dratic equation. The following classical theorem due to Legendre, which dates back
to 1795, gives necessary and sufficient conditions for the existence of a nontrivial
zero of a diagonal quadratic form (see, for example, [16, Chapter 4, Appendix I]).

Proposition 1. Let a, b and c be pairwise coprime nonzero integers which are
squarefree and are not all of the same sign. Then the equation

(4) aX2 + bY 2 + cZ2 = 0
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has a nonzero integer solution (X,Y, Z) if and only if the following three conditions
are satisfied: −ab ≡ � mod c, −ac ≡ � mod b and −bc ≡ � mod a.

Results such as the aforementioned asymptotic formula (3) due to Friedlander
and Iwaniec are not new in the literature. Let us mention here the work of Guo [5],
where the solvability of the ternary equation (4) with free parameters a, b and c
having absolute values not exceeding T is studied, as well as the work of the first
author with Klüners [2, Theorem 5], where the authors investigate the solvability of
equation (4) under the constraints c = −1 and |ab| ≤ T and interpret their results
in terms of the average behavior of the value of the 4–rank of the ideal class group
of quadratic fields.

It is natural to notice that the analytic tools appearing in the proofs of the
main results in [2], [4] and [5] are all of the same nature: the use of Jacobi sym-
bols as characters, the Siegel–Walfisz theorem for these characters, and the double
oscillations theorem. We review these tools in Lemmas 1 and 2 below.

The main result of [4, Theorem 1] is too precise for our purposes. Here, we restrict
our attention to the case A = B = T . However, we require some variations of the
statement we mentioned above. More precisely, we prove and use the following
proposition.

Proposition 2. Let F̃(T ) = {(a, b) ∈ N2 : 1 ≤ a, b ≤ T, μ2(2ab) = 1}. Then, as
T → ∞, we have the following asymptotic formulas:

�
{
(a, b) ∈ F̃(T ) : a ≡ � mod b& b ≡ � mod a

}
∼ 6

π3
· T 2

log T
,

�
{
(a, b) ∈ F̃(T ) : −a ≡ � mod b& b ≡ � mod a

}
∼ 6

π3
· T 2

log T
,

�
{
(a, b) ∈ F̃(T ) : −a ≡ � mod b& − b ≡ � mod a

}
∼ 2

π3
· T 2

log T
.

Note 1. It is worth noticing that if the pair (a, b) is an element of the set appearing
on the left hand side of the last asymptotic formula of Proposition 2, we then
necessarily have

a ≡ b ≡ 1 mod 4.

Indeed, this is a straightforward consequence of the Quadratic Reciprocity Law.

For the proof of Theorem 2, we decompose

F = F11 � F22 � F12 � F21,

where

F ij = {(a, b) ∈ F : a ≡ i mod 2, b ≡ j mod 2}.
Let ε and η be in {±1} with

(ε, η) �= (−1,−1).

We need to study the cardinalityN ij
ε,η(T ) of the set of pairs (a, b) ∈ F ij(T ) satisfying

the property that the ternary form

(5) X2 − εaY 2 − ηbZ2 = 0

has a nontrivial integer solution (X,Y, Z).
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We write d = gcd(a, b), so that m = a/d, n = b/d, and d are mutually coprime.
Note that equation (5) admits a nontrivial solution if and only if the equation

(6) dX2 − εmY 2 − ηnZ2 = 0

admits a nontrivial solution. To the above form, we can apply Proposition 1, since
the integers d, −εm and −ηn are squarefree, mutually coprime, and not of the same
sign. Hence,

N ij
ε,η(T )

= �

{
(a, b) ∈ F ij(T ) : εa ≡ � mod

b

d
, ηb ≡ � mod

a

d
, −εη

ab

d2
≡ � mod d

}
.

Furthermore, we use the last expression to define N ij
ε,η(T ) also in the case when

(ε, η) = (−1,−1).

Proposition 3. For each i, j ∈ {1, 2} and ε, η ∈ {±1}, the following asymptotic
formula,

N ij
ε,η(T ) ∼

α

ij
· ρ

π3
· T 2

log T
,

holds as T → ∞, where

α =

⎧
⎪⎨

⎪⎩

4 if (i, j) �= (1, 1),

6 if (i, j) = (1, 1) and (ε, η) �= (−1,−1),

2 if (i, j) = (1, 1) and (ε, η) = (−1,−1).

The following upper bound is useful in the proof of Theorem 5.

Proposition 4. Let F(T ) = {(a, b) ∈ N2 : 1 < a, b ≤ T, μ2(a) = μ2(b) = 1}.
Uniformly in T ≥ 2 we have

� {(a, b) ∈ F(T ) : a and − a ≡ � mod b& b ≡ � mod a} 
 T 2

log5/4 T
.

Note 2. With a bit more care, the cardinality of the set studied in Proposition 4

can be shown to be (β + o(1))T 2 log−5/4 T for some positive constant β as T → ∞.

2.2. Preparations. The proofs of Propositions 2 and 3 are quite similar and are
based on estimates of some auxiliary sums.

We extract from [4] two technical results which we use throughout this section.
The first one is a variant of Siegel’s theorem concerning the distribution of primes
in arithmetic progressions. This appears as [4, Corollary 2]. Let us define

(7) c(r) = π− 1
2

∏

p≥2

(
1 +

1

2p

) (
1− 1

p

) 1
2 ∏

p|r

(
1 +

1

2p

)−1

.

