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Summary

The theory of elliptic curves and modular forms is one subject where the most

diverse branches of Mathematics like complex analysis, algebraic geometry,

representation theory and number theory come together. Our point of view

will be number theoretic. A well-known feature of number theory is the

abundance of conjectures and theorems whose statements are accessible

to high school students but whose proofs either are unknown or, in some

cases, are the culmination of decades of research and use some of the most

powerful tools of twentieth century mathematics. In addressing problems

such as these, which have no easy solution, it is essential to create strong

tools that penetrate in different and apparently completely distinct branches

of mathematics. The aim of this thesis is to explore the theory of elliptic

curves and modular forms and to develop tools that are essential in the

resolution of some remarkable problems, like the Ramanujan conjectures and

the Fermat’s Last Theorem.

Chapter 1 is devoted to the study of elliptic curves. We have chosen an

analytic approach, due to Weierstrass, which involves the theory of elliptic

functions. We talk about this topics before to give the definition of elliptic

curves.

A lattice Λ is a subgroup of C which is free of dimension 2 over Z and

which generates C over R. If {ω1, ω2} is a basis of Λ over Z, then we also

write Λ = [ω1, ω2] or Λ = ω1Z⊕ ω2Z. Moreover, we assume the normalizing

convention that Im(ω1/ω2) > 0.

A complex torus is a quotient of the complex plane by a lattice,

C/Λ = {z + Λ | z ∈ C}.
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An elliptic function f with respect to Λ is a meromorphic function on

C which is Λ-periodic, i.e.

f(z + ω) = f(z) ∀z ∈ C, ∀ω ∈ Λ.

The most important example of a non-constant elliptic function with respect

to a lattice Λ is the Weierstrass ℘-function, which is defined as

℘(z) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
,

where Λ∗ = Λ \ {0}. The power series development at the origin of this

function is given by

℘(z) =
1

z2
+

∞∑
n=1

(2n+ 1)G2n+2z
2n,

where

Gm(Λ) = Gm =
∑
ω∈Λ∗

1

ωm

is the Eisenstein series of weight m and it is an example of modular

forms, as we will see later. ℘ satisfies the differential relation

℘′2 = 4℘3 − g2℘− g3

where g2 = 60G4 and g3 = 140G6, and so the points (℘(z), ℘′(z)) lie on the

curve defined by the equation

Y 2 = 4X3 − g2X − g3.

The cubic polynomial on the right-hand side has three distinct roots and

so its discriminant ∆ = g3
2 − 27g2

3 does not vanish. Note that we have

a map z + Λ 7→ (℘(z), ℘′(z)) from the torus C/Λ to the points of the

curve Y 2 = 4X3 − g2X − g3, because of the periodicity of ℘ and ℘′. If

we want to embed the points in the projective space P2
C, we can write

z + Λ 7→ (℘(z), ℘′(z), 1). In this way we obtain a map from the torus C/Λ
to the set E(C) of the complex projective points on the homogenized curve

Y 2Z = 4X3 − g2XZ
2 − g3Z

3, where the lattice points are the points going
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to infinity on the curve. Namely, we have a map

Φ: C/Λ −→ E(C)

0 + Λ 7→ (0, 1, 0)

z + Λ 7→ (℘(z), ℘′(z), 1)

and it is easy to see that it is a bijection. Now we introduce the notion of

elliptic curve over C.

An elliptic curve over C is a cubic projective curve, defined over C, given

by the equation

E : Y 2Z = 4X3 + a2XZ
2 + a3Z

3, a2, a3 ∈ C. (1)

Sometimes we write the equation in its non-homogeneous form, namely

E : Y 2 = 4X3 +a2X+a3. The equation (1) or its non-homogeneous form will

be referred to as the Weierstrass equation. We say that E is non-singular

if the cubic polynomial on the right-hand side has three distinct roots, i.e.

its discriminant ∆ = a3
2 − 27a2

3 6= 0. The set of the complex projective points

on the curve is denoted by E(C).

Let Pz = Φ(z+Λ) denotes a generic point in E(C). We can use the one-to-one

correspondence Φ to define a commutative group law on E(C), namely for

any z1 + Λ, z2 + Λ in C/Λ, we can define

Pz1 + Pz2 = Pz1+z2 .

