
Sequential and Parallel Abstract Machines for
Optimal Reduction

Marco Pedicini1, Giulio Pellitta2, and Mario Piazza3

1 Department of Mathematics and Physics, University of Roma Tre
Largo San Leonardo Murialdo 1, 00146 Rome, Italy

marco.pedicini@uniroma3.it
2 Department of Computer Science and Engineering, University of Bologna

Mura Anteo Zamboni 7, 40126 Bologna, Italy
pellitta@cs.unibo.it

3 Department of Philosophy, University of Chieti-Pescara
Via dei Vestini 31, 66013 Chieti, Italy

m.piazza@unich.it

Abstract. In this paper, we explore a new approach to abstract ma-
chines and optimal reduction through streams, ubiquitary objects in
mathematics and computer science. We first define a sequential abstract
machine capable of performing directed virtual reduction (DVR) and
then we extend it to its parallel version, whose equivalence is explained
through the properties of DVR itself. The result is a formal definition of
PELCR, a software for λ-calculus reductions based on the Geometry of
Interaction. In particular, we describe PELCR as a stream-processing ab-
stract machine, which in principle can also be applied to infinite streams.

1 Introduction

Starting from the pioneering work of Peter Landin [11] abstract machines de-
scribing the implementations of functional languages have been conceived of as
bridges between a high-level language and a low-level architecture [10,1]. On the
side of logic, the Curry-Howard isomorphism guarantees a direct correspondence
between typed λ-calculus and constructive logic, so that concepts like λ-terms
and formal proofs turn out to be different representations of the same mathe-
matical objects: cut-elimination on proofs, indeed, may be regarded as identical
to β-reduction on λ-expressions. This means that abstract machines can be de-
scribed in mathematical terms as executions of programs. In particular, some
abstract machines [12,3] have been proposed as a tool for studying the theory
and implementation of optimal reduction of λ-calculus: these are the machines
based on Geometry of Interaction (GoI), a mathematical framework developed
by J.-Y. Girard in order to provide a semantics of linear logic and to model the
dynamics of cut-elimination [7,9].

In this paper, we explore a new approach to abstract machines and optimal
reduction through streams, ubiquitary objects in mathematics and computer
science. We begin by designing a sequential abstract machine which performs

directed virtual reduction (DVR) [5], that is a variant of virtual reduction (VR)
[6], which realises optimal reduction in a fine-grained way. More precisely, VR
is a local and confluent reduction on graphs whose elementary computational
step consists of adding to the graph (representing the state of the computa-
tion) new edges representing composed paths. In this way, an “algebraic trace”
of the performed compositions is stored on the current graph without useless
(re)compositions. On the other hand, DVR is a variant of VR which exploits
the original algebraic machinery of GoI, by removing the added part of the
algebra introduced in [6], and still manages to avoid recompositions.

Then, we proceed to extend the machine for DVR to its parallel version, so as
to obtain the formal definition of the PELCR (Parallel Environment for optimal
Lambda-Calculus Reduction) engine [13]. Because in all the considered cases
the computation is based on GoI, within which computation is naturally parallel
and confluent, the normal form resulting from the execution turns out to be the
same across abstract machines characterized by different degrees of parallelism:
sequential, parallel synchronous, parallel asynchronous. Whereas the sequential
machine is very close to the definition of DVR (half-combustion strategy for
DVR, indeed [13, §4]), its parallel version may correspond to the computation of
different patterns of execution. In this case, we prove the soundness of parallel
execution with respect to the sequential case. What we obtain in this paper is
mainly an abstract setting for formally expressing the parallelism introduced
in PELCR; the principal advantage resides in the possibility of giving a formal
definition of different choices of the parallel execution model, so as to compare
these models in a uniform setting. This kind of analysis will impact PELCR
itself, leading also to an in-deep analysis of the parallel execution also from a
quantitative point of view on many different models of machines [16].

This paper is organized as follows. In Section 2 we present PELCR as a device
for optimal reduction, providing the basics notions and examples that will be
useful in the sequel. In Section 3, we discuss Parallel Abstract Machine distin-
guishing between synchronous and asynchronous parallel machines. In Section 4,
we sketch the soundness of the parallel computation with respect to the sequen-
tial one.

2 PELCR as a device for optimal reduction

We begin by defining the virtual machine employed in the implementation of the
parallel evaluator. We describe the half-combustion virtual machine (hc-vm, for
short) as an abstract computational device evaluating the execution formula in
the sense of the GoI. This sequential machine realises the graph reduction intro-
duced in [5], namely DVR. It is worth noting that with respect to other graph
reduction techniques in optimal reduction, like in Asperti’s BOHM [3], DVR
yields a less synchronised computation, becoming a good candidate for parallel
implementation. Moreover, with respect to VR, DVR permits to compute the
same result by extending the algebraic structure of the GoI. In particular, the
half-combustion strategy in DVR allows us to tackle the problem of recompo-

sition by means of Girard’s dynamic algebra [7] (at the price of (re)introducing
a bit of synchronisation in execution). As for the soundness of this system, the
reader is referred to [5,13]. Being the basic one, the abstract machine without
parallelism is taken as the starting point for presenting parallel versions.