Lemma 1. Let gcd(ad, q) = 1, where q = q1q2, with (q1, q2) = 1. For a character
χ2 modulo q2 and for any constant C, we have the equality

∑

n≤x
gcd(n,d)=1
n≡a mod q1

μ2(n)
χ2(n)

2ω(n)
= δχ2

· c(dq)
ϕ(q1)

· x√
log x

(
1 +O

(
(log log 3dq)

3
2

log x

))

+OC(2
ω(d)qx (log x)−C),
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where δχ2
is equal to 1 or 0 according to whether χ2 is principal or not, and c(r) is

defined by (7).

The second result deals with double sums of Jacobi symbols. This is [4, Lemma 2].

Lemma 2. Let αm and βn be any complex numbers supported on odd integers and
bounded by 1 in absolute value. We then have

∑

m≤M

∑

n≤N

αmβn

(m
n

)

 MN(M−1/6 +N−1/6)(log 3MN)7/6,

where the implied constant is absolute.

We now define a sum which plays a key role in the proof of Proposition 2:

(8) M(T, a0, c0) =
∑∑∑∑

ab≤T cd≤T
a≡a0 mod 4, c≡c0 mod 4

μ2(2abcd)

2ω(ab) · 2ω(cd)

(
d

a

)(
b

c

)
.

In the next statement, we use Lemmas 1 and 2 in order to find the asymptotic
behavior of the sum M(T, a0, c0) appearing in (8) as T → ∞.

Lemma 3. Let a0 and c0 be two odd integers. The asymptotic formula

M(T, a0, c0) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

5

π3
· T 2

log T
if (a0, c0) ≡ (1, 1) mod 4,

1

π3
· T 2

log T
if (a0, c0) �≡ (1, 1) mod 4

holds as T → ∞.

Proof. We let V ≥ 3 be some parameter to be specified later depending on T . The
contribution of the pairs (a, b) such that max{a, b} ≤ V to the sum M is trivially

(9) M1 ≤ T 1+o(1)V 2, as T → ∞.

Similarly, the contribution of the pairs (c, d) such that max{c, d} ≤ V to the sum
M is

(10) M2 ≤ T 1+o(1)V 2, as T → ∞.

To estimate the contribution of the quadruples (a, b, c, d) with max{a, d} ≤ V to
the sum M , we apply Lemma 2 to the Jacobi symbol

(
b
c

)
. Hence, this contribution

satisfies

M3 

∑

a≤V

∑

d≤V

T 2

ad

(
a1/6T−1/6 + d1/6T−1/6

)
log7/6 T 
 T 11/6V 1/6 log13/6 T.

Similarly, we see that the contribution of the quadruples (a, b, c, d) with max{b, c} ≤
V also satisfies

M4 
 T 11/6V 1/6 log13/6 T,

by applying Lemma 2 to the Jacobi symbol
(
d
a

)
.

When a > V and d > V , since these two variables are now large, we apply
Lemma 2 to the Jacobi symbol

(
d
a

)
. That lemma shows that the contribution of

such quadruples (a, b, c, d) to the sum M is

M5 

∑

b<T/V

∑

c<T/V

T 2

bc
· V −1/6 log7/6 T 
 T 2V −1/6 log19/6 T.
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The same applies to the contribution M6 to M of the quadruples (a, b, c, d) with
b > V and c > V , namely

M6 

∑

a<T/V

∑

d<T/V

T 2

ad
· V −1/6 log7/6 T 
 T 2V −1/6 log19/6 T.

We now choose V to be a large power of the logarithm of T . More precisely, we put

(11) V = log60 T,

and from the estimates for M1, . . . ,M6 above, we see that the contributions from
all these previously counted terms satisfy

(12) Mi 
 T 2 log−2 T, i = 1, . . . , 6.

So, we are left to deal with two more cases, namely when

a ≤ V, b ≥ V, c ≤ V, d ≥ V,

and when

a ≥ V, b ≤ V, c ≥ V, d ≤ V.

Recalling our estimates (9) and (10) on M1 and on M2, we see that these two cases
can be reduced to

(13) a ≤ V, c ≤ V

and

(14) b ≤ V, d ≤ V,

respectively.
Note that, due to the congruence restrictions a ≡ a0 mod 4 and c ≡ c0 mod 4,

the cases (13) and (14) are not entirely symmetrical, so we need to analyze each
one of them separately.

The case (13). We write the contribution of the quadruples (a, b, c, d) satisfying (13)
to the sum M in the form

(15) M(13)(a0, c0) =
∑

a≤V
a≡a0 mod 4

∑

c≤V
c≡c0 mod 4

μ2(2ac)

2ω(ac)
S(a, c),

where

S(a, c) =
∑

b≤T/a
gcd(b,2ac)=1

μ2(b)

2ω(b)

(
b

c

) ∑

d≤T/c
gcd(d,2abc)=1

μ2(d)

2ω(d)

(
d

a

)
.

We now apply Lemma 1 to evaluate S(a, c) according to the values of a and c.