In this way we obtain an addition law that has two remarkable properties:

first, there is a geometric interpretation for adding points on an elliptic curve

and second, we can express the coordinates of Pz1+z2 as rational functions of

the coordinates of Pz1 and Pz2 .

In this way, Φ defines an analytic group isomorphism between the complex

torus C/Λ and the elliptic curve E(C) defined by the equation Y 2 = 4X3 −
g2(Λ)X − g3(Λ). It follows that for any complex torus C/Λ there exists

an elliptic curve E(C) such that C/Λ ∼= E(C). A result known as the

Uniformization Theorem say us that the converse holds as well: in fact

for any elliptic curve given by an equation E : Y 2 = 4X3 + a2X + a3, there
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exists a lattice Λ such that a2 = −g2(Λ), a3 = −g3(Λ) and C/Λ is isomorphic

to E(C) via Φ. The Uniformization Theorem allows us to treat complex

analytic objects, like complex tori, and algebraic objects, like elliptic curves,

in the same manner. So, the term “(complex) elliptic curve” can be used as

synonym of “complex torus”.

We are interested in class-isomorphism of elliptic curves. If Λ and Λ′ are two

lattices, then there exists an analytic group homomorphism from C/Λ to

C/Λ′ if and only if there exists a non-zero element m ∈ C such that mΛ ⊆ Λ′

and such homomorphism is an isomorphism if and only if mΛ = Λ′. It follows

that if Λ = [ω1, ω2] is a lattice and if Λτ denotes the lattice of the form [τ, 1],

then C/Λ ∼= C/Λτ , with τ = ω1/ω2. Therefore for every lattice Λ there exists

another one of the form Λτ = [τ, 1] for some τ ∈ C with Im(τ) > 0 such that

C/Λ ∼= C/Λτ . Moreover if Λ = [ω1, ω2] and Λ′ = [ω′1, ω
′
2] are two lattices,

then Λ = Λ′ if and only if there exists M =
(
a b
c d

)
∈ SL2(Z) such that(

ω′1
ω′2

)
= M

(
ω1

ω2

)

where SL2(Z) denotes the modular group

SL2(Z) =

{(
a b

c d

)
∈M2(Z) | ad− bc = 1

}
.

Combining these two results we can show that for any τ, τ ′ ∈ C with positive

imaginary part, C/Λτ ∼= C/Λτ ′ if and only if there exists a matrixM ∈ SL2(Z)

such that
(
τ ′
1

)
= M ( τ1 ). The last condition can be rewritten by saying that

there exist integers a, b, c, d such that ad− bc = 1 and τ ′ = aτ+b
cτ+d .

This fact motivates the definition of an action of SL2(Z) on the upper half

plane H = {z ∈ C | Im(z) > 0}. The modular group acts on H through

fractional linear transformations as follows:

Mz =
az + b

cz + d
, M =

(
a b

c d

)
∈ SL2(Z), z ∈ C.

In Chapter 2 we introduce the main results about this group action and

about the action of some subgroups of SL2(Z) on H. Let N be a positive
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integer. The principal congruence subgroup of level N is

Γ(N) =

{(
a b

c d

)
∈ SL2(Z) |

(
a b

c d

)
≡

(
1 0

0 1

)
(mod N)

}
.

(The matrix congruence is interpreted entrywise.) A subgroup Γ of SL2(Z) is

a congruence subgroup of level N if Γ(N) ⊆ Γ for some N ∈ Z+. The

most important congruence subgroups are

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z) |

(
a b

c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)

}

and

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z) |

(
a b

c d

)
≡

(
1 ∗
0 1

)
(mod N)

}

satisfying

Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z).

The results in Chapter 1 show that every τ ∈ H determinates an elliptic

curve E(C) ∼= C/Λτ . However the choice of τ is not unique, but E(C) ∼=
C/Λτ

∼= C/Λτ ′ if and only if there exists a matrix M ∈ SL2(Z) such

that τ ′ = Mτ . This fact motivates the definition of an equivalence relation

between elements on H under the action of SL2(Z). We say that two points

τ, τ ′ ∈ H are equivalent relative to the modular group SL2(Z) or

SL2(Z)-equivalent if there exists a matrix M ∈ SL2(Z) such that τ ′ = Mτ .