An essential part of the algebraic computation peculiar to DVR lies on the
notion of free inverse semigroup generated by a set. We introduce the basic
algebraic structure with a property of normal form at the heart of DVR:

Definition 1. Let M be a monoidal algebra with identity element 1 (i.e., 1 ⋅a =
a ⋅ 1 = a, for any a ∈M). M is a dynamic monoid if M is such that

– there exists 0 ∈M s.t. 0 is an absorbing element for product (i.e., 0 ⋅a = a ⋅0 =
0, for any a ∈M);

– M is endowed with an inversion operator (⋅)∗ (an involutive antimorphism
for 0,1 and product, that is 0∗ = 0, 1∗ = 1 and (a∗)∗ = a and (ab)∗ = b∗a∗,
for any a, b ∈M).

Definition 2. Let M be a dynamic monoid. Let a, b non-zero elements of M :
we say that b∗a has a (or can be rewritten in) stable form if there exist a′, b′ ∈M
(uniquely determined by a, b) s.t. b∗a = a′b′∗.

In fact, Girard’s dynamic algebra Λ∗ is a dynamic monoid generated by mul-
tiplicative (p and q) and exponential constants (xi for some i), endowed with a
morphism denoted by !. We skip the details on the complete definition of dynamic
algebra which is indeed specified by an additional set of equations to be satis-
fied by elements of Λ∗. For any exponential constant xi, a non-negative integer
lift(xi) which represents the difference between the box-depth of a dereliction
link and the pax link corresponding to a given exponential variable, [4].

Let us introduce a basic example based on (untyped) λ-calculus:

Example 1. In Fig. 1, we give an example built from the pure λ-term representing
the self application ∆ = λx.xx applied to the term I = λx.x. Although this term
cannot be directly typed, its representation in pure proof nets conforms to a
representation in the GoI which leads to the following interpretation of the term
(∆I) given as a matrix in the GoI, the matrix can be also considered as an
incidence matrix of a graph (the so called virtual-net [6, §6]):

[ax]1 [ax]2 [ax]3 [ax]4 [cut]1 [t]1

[ax]1 ⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 qx2 + qx1q 0 ⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

[ax]2 0 0 0 0 qx1p + p 0
[ax]3 0 0 0 0 q!q + q!p 0
[ax]4 0 0 0 0 p 1
[cut]1 x∗2q

∗ + p∗x∗1q∗ p∗x∗1q∗ + p∗ (!q∗)q∗ + (!p∗)q∗ p∗ 0 0
[t]1 0 0 0 1 0 0

The matrix representation is redundant (the matrix is in some sense symmetric
aij = a∗ji, in some model for Λ∗ we would say hermitian) and sparse. This draw-
back was one motivation in Danos and Regnier’s paper [6] for considering virtual
reduction using a graph as a notation for the sparse matrix. Thus our example
becomes a graph where nodes are axioms, cuts and conclusions (terminal nodes):

V = {[ax]1, [ax]2, [ax]3, [ax]4, [cut]1, [t]1}

[t]1

λ

[ax]4

[ax]3

@

[cut]1

λ

@

[ax]2

[ax]1

(a) sharing graph

⊗

[ax]1 [ax]2

?

`

`

[ax]4

!

[cut]1

⊗

[ax]3

[t]1

(b) proof net

Fig. 1. translations of the lambda term (∆I)

and edges ((vt, vs),w) get a weight w ∈ Λ∗ where vt is the target node and vs is
the source node. In this example, the “sparse” representation, consisting of the
list of edges with a non-null weight, is more compact:

E = {(([cut]1, [ax]1), qx1q), (([cut]1, [ax]1), qx2),
(([cut]1, [ax]2), qx1p), (([cut]1, [ax]2), p), (([cut]1, [ax]3), q!q),

(([cut]1, [ax]3), q!p), (([cut]1, [ax]4), p), (([t]1, [ax]4),1)}.

In what follows we denote the GoI interpretation of a lambda term M with
[M], thus in the example above [(∆I)] = E. For the sake of conciseness, we
gave an example of GoI interpretation in the case of a very simple lambda term.
To have a complete account of interpretation of lambda terms as proof nets and
of proof nets as GoI graphs, we refer the reader to [14,6].

2.1 Half-combustion machine

Now, we present the machine which is crucial for the later introduction of paral-
lelism, by giving a new formal setting to express DVR as a computing device. In
a way already in the spirit of “virtual machines” we reformulate the processing
unit from the point of view of a universal device which consumes a pipeline of
elementary instructions, while producing further instructions to be processed.

current graph/state of the machine

vt

v1 v2 v3 vm

w1 w2 w3 wm

pending actions

vt

vs

w

The elementary step of computation consisting in performing a step of half-
combustion by following the definition in terms of DVR is described in [13]: and
it can be thought as the effect of an action performed by the machine when a
pending edge arrives and has to be processed: the edge α = ((vt, vs),w) acts

on its context which is given by edges β1, . . . , βm insisting on the node vt, with
weights w1, . . . ,wm, as in Fig. 2a.