• When a �= 1, we apply Lemma 1 with χ2 being the quadratic character
modulo a, and then sum trivially over b. Using the fact that ω(abc) ≤
ω(ac) + ω(b), we get

(16) S(a, c) 
C
T 2

ac
2ω(ac)(log T )−C

for any C > 0.
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• When c �= 1, inside S(a, c) we interchange the roles of b and d and then
apply Lemma 1 with χ2 being the quadratic character modulo c. This
gives

(17) S(a, c) 
C
T 2

ac
2ω(ac)(log T )−C

for any C > 0.
• When a = c = 1, we then necessarily have a0 ≡ c0 ≡ 1 mod 4. We then
obtain the equality

S(1, 1) =
∑

b≤T

∑

d≤T

μ2(2bd)

2ω(b) · 2ω(d)
.

We want to make the variables b and d free from the coprimality condi-
tion, so we use the Möbius inversion formula and replace b by bδ and d
by dδ to get the identity

S(1, 1) =
∑

δ odd

μ(δ)

4ω(δ)

⎛

⎝
∑

b≤T/δ

μ2(2bδ)

2ω(b)

⎞

⎠
2

.

An application of Lemma 1 with d = 2δ and q1 = q2 = 1 leads to the
relation

S(1, 1) = (1 + o(1))
∑

δ odd
δ≤log100 T

μ(δ)

4ω(δ)

(
c(2δ)

T/δ√
log(T/δ)

)2

+ O

⎛

⎝
∑

δ>log100 T

T 2

δ2

⎞

⎠ , as T → ∞.

This immediately gives

(18) S(1, 1) ∼ T 2

log T

∑

δ odd

μ(δ)c(2δ)2

4ω(δ)δ2
, as T → ∞.

To compute the infinite series appearing in (18), we use the following
identity:

c(2δ) =
4

5
c(1)

∏

p|δ

(
1 +

1

2p

)−1

(2 � δ).

Inserting the above formula into (18) leads to the equality

(19)
∑

δ odd

μ(δ)c(2δ)2

4ω(δ)δ2
=

16

25
c(1)2

∏

p≥3

(
1− 1

4p2(1 + 1/2p)2

)
=

4

π3
.
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Collecting (15), (16), (17), (18) and (19), summing over a and c and choosing
C = 1000, we finally get the estimate
(20)

M(13)(a0, c0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4

π3
· T 2

log T
(1 + o(1)) for (a0, c0) = (1, 1), as T → ∞,

O

(
T 2

log2 T

)
, otherwise.

The case (14). We write the contribution of the quadruples (a, b, c, d) satisfying (14)
to the sum M in the form

(21) M(14)(a0, c0) =
∑

b≤V

∑

d≤V

μ2(2bd)

2ω(bd)
S∗(b, d, a0, c0),

where

S∗(b, d, a0, c0) =
∑

a≤T/b
gcd(a,2bd)=1

μ2(a)

2ω(a)

(
d

a

) ∑

c≤T/d
gcd(c,2abd)=1

μ2(c)

2ω(c)

(
b

c

)
.

Recall that the variables a and c satisfy the congruence conditions a ≡ a0 mod 4
and c ≡ c0 mod 4. The sums S∗(b, d, a0, c0) can be studied with the techniques
of Section 2.2. In particular, we apply Lemma 1 with q1 = 4 and a = a0, or
a = c0. We remark that the main term has its origin in the contribution of the pair
(b, d) = (1, 1). After that, by (21), we finally arrive at the estimate

(22) M(14)(a0, c0) =
1

π3
· T 2

log T
(1 + o(1)), as T → ∞,

which is valid for any a0 and c0 ≡ ±1 mod 4.
From (12), we get

M(a0, c0) = M(13)(a0, c0) +M(14)(a0, c0) +O(T log−2 T ).

Combining the above estimate with (20) and (22), we complete the proof. �

Next, we define a sum which is analogous to the sum M(T, a0, c0) appearing
in (8) but somewhat more involved. For i, j ∈ {1, 2} we put

M ij(T,m0, n0, d0) =
∑∑∑∑∑∑

d1,d2,m1,m2,n1,n2∈N

max{im1m2,jn1n2}≤T/(d1d2)
(d1,m1,n1)≡(d0,m0,n0) mod 8

μ2(2m1m2n1n2d1d2)

2ω(m1m2n1n2d1d2)

·
(
d2m2

n1

)(
d2n2

m1

)(
n2m2

d1

)
.

(23)

The next statement gives an asymptotic estimate for the sum M ij(T,m0, n0, d0)
appearing in (23).

Lemma 4. Let d0, m0, and n0 be three odd integers, put

ρd0
=

∑

d∈N

d≡d0 mod 8

μ2(d)
∏

p|d

1

2p(p+ 1)
,
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and assume that i, j ∈ {1, 2}. Then, as T → ∞, we have

M ij(T, d0,m0, n0)

∼ 4

π3
· 1

ij
· T 2

log T
·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ρ+

1

16
ρd0

)
if (d0,m0, n0) ≡ (1, 1, 1) mod 8,

1

16
ρd0

if (d0,m0, n0) �≡ (1, 1, 1) mod 8,

where ρ is given by (2).