We write τ ∼ τ ′.

“∼” defines an equivalence relation and the set of all equivalence classes is

denoted by

Y (1) = SL2(Z) \ H,

to indicate that SL2(Z) acts on H on the left. So Y (1) is the quotient space

of orbit under SL2(Z) and it is a modular curve. Since Mτ = (−M)τ ,

sometimes the equivalence relation is defined with respect to the quotient

PSL2(Z) = SL2(Z)/{±I}. This group acts faithfully on H. Clearly we can

generalize this definition for any congruence subgroup Γ of SL2(Z). The
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modular curve Y (Γ) for Γ is defined as

Y (Γ) = Γ \ H = {Γz | z ∈ H}.

and the special cases of modular curves for Γ0(N),Γ1(N) and Γ(N) are

denoted by

Y0(N) = H/Γ0(N), Y1(N) = H/Γ1(N), Y (N) = H/Γ(N).

We have seen that every class-isomorphism of elliptic curves corresponds to

a point on Y (1). The modular curves for congruence subgroups generalize

this fact: the quotients of the upper half plane by congruence subgroups can

be described by the sets of equivalence classes of elliptic curves enhanced

by corresponding torsion data. The most important examples are discussed

in Section (2.3) and we refer to it for details. A significant part of Chapter

2 is devoted to the proof of the fact that modular curves can be viewed

as Riemann surfaces that can be compactified. Besides being a remarkable

result, this fact allows us to study some important aspects of the action of

the modular group and of its subgroups on H. In particular we introduce the

concept of cusps, the points that we need to add to Y (Γ) to compactify it.

The formal construction of these points is the following. We start to define

the extended half plane as the union of H and a copy of the projective line

over Q, i.e.

H∗ = H ∪ P1(Q).

The set {(s : 1) | s ∈ Q} can be identified with Q, while the point (1 : 0) is

the point at infinity, which we identify with “i∞”. We can extend the action

of SL2(Z) on all H∗. To do this, let M ∈ SL2(Z) and (s : t) ∈ P1(Q). We

define

M(s : t) = (as+ bt : cs+ dt) ∈ P1(Q), M =

(
a b

c d

)
.

This action is consistent with the previous definition of the action of SL2(Z)

in H. In fact, by the identification (s : 1) = s ∈ Q, if cs+ d 6= 0 we obtain

M(s : 1) = Ms = (as+ b : cs+ d) = (
as+ b

cs+ d
: 1) =

as+ b

cs+ d
∈ Q,
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while, if cs+ d = 0, we obtain M(s : 1) = (1 : 0) = i∞ and similarly, for the

point at infinity we have

M(1 : 0) = (a : c) =

a
c ∈ Q if c 6= 0

∞ if c = 0.

Let Γ be a congruence subgroup of SL2(Z). The quotient X(Γ) = H∗/Γ
is called the modular curve for Γ. The elements in X(Γ) that have a

representative in P1(Q), i.e. the points Γz with z ∈ P1(Q), are called the

cusps. As we have said, these points allow us to compactify the modular

curve Y (Γ), and we note that we have just added only finitely many points. In

fact the modular curve X(1) has one cusp and for any congruence subgroup

Γ of SL2(Z), the modular curve X(Γ) has finitely many cusps.

Chapter 3 gives the basic definitions and the main results of modular forms

which are complex analytic functions on the upper half-plane that are “es-

sentially invariant” under the action of the modular group, in a sense that

we explain hereinafter.

For any matrix M =
(
a b
c d

)
∈ SL2(Z) define the factor of automorphy

j(M, z) ∈ C for z ∈ H to be j(M, z) = cz + d, and for any integer k define

the weight-k operator [M ]k on functions f : H → C by

(f [M ]k)(z) = j(M, z)−kf(Mz), z ∈ H.

Since the factor of automorphy is never zero or infinity, f and f [M ]k have

the same zeros and poles. Let Γ be a congruence subgroup of SL2(Z). A

meromorphic function f : H → C is weakly modular of weight k with

respect to Γ if

f [M ]k = f for all M ∈ Γ.