For any βi such that we get a stable form a′b′∗ of b∗a different from 0,
where a′ is the residual of a = w and b′ is the residual of b = wi, we obtain one
corresponding pair of residual edges

αi = ((vi, v′i), a′) and β′i = ((vs, v′i), b′) (1)

where v′i are new nodes to be added to G, as in Fig. 2b. The set of all residual
edges originated by α is therefore the set

X ⊂ {α1, β
′

1, . . . , αm, β
′

m}. (2)

Note that the number of residual pairs is possibly lower than the number of
edges in the context. Indeed, for some of the βi there is no stable form.

vs vt

v1

v2

v3

vm

vs v′3

v1

v2

v3

vm

v′1

v′2

v′m

w

w1

w2

w3

wm

w′3 w3

w′1

w1

w′2

w2

w′m

wm

(a) the edge α and its context (b) the set X of residuals of α

Fig. 2. Half-combustion: the action of the edge α on its context.

We have that the abstract machine performing the basic computational task
can be described as the edge α acting on the graph G which produces a modified
graph G′ and a new computational task represented by the residuals X:

α.G→ (X,G′). (3)

In the next example, we show a few steps of DVR on the Example 1.

Example 2. We start with the empty graph G0 = (∅,∅) and the sequence of
actions given by the GoI interpretation of the lambda term:

[(∆I)].G0 = (([cut]1, [ax]1), qx1q).(([cut]1, [ax]1), qx2).
.(([cut]1, [ax]2), qx1p).(([cut]1, [ax]2), p).(([cut]1, [ax]3), q!q).

.(([cut]1, [ax]3), q!p).(([cut]1, [ax]4), p).(([t]1, [ax]4),1).G0

After the first actions are consumed without giving rise to residuals, we get
a reduced sequence of actions and the expanded graph:

(([cut]1, [ax]1), qx1q).(([cut]1, [ax]1), qx2).
(([cut]1, [ax]2), qx1p).(([cut]1, [ax]2), p).G4

where G4 = (V4,E4) with V4 = {[t]1, [ax]4, [cut]1, [ax]2} and

E4 = {(([t]1, [ax]4),1), (([cut]1, [ax]4), p),
(([cut]1, [ax]3), q!p), (([cut]1, [ax]3), q!q)}.

Then, we execute (([cut]1, [ax]2), p).G4, that is the product of its weight p against
q!p, q!q and p: in the first two cases (by following the rules in Λ∗) we have no
residuals, but, in the third case, since p∗p = 1, we have two residuals with weight
1 for both of them, common source node, a new one v0 and pointing to [ax]2 and
to [ax]4. Therefore, X = {α′, β′} where β′ = (([ax]4, v0),1) and α′ = (([ax]2, v0),1).

The sequence of actions X is concatenated to the actions that have to be
applied to the graph: so that the updated situation is

(([ax]4, v0),1).(([ax]2, v0),1).
(([cut]1, [ax]1), qx1q).(([cut]1, [ax]1), qx2).(([cut]1, [ax]2), qx1p).G5

where G5 = (V5,E5) with V5 = V4 ∪ {[ax]2} and E5 = E4 ∪ {(([cut]1, [ax]2), p)}.
This shows that in general we have a sequence S of pending actions insisting

on a graph G and we get the first action α of S and if α.G = (X,G′) then we

perform the transition S.G
HC→ X.(S′.G′) where S = α ∶∶ S′.

In order to process in parallel we need a further setting for performing infinite
computations on infinite sequences. We will show that the data structure repre-
senting streams provide effective means to express the GoI machine implemented
in [13] in terms of an abstract machine on streams of elementary actions [15].
This machine will be exploited in next sections to formally express and study
the parallel algorithm behind PELCR. An action can be viewed as the atomic
amount of information needed to perform a step of half-combustion, namely:

– the polarity of the edge: any edge in the graph represents a half of a straight
path. Therefore, we know from [13, §3] that all the paths incident on the same
node form two orthogonal sets, such that residuals of orthogonal paths are
still orthogonal. We use this property to reduce the number of null products
by assigning an initial positive or negative polarity to edges and propagating
this information to residuals during execution;

– its topological description (as a pair of nodes): any edge is specified by a
pair of nodes whose addresses are given in a global virtual format. The two
nodes give the routing information towards the processing units which hosts
the physical memory of the target node containing the context information
for the action. The source node of the edge is also an information on the
processing unit hosting the node which is used as target node of the residual
edges produced by a DVR step;

– its algebraic description (as a weight in the dynamic algebra, Λ∗): the weight
is taken in Girard’s dynamic algebra.

Polarization induces a bi-partition of edges co-inciding on the same node v
in two sets of edges with the same polarity, we denote the two sets by v+ and v−

accordingly to their respective polarities.