Proof. This proof is very similar to the proof of Lemma 3, so we skip some of the
details. Observe first from the definition of M ij(T,m0, n0, d0) in (23) that we can
assume that d1d2 ≤ T . We next introduce a parameter V0 and decompose

(24) M ij(T,m0, n0, d0) = M ij
≤V0

(T,m0, n0, d0) +M ij
>V0

(T,m0, n0, d0),

where the first and second terms, respectively, correspond to the extra conditions
max{d1, d2} ≤ V0 and max{d1, d2} > V0. Writing m = m1m2 and n = n1n2, we
trivially have
∣∣M ij

>V0
(T,m0, n0, d0)

∣∣ ≤
∑ ∑

max{d1,d2}>V0

∑ ∑

m,n≤T/(d1d2)

1 ≤ 2T 2
∑

d1<T

1

d21

∑

d2>V0

1

d22
,

which finally gives

(25) M ij
>V0

(T,m0, n0, d0) 
 T 2V −1
0 .

We fix
V0 = V = log60 T

(see (11)). By (24) and (25), we see that the proof of Lemma 4 is reduced to proving

the same result but for M ij
≤V0

(T,m0, n0, d0).
By a straightforward adaptation of the arguments used at the beginning of

Lemma 3 (where m1, m2, n1, n2 and T/(d1d2) play the roles of a, b, c, d and
T , respectively), one shows that for fixed d1 and d2 the contribution of the quadru-

ples (m1,m2, n1, n2) to the sum M ij
≤V0

(T,m0, n0, d0) is

O((T/d1d2)
2 log−2(T/d1d2)) = O((T/d1d2)

2 log−2 T )

(see (12)), except if either

(26) m1 ≤ V, m2 ≥ V, n1 ≤ V, n2 ≥ V

or

(27) m1 ≥ V, m2 ≤ V, n1 ≥ V, n2 ≤ V.

Summing over all pairs of positive integers (d1, d2) such that max{d1, d2} ≤ V0

gives the total contribution of the order

∑

d1, d2≤V0

T 2

(d1d2)2 log
2 T


 T 2

log2 T

from all the cases, except from (26) and (27). Hence, we see that the total contribu-

tion from all the sextuples (m1, n1,m2, n2, d1, d2) to the sum M ij
≤V0

(T,m0, n0, d0)

is O(T 2 log−2 T ), except if either

(28) m1 ≤ V, n1 ≤ V, m2 ≥ V, n2 ≥ V, d1 ≤ V, d2 ≤ V
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or

(29) m1 ≥ V, n1 ≥ V, m2 ≤ V, n2 ≤ V, d1 ≤ V, d2 ≤ V.

We analyze only the above two cases (28) and (29) in detail.

The case (28). The contribution to the sum M ij
<V0

(T,m0, n0, d0) of the sextuples
in this case is

M ij
(28)(T,m0, n0, d0) =

∑

max{m1,n1,d1}≤V
d1≡d0 mod 8
m1≡m0 mod 8
n1≡n0 mod 8

μ2(2m1n1d1)

2ω(m1n1d1)
S(m1, n1, d1),

where

S(m1, n1, d1) =
∑

d2≤V
V <m2≤T/(im1d1d2)
V <n2≤T/(jn1d1d2)

μ2(2m1m2n1n2d1d2)

2ω(m2n2d2)

(
d2m2

n1

)(
d2n2

m1

)(
n2m2

d1

)

=
∑

d2≤V
V <m2≤T/(im1d1d2)

μ2(2m1m2n1d1d2)

2ω(m2d2)

(
d2

n1m1

)(
m2

n1d1

)

·
∑

V <n2≤T/(jn1d1d2)
gcd(n2,2m1m2n1d1d2)=1

μ2(n2)

2ω(n2)

(
n2

m1d1

)
.

We now apply Lemma 1 to evaluate the last sum above according to the values
of m1, n1 and d1.

• If m1d1 �= 1, we consider the Jacobi character
(

n2

m1d1

)
. Lemma 1 yields

S(m1, n1, d1) 
C

∑

d2≤V

∑

m2≤T/(im1d1d2)

T

n1d1d2
2ω(m1n1d1)(log T )−C


C
2ω(m1n1d1)

m1n1d21
· T 2

logC T
.

(30)

• If n1d1 �= 1, inside S(m1, n1, d1) we invert the roles of m2 and n2 and

apply Lemma 1 to the Jacobi character
(

m2

n1d1

)
obtaining

(31) S(m1, n1, d1) 
C
2ω(m1n1d1)

m1n1d21
· T 2

logC T
.

• If m1 = n1 = d1 = 1, which can only happen when m0 = n0 = d0 = 1,
we are led to the sum

S(1, 1, 1) =
∑

d≤V

∑

V≤m2≤T/(jd)

∑

V≤n2≤T/(jd)

μ2(2m2n2d)

2ω(m2n2d)
.
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We make the variables m2 and n2 free from the coprimality condition by
using the Möbius inversion formula. Thus, replacing m2 and n2 by em2

and en2, respectively, we get

S(1, 1, 1) =
∑

d≤V

μ2(2d)

2ω(d)

∑

e∈N

gcd(e,2d)=1

μ(e)

22ω(e)

·
∑

V/e≤m2≤T/(ied)
gcd(m2,2ed)=1

μ2(m2)

2ω(m2)

∑

V/e≤n2≤T/(jed)
gcd(n2,2ed)=1

μ2(n2)

2ω(n2)
.