When Γ = SL2(Z) we simply say that f is weakly modular of weight k.

Necessary and sufficient condition for f to be weakly modular of weight k

with respect to Γ is that this transformation law holds when M is each of the

generators of Γ. In particular, since the modular group SL2(Z) is generated
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by the two matrices

T =

(
1 1

0 1

)
and S =

(
0 −1

1 0

)

which correspond to the transformations z 7→ z + 1 and z 7→ −1/z, a

function f is weakly modular of weight k if and only if f(z + 1) = f(z) and

f(−1/z) = zkf(z). In particular f is Z-periodic. We also observe that that

if M = −I, then we obtain f = (−1)kf and so the only weakly modular

function of any odd weight k is the zero function.

Now we want to introduce the concept of “holomorphy at i∞”. We have

just seen that a weakly modular function f is Z-periodic. Let D be the

open complex punctured unit disk, i.e. D = {z ∈ C | |z| < 1} \ {0}. Recall

that the Z-periodic holomorphic map z 7→ q = e2πiz takes H to D. Thus,

corresponding to f , the function g : D → C where g(q) = f(log(q)/2πi) is

well defined even though the logarithm is only determinated up to 2πiZ, and

f(z) = g(e2πiz). If f is holomorphic on H then g is holomorphic on D, and

so g has a Laurent expansion g(q) =
∑

n∈Z anq
n for q ∈ D. Define f to be

holomorphic at i∞ if g can be extended holomorphically to the unit disk,

i.e. the Laurent series sums over n ∈ N. This means that f has a Fourier

expansion

f(z) =

∞∑
n=0

anq
n, q = e2πiz.

Since q → 0 if and only if Im(z)→∞, to show that a weakly modular form

f is holomorphic at i∞ it suffices to verify that limIm(z)→∞f(z) exists or

even just that f(z) is bounded as Im(z)→∞.

Let k be an integer. A function f : H → C is a modular form of weight

k if

1. f is holomorphic on H;

2. f is weakly modular of weight k;

3. f is holomorphic at i∞.

The set of modular forms of weight k forms a complex vector space which
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is denoted by Mk(SL2(Z)). A cusp form of weight k is a modular form of

weight k whose Fourier expansion has leading coefficient a0 = 0, i.e.

f(z) =
∞∑
n=1

anq
n, q = e2πiz.

The complex vector subspace of cusp forms is denoted by Sk(SL2(Z)).

We can define modular forms with respect to a congruence subgroup Γ in

a similar way. Since Γ contains Γ(N) for some N , Γ contains a translation

z 7→ z + h, i.e. an element of the form(
1 h

0 1

)
,

for some minimal h > 0 (note that h may properly divide N). If f : H → C
is weakly modular with respect to Γ, then f is hZ-periodic and thus has

a corresponding function g : D → C where again D is the open complex

punctured unit disk, but now we have f(z) = g(qh), with qh = e2πiz/h. As

before, if f is also holomorphic on the upper half plane then g is holomorphic

on D and so it has a Laurent expansion. Define such f to be holomorphic

at i∞ if g extends holomorphically to q = 0. Thus f has a Fourier expansion

f(z) =

∞∑
n=0

anq
n
h , qh = e2πiz/h.

A function f : H → C is a modular form of weight k with respect to

Γ if

1. f is holomorphic on H;

2. f is weakly modular of weight k with respect to Γ;

3. f [M ]k is holomorphic at i∞ for all M ∈ SL2(Z).

If in addition

4. a0 = 0 in the Fourier expansion of f [M ]k for all M ∈ SL2(Z),
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then we say that f is a cusp form of weight k with respect to Γ. The

set of modular forms of weight k with respect to Γ forms again a complex

vector space which is denoted by Mk(Γ), while the vector subspace of the

cusp forms of weight k with respect to Γ is denoted by Sk(Γ).