Note that polarities are assigned to be opposite in corresponding pair of
residual edges choosing any possible orientation for the new source node v′i in
Equation 1:

αi = ((vi, (v′i)
ε), a′) and β′i = ((vs, (v′i)

−ε), b′).
Example 3. The edges of Example 1 can be decorated with polarities:

E = {(([cut]1, [ax]1−)−, qx1q), (([cut]1, [ax]1+)−, qx2),
(([cut]1, [ax]2−)−, qx1p), (([cut]1, [ax]2+)−, p), (([cut]1, [ax]3−)+, q!q),

(([cut]1, [ax]3+)+, q!p), (([cut]1, [ax]4−)+, p), (([t]1, [ax]4+),1)}.

2.2 Actions

Now let us define the set of actions employed in the stream oriented virtual
machine corresponding to PELCR implementation. The idea is that a partial
graph can be described as follows:

Definition 3 (PELCR Actions). Given a dynamic graph G, which is a graph
G = (V,E ⊂ V ×V) with edges labeled on Girard’s dynamic algebra Λ∗, we define
an action α on G as ⟨ε, e,w⟩ where ε ∈ {+,−}, e = (vt, vs) is a pair of nodes in
G and w ∈ Λ∗.

We define the abstract machine performing DVR, starting from the basic
computational task α.G→ (X,G′), as in Equation 3. Our description is reminis-
cent of the usual definition of SECD machines employed to give the operational
semantics of λ-calculus. The result α.G of the execution of the action α on the
dynamic graph G is a set X and an updated dynamic graph G′. Residual actions
are then applied to the graph. In [6], the theory of virtual reductions was in-
troduced to optimize the execution order: the resulting calculus was a local and
asynchronous way to compute the GoI execution formula. That calculus was in
line with the theory of interaction nets and a strong confluence property was
showed: the algebraic modification was sufficient to keep coherent the compu-
tation. Since DVR is obtained as a special case of VR, we get the same strong
local confluence and after one step of computation, the generated residuals X
can be applied in any order to the graph, without affecting the result.

This fact is at the origin of the idea that the computational device can be
easily parallelised, and therefore it can be viewed at the origin of the implemen-
tation of PELCR itself [5,13]. In other words, we have that for any permutation
σ of m indices, if

αm.αm−1.α1.G0 → β1.βn.Gm

then there exists a permutation τ such that

ασm .ασm−1ασ1 .G0 → βτ1βτn .Gm.

Remark 1. Since in untyped λ-calculus a (normalizing) term may not have a
finite execution, in order to design a machine that can evaluate terms in parallel
(with two or more computational units exchanging data) we need to be able to
cope with an infinite output.

We therefore introduce the streams to model possibly infinite inputs.

2.3 Streams

Let A be any set. We avoid any assumption on A in this section. Yet in what
follows we use streams to distribute the computational load on many devices
and this means that we need to define streams of actions. So, we have to look
at A as the set of all possible actions the computational device can perform. For
the ease of exposition of the execution equivalence results given in Section 4,
we consider A as the set of formal sums of elements of A, in particular a null
element (the empty sum) 0, such that 0 + α = α.

Definition 4. A stream S on A is a sequence of elements of A. The set of all
streams is denoted by Aω. The element-wise sum S +T of two streams S and T
is given by the equation:

(S + T)(i) = S(i) + T (i), i = 0,1, . . . (4)

For any stream S we consider also the shift operation (also called derivative,
or tail) where we have

shift(S)(i) = S(i + 1) i = 0,1, . . . (5)

Thus, with no further ado, it follows that the stream nil is the neutral element
of the sum of streams. Another useful operation on streams is the addition of
an element as initial action of the stream:

Definition 5 (Append). For any α ∈ A and any stream S on A, we define the
stream α ∶∶ S by the following equation:

(α ∶∶ S)(0) = α, (α ∶∶ S)(i) = S(i − 1) i = 1,2, . . . (6)

Definition 6 (Zip). For any pair of streams S and T , we define the zip ⋉ the
stream obtained by intertwining of elements of the two streams:

(S ⋉ T)(i) = {S(i/2) if i (mod 2) ≡ 0
T ((i − 1)/2) if i (mod 2) ≡ 1

. (7)

Note that zip is not commutative.

Definition 7. A weak-bisimulation on A is a relation ρ ⊂ Aω ×Aω such that,
for all streams S and T on A, if (S,T) ∈ ρ then one of the following holds:

S(0) = T (0) and (shift(S),shift(T)) ∈ ρ; (8a)

S(0) = 0 and (shift(S), T) ∈ ρ; (8b)

T (0) = 0 and (S,shift(T)) ∈ ρ. (8c)

Definition 8. Two streams S and T defined on A are weakly-bisimilar, denoted
S ≈ T if there exists a weak-bisimulation ρ such that SρT .