Thus, using Lemma 1, we derive

S(1, 1, 1) =
∑

d≤V

μ2(2d)

2ω(d)

∑

e≤V
gcd(e,2d)=1

μ(e)

22ω(e)

·
∑

m2≤T/(ied)
gcd(m2,2ed)=1

μ2(m2)

2ω(m2)

∑

n2≤T/(jed)
gcd(n2,2ed)=1

μ2(n2)

2ω(n2)
+ O

(
T 2

V

)

=
1

ij

∑

d≤V

μ2(2d)

d22ω(d)

∑

e≤V
gcd(e,2d)=1

μ(e)c(2ed)2

e222ω(e)
· T 2

log T
+O

(
T 2

log3/2 T

)

=
1

ij
· 16
25

c(1)2
∑

d∈N

μ2(2d)

d22ω(d)

·
∑

e∈N

gcd(e,2d)=1

μ(e)

e222ω(e)

∏

p|ed

(
1 +

1

2p

)−2

· T 2

log T
+ O

(
T 2

log3/2 T

)
.

We now evaluate (see (19))

1

ij
· 16
25

c(1)2
∑

d∈N

μ2(2d)

d22ω(d)

∑

e∈N

gcd(e,2d)=1

μ(e)

e222ω(e)

∏

p|ed

(
1 +

1

2p

)−2

=
1

ij
· 16
25

c(1)2
∑

d∈N

μ2(2d)

d22ω(d)

∏

p|d

(
1 +

1

2p

)−2 ∏

p�2d

(
1− 1

4p2(1 + 1
2p )

2

)

=
1

ij
· 4

π3

∑

d∈N

μ2(2d)

d22ω(d)

∏

p|d

(
1 +

1

p

)−1

=
1

ij
· 4

π3

∏

p≥3

(
1 +

1

2p(p+ 1)

)
=

1

ij
· 4

π3
ρ.

Therefore,

(32) S(1, 1, 1) =
4ρ

ijπ3
· T 2

log T
+O

(
T 2

log3/2 T

)
.
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Summing up estimates (30) and (31) over m1, n1 and d1 and choosing as in the
proof of Lemma 3 the value C = 1000, and using also the asymptotic formula (32)
when (m0, n0, d0) = (1, 1, 1), we derive
(33)

M ij
(28)(T,m0, n0, d0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
4ρ

π3ij
+ o(1)

)
T 2

log T
for (m0, n0, d0) ≡ (1, 1, 1) mod 8,

O
( T 2

log2 T

)
otherwise,

as T → ∞.

The case (29). The contribution to the sum M ij
<V0

(T,m0, n0, d0) of the sextuples
in this case is

M ij
(29)(T,m0, n0, d0) =

∑

max{m2,n2,d2}≤V

μ2(2m2n2d2)

2ω(m2n2d2)
S∗(m2, n2, d2),(34)

where

S∗(m2, n2, d2) =
∑

d1≤V
V <m1≤T/(im2d1d2)

d1≡d0 mod 8
m1≡m0 mod 8

μ2(2m1m2n2d1d2)

2ω(m1d1)

(
d2n2

m1

)(
m2n2

d1

)

·
∑

V <n1≤T/(jn2d1d2)
gcd(n1,2m1m2n2d1d2)=1

n1≡n0 mod 8

μ2(n1)

2ω(n1)

(
d2m2

n1

)
.

(35)

The sum S∗(m2, n2, d2) can be dealt with by applying Lemma 1 with q1 = 8 and
either a = n0 or a = m0. We remark that the main term originates from the
contribution of the triple (m2, n2, d2) = (1, 1, 1), which is

S∗(1, 1, 1) =
∑

d1≤V
V <m1≤T/(id1)
V <n1≤T/(jd1)

(m1,n1,d1)≡(m0,n0,d0) mod 8

μ2(m1n1d1)

2ω(m1n1d1)

∼ 1

ij
· 1

4π3

∑

d∈N

d≡d0 mod 8

μ2(d)

d2ω(d)

∏

p|d

1

p+ 1

T 2

log T
,

as T → ∞. By using (34) and (35), we finally arrive at the estimate

M ij
(29)(m0, n0, d0) =

1 + o(1)

4ijπ3
·

∑

d∈N

d≡d0 mod 8

μ2(d)
∏

p|d

1

2p(p+ 1)
· T 2

log T

=
ρd0

+ o(1)

4ijπ3
· T 2

log T
,

(36)

as T → ∞. Hence,

M ij(m0, n0, d0) = M ij
(28)(m0, n0, d0) +M ij

(29)(m0, n0, d0) +O(T log−2 T ),
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and now using the estimates (33) and (36), the conclusion of the lemma can be
easily derived. �
2.3. Proof of Proposition 2. We follow the proof of [4, Theorem 1]. We restrict
ourselves to the case A = B = T and decide not to estimate the error terms
implicitly contained in the formulas of Proposition 2.

Let ε and η be in {±1}. We want to study the cardinality Nε,η(T ) of the set of
pairs (m,n) of integers satisfying

μ2(2mn) = 1, 1 < m, n ≤ T, εm ≡ � mod n & ηn ≡ � mod m.

From the properties of Legendre symbols, we have the basic equality

(37) Nε,η(T ) =
∑ ∑

1<m, n≤T

μ2(2mn)

2ω(m) · 2ω(n)

∏

p|m

[
1 +

(
ηn

p

)] ∏

p|n

[
1 +

(
εm

p

)]
.