Note that if f is weakly modular of weight k with respect to a congruence

subgroup Γ, then for any M ∈ SL2(Z), f [M ]k is weakly modular of weight

k with respect to M−1ΓM , which is again a congruence subgroup, and

the condition (3) make sense. Moreover conditions (3) and (4) give us the

holomorphy at the cusps in terms of holomorphy at ∞ in a natural way via

the [M ]k operators. For this reason we sometimes say that f is holomorphic

at the cusps and vanishes at the cusps respectively.

An important example of modular forms are the Eisentein series. We have

seen that if Λ is a lattice, the series

Gk(Λ) =
∑
ω∈Λ∗

1

ωk

appears in the Laurent expansion at the origin of ℘Λ. For any lattice of the

form Λz = [z, 1] for some z ∈ H, we set

Gk(z) = Gk(Λz) =
∑

(0,0)6=(c,d)∈Z2

1

(cz + d)k
.

This series defines a modular form of weight k for SL2(Z). The Fourier

expansion of Gk(z) is

Gk(z) = 2ζ(k) + 2
(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

where ζ denotes the Riemann zeta function and the nth-coefficient is the

arithmetic function

σk−1(n) =
∑

m|n,m>0

mk−1.

We can normalize the Eisenstein series by dividing by 2ζ(k). We obtain the
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normalized Eisenstein series

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

whose Fourier expansion at infinity has the constant term equal to one and

the other coefficients equal to rational numbers with a common denominator.

Another important example of modular form is the discriminant function. It

is defined as

∆ : H → C, ∆(z) = g3
2(z)− 27g2

3(z).

where

g2(z) = 60G4(z), and g3(z) = 140G6(z).

The discriminant function is a cusp form of weight k and it has no zeros

on H. There is a useful result that allow us to study the vector spaces of

modular forms and to compute the dimension formulas forMk(SL2(Z)). Let

f be a weakly modular function of weight k for SL2(Z). For any τ ∈ H, let

vτ (f) denote the order of zero or minus the order of pole of f at the point τ .

Let v∞(f) denote the index of the first non-vanishing term in the Fourier

expansion of f . Then

v∞(f) +
1

2
vi(f) +

1

3
vµ3(f) +

∑
τ∈SL2(Z)\H, τ 6=i,µ3

vτ (f) =
k

12

(With τ ∈ SL2(Z) \ H, τ 6= i, µ3, we means that the sum is taken over all

points τ ∈ H modulo SL2(Z), not in the orbit of i or µ3.) This formula has

an important consequence. For any even integer k we have

1. The only modular forms of weight 0 for SL2(Z) are constants, i.e.

M0(SL2(Z)) = C;

2. Mk(SL2(Z)) = 0 if k < 0 or k = 2;

3. Mk(SL2(Z)) is one-dimensional, generated by Ek (i.e. Mk(SL2(Z)) =

CEk), if k =4,6,8,10 or 14;

4. Sk(SL2(Z)) = 0 if k < 12 or k = 14; S12(SL2(Z)) = C∆ and for k > 14,

Sk(SL2(Z)) = ∆Mk−12(SL2(Z));

5. Mk(SL2(Z)) = Sk(SL2(Z))⊕ CEk for k > 2.
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6. The dimension of Mk(SL2(Z)) as a C-vector space is finite and it is

given by

dimC(Mk(SL2(Z))) =


0 if k < 0 or k is odd;[
k
12

]
if k ≥ 0, k ≡ 2 (mod 12)[

k
12

]
+ 1 otherwise

where [x] denotes the floor function. Moreover, for all integers k there

exists an isomorphism of C-vector spaces

M2k−12(SL2(Z))−̃→S2k(SL2(Z)) f(z) 7→ ∆(z)f(z)

and in particular

dimC(S2k(SL2(Z))) = dimC(M2k−12(SL2(Z))).

In Chapter 4 we study the Hecke operators. Historically, this operators

were used by Mordell in 1917 to prove that the Ramanujan τ function

is a multiplicative function. Mordell used this operators in a paper on the

special cusp form of Ramanujan, ahead of the general theory given by Hecke

(1937). There are several ways to define the Hecke operators: in this thesis,

we define them as double coset operators. For any Γ1 and Γ2 congruence

subgroups of SL2(Z) and for any A ∈ GL+
2 (Q) we define the double coset

as the set

Γ1AΓ2 = {M1AM2 |Mi ∈ Γi}.

