UNIVERSITÀ DEGLI STUDI "ROMA TRE" CORSO DI STUDI IN MATEMATICA IN3 - TEORIA DELL'INFORMAZIONE – A.A. 2008-2009

M. PEDICINI

ESONERO DEL 16/06/2009 – TEMPO 2H00 APPELLO A DEL 16/06/2009 – TEMPO 3H00

COGNOME	NOME	MATRICOLA
		QUESITI A SCELTA IN OGNUNA DELLE DUE
PARTI; PER L'ESONE	RO RISPONDERE AI TRE QUESITI	DELLA SECONDA PARTE.
	Prima pa	RTE
Esercizio 1. Comprin	ıere la seguente sequenza binaria u	ıtilizzando l'algoritmo di Lempel-Ziv:
	1001100011001010000101101110	01101100100111010101111
1	101011001000010100110000011	1111101111001001001101.
Esercizio 2. Calcolare	arepsilon la distribuzione congiunta $p(X,Y)$	Y) che ha le seguenti distribuzioni marginali
	$p(X) = \{2/3$	1, 1/3
e		
	$p(Y) = \{1/4$	$,3/4\}$
e massimizza $H(X,Y)$).	
Esercizio 3. Determin	nare il codice duale del codice di Ha	amming $H(7,4)$.
	Seconda p	ARTE
Esercizio 4. Sia BEC	$C(f)$ un canale binario con cancell ϵ	azione (dove f è la probabilitá di cancellazione).
(1) Scrivere la mai (2) Calcolare la ca	trice delle probabilità di transizione pacità del canale;	otag Q associata a BEC(f);
(3) Concatenare due canali e calcolare la capacità del canale composto $BEC^2(f)$;		
	pacità $BEC^n(f)$ ottenuto concate	
(5) Calcolare il lin	iite della capacità di $BEC^n(f)$ per	$n \to \infty$.
Esercizio 5. Sia $\rho(X,$	$Y) := H(X Y) + H(Y X) \operatorname{dimo}$	strare che $ ho$ soddisfa le seguenti proprietà:
a) definita positiva: ρ (/	
b) simmetrica: $\rho(x,y)$		v) > o(oo v)
, ,	glianza triangolare: $ ho(x,y) + ho(y,y)$	
invitre, posto $X = Y$ s	e esiste una vijezione tra i aue inst	iemi allora dimostrare che vale anche la proprietà:

d) riflessiva: $\rho(x,y) = 0$ se e solo se x = y; ovvero $\rho(X,Y)$ è una metrica.

Dimostrare infine che

e) $\rho(X,Y) = 2H(X,Y) - H(X) - H(Y)$.

Esercizio 6. Sia C_1 un codice lineare (n_1, k_1, d_1) su F, e sia C_2 un codice lineare (n_2, k_2, d_2) su F. Si consideri il codice

$$C = \{(y, x + y) | x \in C_1, y \in C_2\}.$$

(la notazione (n_i, k_i, d_i) indica la lunghezza n_i delle parole codice, k_i la lunghezza in bit del segnale, la distanza minima d_i tra due parole codice).

Dimostrare che se C_1 ha matrice generatrice G_1 e C_2 ha matrice generatrice G_2 allora C ha matrice generatrice

$$G = \left(\begin{array}{cc} 0 & G_1 \\ G_2 & G_2 \end{array}\right)$$

(per chiarezza, la convenzione adottata è che il prodotto $v \cdot G$ fornisce la codifica di v).