To transform (37), it remains to expand both products, use the multiplicativity
property of Jacobi symbols, factor m = ab and n = cd, and introduce the function

(38) κε,η(a, c) =
(a
c

)( c

a

)( ε
c

)(η
a

)
,

to finally reach the equality

(39) Nε,η(T ) =
∑∑∑∑

ab≤T cd≤T

μ2(2abcd)

2ω(ab) · 2ω(cd)

(
d

a

)(
b

c

)
κε,η(a, c).

Since the value of the function (a, c) �→ κε,η(a, c) is constant when we fix the
congruence classes of a and c mod 4, we split Nε,η(T ) into

(40) Nε,η(T ) =
∑

a0=±1

∑

c0=±1

κε,η(a0, c0)M(T, a0, c0),

where M(T, a0, c0) is given by (8).
By the Quadratic Reciprocity Law, we see that if a0 and c0 are two odd positive

integers, then

(41) κε,η(a0, c0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if a0 ≡ c0 ≡ 1 mod 4,

ε if a0 ≡ −c0 ≡ 1 mod 4,

η if a0 ≡ −c0 ≡ −1 mod 4,

−εη if a0 ≡ c0 ≡ −1 mod 4.

Using Lemma 3 together with the relations (40) and (41) with ε = η = 1, we obtain

N1,1(T ) ∼
(

5

π3
+

1

π3
+

1

π3
− 1

π3

)
T 2

log T
=

6

π3
· T 2

log T
,

as T → ∞. The other relations claimed by Proposition 2 can be derived analogously.

2.4. Proof of Proposition 3. From the properties of the Jacobi symbols, we have
the basic equality

N ij
ε,η(T ) =

∑

d∈N

m≤T/(id)
n≤T/(jd)

μ2(2mnd)

2ω(mnd)

·
∏

p|dmn

(
1 +

(
ηjdn

p

))(
1 +

(
εidm

p

))(
1 +

(
−εηijmn

p

))
.
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We now expand the three products in each sum, use the multiplicativity property
of the Jacobi symbols, factor m = m1m2, n = n1n2 and d = d1d2, and introduce
the functions κε,η(m,n, d) and ςi,j(m,n, d) defined as

κε,η(m,n, d) =
(m
n

)( n

m

)( ε

n

)( η

m

)(m
d

)( d

m

)(
d

n

)(n
d

)(−εη

d

)

and

ςi,j(m,n, d) =

(
ij

d

)(
j

m

)(
i

n

)
,

to finally reach the equality

N ij
ε,η(T ) =

∑

d1,d2,m1,m2,n1,n2∈N

m1m2≤T/(id1d2)
n1n2≤T/(jd1d2)

μ2(2m1m2n1n2d1d2)

2ω(m1m2n1n2d1d2)

·
(
d2m2

n1

)(
d2n2

m1

)(
n2m2

d1

)
ςi,jκε,η,

where κε,η = κε,η(m1, n1, d1) and ςi,j = ςi,j(m1, n1, d1). Since the value of the
function (m1, n1, d1) �→ ςi,j(m1, n1, d1)κε,η(m1, n1, d1) is constant when we fix the
congruence classes of m1, n1 and d1 mod 8, it follows that we can split N ij

ε,η(T ) into
(42)

N ij
ε,η(T ) =

∑

(m0,n0,d0)∈{±1,±3}3

ςi,j(m0, n0, d0)κε,η(m0, n0, d0)M
ij(T,m0, n0, d0),

where M ij(T,m0, n0, d0) is given by formula (23). At this stage, note that Lemma 4
and identity (42) together imply that

(43) N ij
ε,η(T ) ∼

⎛

⎝ρ+
1

16

∑

(m0,n0,d0)∈{±1,±3}3

ςi,jκε,ηρd0

⎞

⎠ · 4

π3

1

ij
· T 2

log T
,

as T → ∞. We also have the following identity, which is a direct consequence of
the Quadratic Reciprocity Law:

κε,η(m0, n0, d0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if m0 ≡ n0 ≡ d0 ≡ 1 mod 4,

ε if m0 ≡ −n0 ≡ d0 ≡ 1 mod 4,

η if m0 ≡ −n0 ≡ −d0 ≡ −1 mod 4,

−εη if m0 ≡ n0 ≡ −d0 ≡ −1 mod 4,

−εη if m0 ≡ n0 ≡ −d0 ≡ 1 mod 4,

η if m0 ≡ −n0 ≡ −d0 ≡ 1 mod 4,

ε if m0 ≡ −n0 ≡ d0 ≡ −1 mod 4,

1 if m0 ≡ n0 ≡ d0 ≡ −1 mod 4.

Fixing d0 and summing over all the 16 possible values of (m0, n0) ∈ {±1,±3}2, we
obtain

∑

(m0,n0)∈{±1,±3}2

ςijκε,η =

[
1 +

(
i

3

)]
·
[
1 +

(
j

3

)]
· [2− (1− ε)(1− η)] .
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Finally, if α is the quantity defined in the statement of Proposition 3, we then have
∑

(d0,m0,n0)∈{±1,±3}3

ρd0
ςijκε,η = 4 · (α− 4) ·

∑

d0∈{±1,±3}
ρd0

= 4 · (α− 4) · ρ.

Inserting the result of the above calculation into (43), we conclude the proof.