2.4 Sequential Abstract Machine

In a way similar to that of classical SECD machines we define the state of the
machine in terms of four components:

– a stack S, which is used to store the current action. In fact it can be the
empty stack, ⟨⟩, or it can contain the next action acting on the graph ⟨α⟩;

– an environment E, is a node of the graph and it provides the local environ-
ment where the current action has to be performed;

– a control C is the stream of all actions either provided as initial input or
created during the execution of other actions, it has to be executed in the
context of the graph stored in the memory of the machine;

– a dump D corresponds to the current graph and represents the global envi-
ronment for all future actions.

The operations of this SECD machine may be defined by a state transition
function τ . We denote the empty dump (resp. a new/uninitialized node) with ∅
(resp. NULL).So, let us assume the machine in the state (S,E,C,D). Then, we ob-

tain the new configuration by applying transition (S,E,C,D) τ↦ (S′,E′,C ′,D′)
where the possible cases are:

0. The read() operation returns a stream of PELCR actions; typically read()
returns the GoI interpretation [M] of a λ-term M ; the initialisation is then

(⟨⟩,NULL,nil,∅) τ↦ (⟨⟩,NULL,read(),∅).

Nevertheless, we can initialise even with an “incorrect” stream provided by
the read() and processed by the machine, with maybe unpredictable results.

1. If the stack is empty:

(⟨⟩,NULL, α ∶∶ C ′,D) τ↦
⎧⎪⎪⎨⎪⎪⎩

(⟨α⟩,NULL,C ′,D) if α ≠ 0,

(⟨⟩,NULL,C ′,D) if α = 0.

2. If the stack is ⟨α⟩, where α = ⟨ε, (vt, vs),w⟩ and the environment vt is missing,
then

(⟨α⟩,NULL,C,D) τ↦ (⟨α⟩, vt,C,D′)
where

D′ =
⎧⎪⎪⎨⎪⎪⎩

D if vt already is a node of D,

D ∪ {vt} if vt is a new node to be added to D.

3. If we have an action in the stack and the corresponding node in the environ-
ment, we have

(⟨α⟩, vt,C,D) τ↦ (⟨⟩,NULL,C ′,D′)
where the dump D′ = D ∪ ((vt, vs)ε,w) and the stream C ′ is obtained com-
bining C with X, the set of residuals of the action α on its context v−εt :

C ′ =
⎧⎪⎪⎨⎪⎪⎩

C if X = ∅
C ⋉ execute(α) if X ≠ ∅

where execute(α) is defined as a finite stream obtained by concatenating in
some order the residuals in X.

Note that this definition implies that the computation never terminates. We
have a stream as an input to which we hook by means of an appropriate read()
operation. The processed stream produces a new stream. The behaviour of the
machine is the same whether the two streams are finite or not.

Definition 9. Given an action α, and the corresponding set of residuals X (as
in Equation (2)) we define the finite stream obtained rearranging actions in X
as execute(α) = streamset(X), where

streamset(X) =
⎧⎪⎪⎨⎪⎪⎩

σ ∶∶ streamset(X/σ) for some σ ∈X,

nil if X = ∅.

Remark 2. This non deterministic definition stems from one of the main features
of local and asynchronous execution introduced in virtual reductions: parallel
implementation can get rid of the typical confluence and synchronisation diffi-
culties in distributed systems since it is the algebraic machinery that ensures the
correctness of the computation.

3 Parallel Abstract Machine

We draw a distinction between synchronous and asynchronous parallel machines.
In the first case the computing units perform a step of computation at the same
time, the machines are clock synchronised and the computation proceeds on
all machines. In the asynchronous computation one machine can perform many
steps of computation while other machines perform one single step. In this second
case we consider a scheduler which decides which is the current unit.

3.1 Synchronous Case

A parallel machine is given by k computing units structured as a vector of k dis-
tinct SECD structures. For the sake of simplicity, but without loss of generality,
we define the basic case with k = 2. The state of the machine is therefore repre-
sented by (S,E,C,D) = (S1 ⊗ S2,E1 ⊗E2,C1 ⊗C2,D1 ⊗D2). The synchronous
model of execution makes the machine step into the computational cycle in a
synchronous way:

0. Initialization step reading the input stream is performed on the first unit:

(⟨⟩⊗⟨⟩,NULL⊗NULL,nil⊗nil,∅⊗∅) τ↦ (⟨⟩⊗⟨⟩,NULL⊗NULL,read()⊗nil,∅⊗∅).

1. Retrieve actions from the streams:

(⟨⟩⊗ ⟨⟩,NULL⊗ NULL, α1 ∶∶ C ′

1 ⊗ α2 ∶∶ C ′

2,D1 ⊗D2)
τ↦

(⟨α1⟩⊗ ⟨α2⟩,NULL⊗ NULL,C ′

1 ⊗C ′

2,D1 ⊗D2)

2. Prepare the two environments for the actions in the stacks:

(⟨α1⟩⊗ ⟨α2⟩,NULL⊗ NULL,C1 ⊗C2,D1 ⊗D2)
τ↦

τ↦ (⟨α1⟩⊗ ⟨α2⟩, v1 ⊗ v2,C1 ⊗C2,D
′

1 ⊗D′

2)

where

vi =
⎧⎪⎪⎨⎪⎪⎩

vit if αi = ⟨εi, ei,wi⟩ and ei = (vit, vis)
NULL if αi = 0

and

D′

i =
⎧⎪⎪⎨⎪⎪⎩

Di if vit already is a node of Di,

Di ∪ {vit} if vit is a new node to be added to Di.