The group Γ1 acts on the double coset by left multiplication, so we can

write Γ1AΓ2 as a disjoint union of its orbits Γ1Bj , for some representatives

Bj = M1,jAM2,j . Moreover for each B ∈ GL+
2 (Q) and k ∈ Z we can define

the weight-k operator on functions f : H → C by

(f [B]k)(z) = det(B)k−1j(B, z)−kf(Bz), z ∈ H

where the factor of automorphy j(B, z) and the action of GL+
2 (Q) on H are

defined as in the case of the modular group SL2(Z), i.e.

Bz =
az + b

cz + d
, j(B, z) = cz + d, for all B =

(
a b

c d

)
∈ GL+

2 (Q).
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The weight-k Γ1AΓ2 double coset operator on Mk(Γ1(N)) is given by

f [Γ1AΓ2]k =
∑
j

f [Bj ]k

where {Bj} are orbit representatives for Γ1AΓ2. The double coset operator

is well defined since the set {Bj} is finite and the definition is independent

from the choice of this set.

The double coset operator takes modular forms with respect to Γ1 to modular

forms with respect to Γ2 and takes cusp forms into cusp forms:

[Γ1AΓ2]k :Mk(Γ1)→Mk(Γ2)

and

[Γ1AΓ2]k : Sk(Γ1)→ Sk(Γ2).

We are interested in Hecke operators from Mk(Γ1(N)) to itself. The first

type of Hecke operator we consider is the diamond operator. Let d be an

integer such that GCD(N, d) = 1. The diamond operator on Mk(Γ1(N)) is

given by

〈d〉 f = f [M ]k for any M =

(
a b

c δ

)
∈ Γ0(N) with δ ≡ d (mod N).

The definition of the diamond operator can be extended for all n by defining

〈n〉 to be the zero operator if GCD(n,N) > 1 or n = 0. For all n,m ∈ Z we

have 〈nm〉 = 〈n〉 〈m〉 = 〈m〉 〈n〉.

The second type of Hecke operators is again an operator on Mk(Γ1(N)). Let

p be prime. The Tp operator is defined as

Tp = [Γ1(N)
(

1 0
0 p

)
Γ1(N)]k :Mk(Γ1(N))→Mk(Γ1(N)).

We can extend the definition of Tp to Tn for all n ∈ Z. First set T1 = Id.

Then for any prime powers, we define inductively

Tpr = TpTpr−1 − pk−1 〈p〉Tpr−2 , for r ≥ 2.

Since TprTps = TpsTpr for distinct primes and for any r, s ≥ 1, it is well
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defined for all n ∈ Z

Tn =
m∏
i=1

Tpeii
where n = pe11 · ... · p

em
m .

Clearly TmTn = TnTm and in particular, Tnm = TnTm if GCD(m,n) = 1.

We see that we can endow the space of cusp forms with an inner product.

For any congruence subgroup Γ ⊆ SL2(Z), the Petersson inner product

〈· , ·〉Γ : Sk(Γ)× Sk(Γ)→ C

is given by

〈f, g〉Γ =
1

VΓ

∫
X(Γ)

f(z)g(z)Im(z)kdµ(z).

The Hecke operators 〈n〉 and Tn on Sk(Γ1(N)) are normal for GCD(n,N = 1).

From the Spectral Theorem of linear algebra, given a commuting family

of normal operators on a finite-dimensional inner product space, the space

has a orthogonal basis of simultaneous eigenvectors for the operators. Thus

we have that the space Sk(Γ1(N)) has an orthogonal basis of simultaneous

eigenforms for the family of Hecke operators {〈n〉 , Tn | GCD(n,N) = 1},
where by an eigenform for an Hecke operator T we mean a cusp form

f ∈ Sk(Γ1(N)) such that f is an eigenvector for T .

Now let d,N be integers, with d | N . Note there is a natural inclusion

Sk(Γ1(Nd )) ⊆ Sk(Γ1(N)), but there is another way to embed Sk(Γ1(nd )) into

Sk(Γ1(N)). In fact if we set

Md =

(
d 0

0 1

)
∈ GL+

2 (Q),

then we have an injective linear map from Sk(Γ1(Nd )) to Sk(Γ1(N)):

[Md]k : Sk(Γ1(
N

d
))→ Sk(Γ1(N)), f(z) 7→ (f [Md]k)(z) = dk−1f(dz).