2.5. Proof of Proposition 4. From the definition of the set that we study here,
we deduce that −a2 ≡ � mod b. This is equivalent to

(44) p | b, p � 2a ⇒ p ≡ 1 mod 4.

The strategy of the proof is the same as in the proof of Proposition 3, with the
important difference that we must take into account the impact of (44). This
explains why the main term is of a different nature. With the notation of Section 2.2
and in particular of the proof of Lemma 4, a typical main term is

∑

a≤T

μ2(a)
∑

b≤T
p|d, p�2a⇒p≡1 mod 4

μ2(b)

2ω(ab)

(compare with S(1, 1, 1) in the proof of Lemma 4), which we bound as

∑

d∈N

⎛

⎝
∑

a≤T/d

μ2(a)

2ω(a)

⎞

⎠×

⎛

⎜⎜⎝
∑

b≤2T/d
p|b⇒p≡1 mod 4

μ2(b)

2ω(b)

⎞

⎟⎟⎠ 
 T

log
1
2 T

· T

log
3
4 T

,

by appealing to general bounds for sums of multiplicative functions (see, for in-
stance, [15, Theorem 1]).

The error terms are managed in the same way, but with a modification of
Lemma 1 (a variant of the Siegel–Walfisz theorem), where we impose a restric-
tion on one of the variables to have all its prime factors congruent to 1 modulo
4. If we follow the proof given in [4, Section 8], we have to introduce the function

L
1
4 (s, χ) instead of L

1
2 (s, χ) and the desired conclusion follows by using standard

methods in the theory of Dirichlet series.

3. Hilbert symbols, quadratic forms and the sets FH and FD4

In order to prove Theorem 4, we need the following criterion, which follows
instantly from a result of Kiming [8, Theorem 4].

Lemma 5. Let (m,n) ∈ F , and set d = gcd(m,n), m = dm1, and n = dn1. Then
(m,n) belongs to FH if and only if

(45) −m1n1 ≡ � mod d, −m ≡ � mod n1, and − n ≡ � mod m1.

In particular, (m,n) belongs to F̃H if and only if μ2(2mn) = 1 and

(46) −m ≡ � mod n and − n ≡ � mod m.

Proof. For the purpose of this proof only, for two integers a and b we write (a, b)(H)

for the Hilbert symbol (see [14, Chapter III]). By [8, Theorem 4], we see that
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(m,n) ∈ FH if and only if (m,n)(H)(mn,−1)(H) = 1. As noted in [8, Remark, p.
839], we have (m,n)(H)(mn,−1)(H) = (−m,−n)(H)(−1,−1)(H). We now compute
(−m,−n)(H)(−1,−1)(H) for all valuations v of Q. At infinity, that is, for v = ∞,
due to the negativity of −m and −n, we obviously have

(−m,−n)(H)
∞ · (−1,−1)(H)

∞ = (−1) · (−1) = 1.

For every finite valuation v = p, we have (−1,−1)
(H)
p = −1 for p = 2 and

(−1,−1)
(H)
p = 1 for p �= 2. From the above discussion, we see that the equal-

ity (m,n)(H)(mn,−1)(H) = 1 holds if and only if we have

(47) (−m,−n)(H)
p =

{
1 for every p �= 2,

−1 for p = 2.

Next, we remark that when m and n are both odd, the second condition of (47)
holds if and only if m ≡ n ≡ 1 mod 4. Furthermore, the first condition of (47) holds
for every p � 2mn. Finally, we conclude that for odd coprime integers m and n the
condition (47) holds if and only if the condition (46) holds.

The general case, where the squarefree m and n are not necessarily odd and
coprime, requires more care: here we have to separate the cases p = 2 or not, p | d,
p | m1, p | n1, and p � dm1n1, and apply general formulas giving the values of the

Hilbert symbols (a, b)
(H)
p in terms of the Legendre symbols (see [14, Theorem 1,

p. 20], for instance). These computations allow us to check that the conditions (45)
and (47) are equivalent. Note that we can avoid the tedious case p = 2 by exploiting
the Hilbert product formula

∏

v

(a, b)(H)
v = 1

(see [14, Theorem 3, p. 23], for instance). �

The proof of Theorem 2 is based on the following criterion due to Kiming [8,
Theorem 5].

Lemma 6. Let (m,n) be a pair of squarefree integers > 1. Then (m,n) belongs to
FD4

if and only if at least one of three quadratic forms

(48)

⎧
⎪⎨

⎪⎩

X2 +mY 2 − nZ2 = 0,

X2 + nY 2 −mZ2 = 0,

X2 −mY 2 − nZ2 = 0

has a nontrivial integral solution (X,Y, Z).

4. Proofs of main results

4.1. Proof of Theorem 1. It is known (see [8, page 832]) that the quadratic

extension Q(
√
d) for a positive integer d can be embedded in a C4-extension of Q if

and only if d can be written as a sum of two squares of integers. A C4×C2-extension
of Q is necessarily a C4-extension of one of its quadratic subfields. Therefore, given
(m,n) ∈ F , we have that (m,n) ∈ FC2×C4

if and only if at least one of Q(
√
m),

Q(
√
n), or Q(

√
mn) can be embedded in a C4–extension of Q. Hence, FC2×C4
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consists of those (m,n) ∈ F such that either m,n, or mn can be written as a sum
of two squares.