3. Let actions act on the state:

(⟨α1⟩⊗ ⟨α2⟩, v1t ⊗ v2t ,C1 ⊗C2,D1 ⊗D2)
τ↦

(⟨⟩⊗ ⟨⟩,NULL⊗ NULL, ((C1 ⋉ execute1(α1)) ⋉ execute1(α2))⊗
⊗ ((C2 ⋉ execute2(α1)) ⋉ execute2(α2)) ,D′

1 ⊗D′

2)

where executei(αj) is the stream obtained by selecting from execute(αj) the
residual actions with the target node allocated on the computing unit i. If
αi = 0, then the execute(0) is undefined and therefore it is not added to
the corresponding Ci. When the set of residuals is empty execute(α) is the
stream nil and it is not added to the corresponding Ci. The graph Di is then
transformed by adding the edge ((vit, vis)εi),wi) to the graph Di.

Remark 3. 1. The computation of the stream executei(αj) is performed by the
j-th computing unit, but the stream is zipped to the stream Ci on the i-th
computing unit: this leads to the communication of residual actions towards
their respective computing units.

2. Residuals are computed on the i-th computing unit performing the action
αi in the context vit ∈Di. They are new actions containing edges with target
node vis and with source node a newly created node v = new(). Note that
both nodes can belong to either D1 or D2. The new node v can be allocated
to any computing unit depending on the chosen load balancing strategy,
whereas vis is hosted by the unit decided once it was created as a source
node of some residual action.

3.2 Asynchronous Case

In the asynchronous case one deals with modeling the behaviour of the parallel
machine when the execution steps are not performed at the same time on all
computing units. This model is realised through an asynchronous scheduling
mode which rules the order of execution. Like in the synchronous case, it suffices
to give the definition in the case of two computational units.

Let us consider a parallel machine with two computing units (the general
case, with k units, is a direct extension of this one), whose state is therefore
represented by (p,S,E,C,D) = (p,S1 ⊗ S2,E1 ⊗ E2,C1 ⊗ C2,D1 ⊗ D2) where
p ∈ {1,2}. The asynchronous model of execution makes the machine to step
in the computational cycle in an independent way. We add a control p which
represents the computing unit which has to perform the next computational
step. Then the machine by itself has the following update rules, where the next
scheduled unit p′ is randomly chosen with uniform probability in {1,2}:

0. Initialization step reading the input stream is performed on the first unit:

(1, ⟨⟩⊗ ⟨⟩,NULL⊗ NULL,nil⊗ nil,∅⊗∅) τ↦
τ↦ (p′, ⟨⟩⊗ ⟨⟩,NULL⊗ NULL,read()⊗ nil,∅⊗∅)

1. If the current stack is empty (Sp = ⟨⟩), the current environment Ep is NULL,
and the current stream is Cp = αp ∶∶ C ′

p, then

(p,S,E,C,D) τ↦ (p′, S′1 ⊗ S′2,E′

1 ⊗E′

2,C
′

1 ⊗C ′

2,D1 ⊗D2)

where S′i =
⎧⎪⎪⎨⎪⎪⎩

Si if i ≠ p
⟨αi⟩ if i = p

, E′

i = Ei, C ′

i = Ci if i ≠ p.

2. If an action is in the current stack (Sp = ⟨αp⟩) and the corresponding envi-
ronment is not yet retrieved (Ep = NULL) then we distinguish two cases:

(a) if we got a null action in the current stack αp = 0 then we

(p,S,E,C,D) τ↦ (p′, S′1 ⊗ S′2,E1 ⊗E2,C1 ⊗C2,D1 ⊗D2)

where S′p = ⟨⟩ and we leave the rest unchanged.
(b) in the second case if αp = ⟨εp, ep,wp⟩, then the transition is

(p,S,E,C,D) τ↦ (p′, S′1 ⊗ S′2,E′

1 ⊗E′

2,C
′

1 ⊗C ′

2,D
′

1 ⊗D′

2)

where E′

i =
⎧⎪⎪⎨⎪⎪⎩

Ei if i ≠ p
vpt if i = p

S′i = Si, C ′

i = Ci and

D′

i =
⎧⎪⎪⎨⎪⎪⎩

Di if i ≠ p or i = p and vpt already is a node of Dp,

Di ∪ {vpt } if i = p and vpt is a new node to be added to Dp.