We can distinguish the part of Sk(Γ1(N)) coming from lower levels and the

“new” one. For each divisor d of N , let id be the map

Sk(Γ1(
N

d
))× Sk(Γ1(

N

d
)) −→ Sk(Γ1(N))
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given by

(f, g) 7−→ f + g[Md]k.

The subspace of old forms at level N is

Sk(Γ1(N))old =
∑
p|N

ip(Sk(Γ1(
N

p
))× Sk(Γ1(

N

p
)))

and the subspace of new forms at level N is defined as

Sk(Γ1(N))new = (Sk(Γ1(N))old)⊥,

i.e. the orthogonal complement of the subspace of old forms with respect to

the Petersson inner product. A Hecke eigenform or simply an eigenform

is a non-zero modular form f ∈ Mk(Γ1(N)) that is an eigenform for the

operators Tn and 〈n〉 for all n ∈ Z+. We say that f =
∑

n≥0 an(f)qn is

normalized when a1(f) = 1. A newform is a normalized eigenform in

Sk(Γ1(N))new.

We conclude the Chapter by proving one of the most important results

about the theory of the Hecke operators. Recall that the space Sk(Γ1(N))

has an orthogonal basis of simultaneous eigenforms for the family of Hecke

operators {〈n〉 , Tn | GCD(n,N) = 1}. We see that we can eliminate the

restriction GCD(n,N) = 1 for Sk(Γ1(N))new. In fact if f ∈ Sk(Γ1(N))new

is a non-zero eigenform for the Hecke operators Tn and 〈n〉 for all n with

GCD(n,N) = 1, then f is a Hecke eigenform and it is a newform up to a

suitable scalar multiple. Moreover the set of newforms is an orthogonal basis

for the space Sk(Γ1(N))new. Each such newform has the property that its

Fourier coefficients are its Tn-eigenvalues. That is, every newform satisfies

Tnf = an(f)f for all n ∈ Z+.

In Chapter 5 we explain some applications of modular forms and Hecke

operators. We prove two results concerning the Ramanujan τ function,

which is an arithmetic function that, in the early twentieth century, evoked

the curiosity of the great Indian mathematician Srinivasa Ramanujan. He

proved or conjectured many of its properties and that is why this function is
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named after him. This function is defined by the following identity:∑
n≥1

τ(n)qn = (2π)−12∆(z).

In other words, τ(n) is defined to be the nth-coefficient in the Fourier

expansion of (2π)−12∆(z). The first property that we prove is a famous

congruence due to Ramanujan in 1916:

τ(n) ≡ σ11(n) (mod 691).

The second property of the τ function was proved by Mordell in 1917. By

using the theory of the Hecke operators he proved that the τ function is a

multiplicative function, i.e.

τ(mn) = τ(m)τ(n) if GCD(m,n) = 1.

There are some outstanding problems concerning the τ function. The most

famous is the Lehmer’s conjecture, which postulates that τ(n) 6= 0 for all n ∈
N. This assertion was conjectured by D.H. Lehmer in 1947 and it was verified

by Derickx, van Hoeij, and Zeng for all n < 816212624008487344127999.

The last part of the thesis hints at the role of elliptic functions and modular

forms in the proof of Fermat’s last theorem. In 1994, Andrew Wiles proved a

result known as the Taniyama-Shimura-Weil conjecture or the modularity

theorem. This theorem states a strong link between elliptic curves and

modular forms and it is certainly one of the most important results in

Number Theory: to one hand the Taniyama-Shimura-Weil conjecture implies

the Fermat’s last theorem, whose proof turned out inaccessible even to the

greatest mathematicians for over three centuries; to the other hand this result

says us that the elliptic curves and the modular forms are closely related.

The fact that the theory of elliptic curves and modular forms has allowed us

to solve such an important problem, as Fermat’s Last Theorem is, gives us

hope that these tools can be useful in the future to penetrate through the

most insidious problems of Number Theory.
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