We need the following standard statement, which follows immediately from a
classical result due to Landau [10] applied to all integers instead of only squarefree
integers together with the inclusion-exclusion principle. Namely, if K is the set of
the squarefree positive integers that can be written as a sum of two squares, then

�K(T ) =

(
6

π2
ϑ+ o(1)

)
T√
log T

, as T → ∞,

where ϑ is the Landau–Ramanujan constant in (1). Indeed, this follows from the
standard inclusion-exclusion principle applied to the set of sums of two squares and
the observation that if n = d2m for some integers d,m, n, then n is a sum of two
squares if and only if m is too.

From the above, it follows immediately that the set of (m,n) ∈ F(T ) such that
both m and n are sums of two squares has O

(
T 2/ log T

)
elements. We also claim

that the number S of (m,n) ∈ F(T ) such that mn is a sum of two squares is
O
(
T 2/ log T

)
. Indeed,

S ≤
∑

d≤T

� {(m,n) ∈ F(T ), d | m, d | n,m/d ∈ K, n/d ∈ K}

≤
∑

d≤T

(�K(T/d))
2
=

∑

d≤log T

(�K(T/d))
2
+

∑

log T<d≤T

(�K(T/d))
2


 T 2
∑

log T<d

1

d2
+

∑

d≤log T

1

d2

(
T√

log T/d

)2

= O

(
T 2

log T

)
.

From the above discussion, we deduce that

FC2×C4
(T ) = 2� {(m,n) ∈ F such that n ∈ K}+O

(
T 2

log T

)

= 2

(
6

π2
+ o(1)

)
T × �K(T ) +O

(
T 2

log T

)

= 2

(
36

π4
ϑ+ o(1)

)
T 2

√
log T

, as T → ∞,

which is equivalent to the statement of Theorem 1.

4.2. Proof of Theorem 2. We appeal to Proposition 1 on the solvability of ternary
quadratic forms aX2+ bY 2+ cZ2 = 0 and to Lemma 6. The conditions concerning
the signs of a, b and c are trivially verified here. Using symmetry and the inclusion–
exclusion principle, we get the equality

�FD4
(T ) =

∑

(i,j)∈{1,2}

(
N ij

1,1(T ) +N ij
1,−1(T ) +N ij

−1,1(T )
)

+O (� {(a, b) ∈ F(T ), a and − a ≡ � mod b& b ≡ � mod a}) .
A direct application of Propositions 3 and 4 easily leads to

�FD4
(T ) =

(
33

π3
· ρ+ o(1)

)
T 2

log T
, as T → ∞,

which is what we wanted to prove.
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Note 3. Suppose that m and n are odd, squarefree, coprime, and in the residue
class 1 mod 4. Then they are both positive fundamental discriminants. The same
property holds for D = mn. Furthermore, suppose that the pair (m,n) satisfies
the third condition of (48) (or equivalently m ≡ � mod n and n ≡ � mod m).
Then, following the definition of Redei, we can say that {m,n} is a decomposition
of second type of D. Redei’s theory ensures that Q(

√
m,

√
n) admits a quadratic

extension K4 which is a C4–extension of Q(
√
D), and which is unramified at any

place. Furthermore, we have Gal(K4,Q) = D4. In conclusion, in that particular
case, we can say more about the extension K we want to build over Q(

√
m,

√
n).

For a general presentation of that theory, see [3, Section 3.2], which also includes
an application to the behavior of the 4–rank of the ideal class group of the ring of
integers of Q(

√
D).

4.3. Proof of Theorem 3. We appeal to Lemma 5 and deduce that

�FH(T ) =
∑

(i,j)∈{1,2}
N ij

−1,−1(T ).

Finally, we apply Proposition 3 and deduce that

�FH(T ) =

((
2

1 · 1 +
4

1 · 2 +
4

2 · 1 +
4

2 · 2

)
× 1

π3
· ρ+ o(1)

)
T 2

log T
, as T → ∞,

which concludes the proof.

4.4. Proof of Theorem 4. The proof follows immediately from Lemma 5 and the
last relation of Proposition 2.

4.5. Proof of Theorem 5. As in the case of the proof of Theorem 2, this proof
is also immediate, as by Lemma 6, we have

� F̃D4
(T ) = 2 �

{
(m,n) ∈ F̃(T ), −m ≡ � mod n& n ≡ � mod m

}

+ �
{
(m,n) ∈ F̃(T ), m ≡ � mod n& n ≡ � mod m

}

+O
(
�
{
(m,n) ∈ F̃(T ), m and −m ≡ � mod n& n ≡ � mod m

})
.

A direct application of Propositions 2 and 4 easily leads to

� F̃D4
(T ) =

(
6

π3
+ o(1)

)
T 2

log T
, as T → ∞,

which is what we wanted to prove.

5. Conclusion

One can also derive an asymptotic formula for � F̃C2×C4
(T ) along the lines of

those for �FC2×C4
(T ). More precisely, we believe that

� F̃C2×C4
(T ) =

(
4ϑ

π2
× κ+ o(1)

)
T 2

√
log T

as T → ∞,
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where ϑ is defined by (1),

κ =
3eγ/2

4
√
π

∏

p≡1mod 4

(
1− 1

p3

)
·

∏

p≡3mod 4

(
1− 1

p2

)
,

and γ is the Euler constant.
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