3. Finally, if the stack contains a non-null action Sp = ⟨α⟩p, αp = ⟨εp, ep,wp⟩
and the environment is retrieved Ep = vpt then

(p,S,E,C,D) τ↦ (p′, S′1 ⊗ S′2,E′

1 ⊗E′

2,C
′

1 ⊗C ′

2,D
′

1 ⊗D′

2)

where

S′i =
⎧⎪⎪⎨⎪⎪⎩

Si if i ≠ p
0 if i = p

E′

i =
⎧⎪⎪⎨⎪⎪⎩

Ei if i ≠ p
NULL if i = p

C ′

i = Ci ⋉ executei(αp)
and the graph D′

i =Di for all i ≠ p while D′

p is obtained from Dp by adding

the edge ((vpt , vps)
εp ,wp). Note that like in previous cases if the set of residual

actions to be addressed to the stream Ci is empty the zip is not considered
and we put C ′

i = Ci.

The sequence of controls p is by itself a stream (of integers {1,2}). In place of
a random sequence we may force a particular scheduling by fixing the sequence.

Remark 4. By choosing the scheduling constant to 1, we have the sequential
machine. Moreover, if we fix the round-robin scheduling 1,2,1,2, . . . which al-
ternates the computing unit 1 with the second one, we have the correspondence
with the synchronous model.

4 Execution equivalence

In this section we sketch the soundness of the parallel computation with respect
to the sequential one. We assume the soundness of the sequential machine by
definition of DVR (hc-vm is sound with respect to computing of the execution
formula of lambda terms) and we get the soundness of the parallel version by
showing that for any input stream obtained by the read() operation at step
0 of the parallel and of the sequential machines, we have the same sequence
of computational steps, executed by both the machines (up to zero steps or
reordering of residuals of computational steps).

Let us introduce the notion of node-view (or view of base v) of a stream of
actions S:

Definition 10. Given a stream of actions S and a node v, the polarised view
of base vε is defined by selecting actions with target node v and opposite polarity
with respect to the polarity of the base. Namely:

Svε =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if S = 0

S(0) ∶∶ (shift(S))vε if S(0) = ⟨−ε, (v, vs),w⟩
(shift(S))vε otherwise

We define also the view of base v as Sv = Sv+ ⋉ Sv− .

We have a notion of equivalence of the states of two machines

Definition 11. Let A = (S1,E1,C1,D1) (resp. B = (S2,E2,C2,D2)) a state of
a machine M1 (resp. M2), we say that the state A is equivalent to the state B
(let us denote this state equivalence by A ≃σ B) whenever

1. D1 and D2 are isomorphic graphs, i.e., we have an isomorphism of graphs
φ ∶D1 →D2, and

2. for any node v ∈D1 we have equivalent views on the controls (the two streams
of actions) when taking v and its corresponding node φ(v), (C1)v ≈ (C2)φ(v),
and

3. the current action S1 is isomorphic with S2 (i.e., , S2 = φ(S1)).

Lemma 1. ≃σ is an equivalence relation.

Proof. Trivial: ≃σ is the intersection of two equivalence relations.

Note that the view of base v of multiple streams (like in the case of parallel
machines) is a stream since it results that the base v possibly belongs to at most
one of the dumped graphs. Another important fact is that:

Lemma 2. Any action on the polarised view of base vε, Svε is originated by
actions acting on the same node.

The lemma is a consequence of the Definition 10. Nevertheless, this property
is not sufficient to guarantee the state equivalence of the resulting graph after
the execution of a single action.

A node in the dumped graph whitout incident actions is called a ghost node
[13, §3]. Edges pointing to ghost nodes are ghost edges. Let the valence of a node
be the number of non ghost edges exiting this node.

Definition 12. The combustion strategy [5, §4.1] chooses a node of valence 0
and performs all the possible actions on that node.

On the other hand the correctness of the execution is guaranteed by two
facts:

1. full combustion of a node is correct because it is equivalent to a particular
synchronisation strategy of directed virtual reduction;

2. half-combustion is a less synchronous version of full-combustion, therefore
it permits to execute actions in a different order, by choosing (zero-valence)
nodes in any order.

We provide here an analog proof of correctness in the setting of abstract ma-
chines. First, we define a particular synchronisation of the sequential machine:
this synchronisation gives us a machine which implements full combustion. Then,
we show that the machine implements an asynchronous version of full combus-
tion.

To introduce full combustion we need to consider nodes which appear as
target node in actions, while not appearing in the dumped graph: we have that
residuals of any action have, by definition, fresh source nodes in the graph, and
these nodes are added to the dumped graph only when a (first) action is executed
on that node. We call such a node (existing as a target node of actions but not in
the dumped graph) s-node (spiritual node); on the other hand, since no action
can occur on a ghost node, it can be safely removed from the dumped graph
D (which is not used in this version of the machine). The full combustion (cf.
Proposition 12) processes all the actions in a view of base v before focusing on
another node.

Definition 13. Let us denote by v.M the full action of v on the machine M as
follows:

1. for some v let us consider the view of base v, and let us suppose that Cv ≠ 0,
and reordering of actions σ

(0,NULL, σ(C ′ ⋉Cv),D) τ↦ (Cv, ({v},∅),C ′,D),

2. then repeat the following step until S′ is the empty stream:

(α ∶∶ S′,E,C,D) τ↦ (S′, ({v}, Y ∪ {((v, vs)ε,w)}),C ⋉ execute(α),D)

where E = ({v}, Y), α = ⟨ε, e,w⟩ and the edge is e = (v, vs).

By means of full combustion we are in position to prove that full combustion
implemented in the parallel case is equivalent to sequential full combustion:

Theorem 1. Given a (sequential) machine M1 and a (parallel) machine M2

such that M1 ≃σ M2 by the isomorphism φ, then we have that v.M1 ≃σ φ(v).M2.

Proof. If we consider an s-node v, and we compute the residuals of the view of
base v, i.e. residuals obtained by processing actions in Sv, then we get the com-
plete set of residuals relative to the node v, indicated withXv = ⋃α∈Sv execute(α);
it is worth noting that after this step of computation v becomes a ghost node.
The set Xv contains residuals for any pair of actions with opposite polarities
which appears in Sv: the order of execution is immaterial since any pair is used
exactly once, and any single action is unaffected after the use. What remains
modified by the ordering of the steps of computation is the way used to mix
the streams obtained by the residuals of any action with the total stream of
actions. These residuals, in fact, modify the views with base in the source nodes
appearing in the performed actions.

5 Conclusions

We have outlined a stream-based description of PELCR, thus highlighting the
message interchange mechanism at the base of the parallel executions of terms
with PELCR. Although there exists implementations of functional languages
which are generally more efficient in the sequential case, PELCR can execute
those jobs whose huge size is made impossible to handle on sequential machines.
Parallel implementations of optimal reductions are tricky, insofar as without op-
timization they are not particularly efficient. Moreover, most of the significant
optimizations only work in the sequential case, like in Asperti’s implementation
[2] (cf. §2), based on safe operators, which employs a sequential safe-tagging
algorithm. PELCR’s ability to dynamically distribute the workload among the
available processors exposes intrinsic parallelism of programs at hand (thus re-
quiring no annotation from the programmer). Starting from this work, we plan
to conduct a quantitative analysis of the behaviour of PELCR when executed on
parallel and distributed architectures.

References

1. Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. Distilling abstract
machines. In Proceedings of The 19th ACM SIGPLAN International Conference
on Functional Programming, 2014.

2. Andrea Asperti and Juliusz Chroboczek. Safe operators: Brackets closed forever
optimizing optimal lambda-calculus implementations. Appl. Algebra Eng. Com-
mun. Comput., 8(6):437–468, 1997.

3. Andrea Asperti, Cecilia Giovanetti, and Andrea Naletto. The Bologna Optimal
Higher-order Machine. Journal of Functional Programming, 6(6):763–810, 1996.

4. V. Danos and L. Regnier. Proof-nets and the hilbert space. In Advances in Linear
Logic, pages 307–328. Cambridge University Press, 1995.

5. Vincent Danos, Marco Pedicini, and Laurent Regnier. Directed virtual reductions.
In Computer science logic (Utrecht, 1996), volume 1258 of Lecture Notes in Com-
put. Sci., pages 76–88. Springer, Berlin, 1997.

6. Vincent Danos and Laurent Regnier. Local and asynchronous beta-reduction (an
analysis of Girard’s execution formula). In Proceedings of the Eighth Annual IEEE
Symposium on Logic in Computer Science (LICS 1993), pages 296–306. IEEE Com-
puter Society Press, June 1993.

7. Jean-Yves Girard. Geometry of interaction I. Interpretation of system F. In Logic
Colloquium ’88 (Padova, 1988), volume 127 of Stud. Logic Found. Math., pages
221–260. North-Holland, Amsterdam, 1989.

8. Jean-Yves Girard. Geometry of interaction II. Deadlock-free algorithms. In
COLOG-88 (Tallinn, 1988), volume 417 of Lecture Notes in Comput. Sci., pages
76–93. Springer, Berlin, 1990.

9. Georges Gonthier, Mart́ın Abadi, and Jean-Jacques Lévy. The geometry of op-
timal lambda reduction. In Conference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
15–26, Albequerque, New Mexico, 1992.

10. J. Roger Hindley and Jonathan P. Seldin. Introduction to combinators and λ-
calculus, volume 1 of London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, 1986.

11. Peter J. Landin. The mechanical evaluation of expressions. Computer Journal,
6(4):308–320, January 1964.

12. Ian Mackie. The geometry of interaction machine. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
198–208. ACM, 1995.

13. Marco Pedicini and Francesco Quaglia. PELCR: parallel environment for optimal
lambda-calculus reduction. ACM Trans. Comput. Log., 8(3):Art. 14, 36, 2007.

14. Laurent Regnier. Lambda-calcul et réseaux. PhD thesis, Paris 7, 1992.
15. J.J.M.M. Rutten. A tutorial on coinductive stream calculus and signal flow graphs.

Theoretical Computer Science, 343(3):443 – 481, 2005.
16. Leslie G. Valiant. A bridging model for multi-core computing. J. Comput. System

Sci., 77(1):154–166, 2011.

	Sequential and Parallel Abstract Machines for Optimal Reduction

