
Stream Abstract Machines:
Parallel and Non-deterministic

execution

Marco Pedicini (Roma Tre University)
in collaboration with Mario Piazza (Univ. of Chieti-Pescara)

XXVI Incontro dell’Associazione Italiana di Logica e
sue Applicazioni

Università di Padova, 25 — 28 Settembre 2017



Implementation of lambda-calculus
reduction

• Optimal reduction was introduced in J.J. Levy’s PhD Thesis in
1978 and defined (by means of sharing graphs) by J. Lamping in
1990.

• Geometry of Interaction was introduced by J.-Y. Girard in 1985.

• In 1992, M. Abadi, J. Gonthier and J.-J. Levy made a link
between optimal reduction and Geometry of Interaction.

• Virtual Reduction (Danos-Regnier 1993) is a way to make GoI
close to optimal implementation.

• Directed Virtual Reduction (Danos-Pedicini-Regnier 1997) is a
modification of the VR to ease implementation.

• PELCR (Pedicini-Quaglia 2007) is a complete implementation
which permits parallel execution on multi-core machines.

• Stream Abstract Machines introduced in (Lai-Pedicini-Piazza
2015).



Abstract Machines

We have one machine, that is a computational unit with a
memory;

• memory is a local and finite internal state;
• communication channel from which it receives

instructions.

From the communication channel we expect an infinite stream,
since it can be the result of a previous (non terminating)
execution, since a machine is built to wait the next instruction...



Stream

A stream is a sequence of actions σ : N→ A:

. . . α2α1α0

The space of actions A will be specified; the idea is to tailor it
on what the machine has to compute.

In general, we will have a program P , and its interpretation [P ]
which is a stream of actions.



Execution

The machine acts by processing actions one by one:
• the first action is retrieved from the stream;
• the action itself represents the instruction to modify the

state of the machine;
• it produces new residual actions which are reinjected in

the communication channel.
It looks like an interpreter, or an operating system: the
computational unit expects an infinite sequence of instructions,
when new instructions are injected in the machine they are
processed, if no instruction is waiting then the machine loops in
idle state.



Parallelism
We can split the computation on multiple units:

• each unit has its own state,
• each action has to be directed to the unit hosting the state

information required to perform the instruction.
• at the end, at the price of making actions a little bit

complicated, we gain independence from execution
order.

This is the power of logic: this kind of computation is possible
thanks to the linear logic machinery:

proof nets and geometry of interaction

whose outcome is a local and asynchronous graph reduction
technique.



Non-determinism

A machine with multiple unit executes in parallel by dynamic
decomposition of the state, in such a way that the whole
memory is distributed on multiple units:

it is an adaptive strategy: when executing an action, its
residuals are relocated on different units in such way that

computational load is kept balanced.

The same mechanism enables a kind of non-determinism: the
execution of the superimposition of two programs, can be
concurrently obtained by injecting the merged stream:

[P1 ⊕ P2] = [P1] n [P2]



Probabilistic execution

Since execution is kept local we can weight by probabilities the
two programs and assign machine time in accord to
probabilities:

[pP1 ⊕ (1− p)P2], where 0 ≤ p ≤ 1

The resulting stream is the superposition of the two stream,
actions coming from the execution of the first stream appear
with probability p and the ones coming from P2 with probability
1− p.



GOI as a Graph Reduction Technique

• The configuration at a given moment of the computation is
represented by a pair:

• the machine state which is a finite object: the dynamic
graph

• and the stream of pending actions.

• Any machine transition is obtained by applying an action
α to the current graph G, from which we get a pair

α.G → (∆α,G ∪ {α}).

∆α = {α1, β
′
1, . . . , αm, β

′
m} is a set of residual actions to be

added to pending actions and G ∪ {α} is the updated dynamic
graph.



Machine Transition
One step of execution:

Let α :: S be the stream of pending actions, so that the couple
(α :: S,G) denotes the current configuration. The transition
associated to the action α ∈ A is then

(α :: S,G)
τα→ (S n ∆α,G ∪ {α})

that is, residual actions ∆α are injected into the list of pending
actions.

The basic computational step is borrowed from half-combustion
strategy of DVR it includes a symbolic computation in the
algebraic structure associated to the graph (the dynamic
monoid) and it is a generalisation of the algebraic computations
at the base of Geometry of Interaction.



A computation

The memory of the machine is initialized with an empty graph,
so that the execution of a terminating program on the abstract
machine is represented by the finite sequence of transitions

(S0, ∅)
τα0−→ (S1,G1)

τα1−→ · · ·
ταn−1−→ (Sn,Gn)

ταn−→ (∅,Gn+1)

where αi ∈ S i for all i = 0, . . . ,n. Note that the initial action set
S0 = [P ] is the interpretation of the program, and the final
graph Gn+1 represents the result of the evaluation.

In general, the execution of the machine may not terminate and,
consequently, be represented by a possibly infinite sequence of
elementary steps.



Example: (∆I)

⊗

[ax ]1 [ax ]2

?

`

`

[ax ]4

!

[cut ]1

⊗

[ax ]3

[t ]1



GoI interpretation

The matrix with entries in the Girard dynamic algebra:



[ax]1 [ax]2 [ax]3 [ax]4 [cut]1 [t]1
[ax]1 0 0 0 0 qx2 + qx1q 0
[ax]2 0 0 0 0 qx1p + p 0
[ax]3 0 0 0 0 q!q + q!p 0
[ax]4 0 0 0 0 p 1
[cut]1 x ∗2 q∗ + q∗x ∗1 q∗ p∗x ∗1 q∗ + p∗ (!q∗)q∗ + (!p∗)q∗ p∗ 0 0
[t]1 0 0 0 1 0 0





The corresponding graph

Nodes are axioms, cuts and conclusions (terminal nodes):

V = {[ax]1, [ax]2, [ax]3, [ax]4, [cut]1, [t]1}

and edges ((vt , vs),w ) get a weight w ∈ Λ∗ where vt is the
target node and vs is the source node. In this example, the
“sparse” representation, consisting of the list of edges with a
non-null weight, is more compact:

E = {(([cut]1, [ax]1),qx1q), (([cut]1, [ax]1),qx2), (([cut]1, [ax]2),qx1p),

(([cut]1, [ax]2),p), (([cut]1, [ax]3),q!q), (([cut]1, [ax]3),q!p),

(([cut]1, [ax]4),p), (([t]1, [ax]4),1)}.




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Sequential Abstract Machine
The fetch-decode-execute loop of the machine:

((POP; NENV)∗; POP; ENV; HC)∗

ENV
(〈α〉,NULL,S,G) α 6= 0

(〈α〉, target(α),S,G ∪ {target(α)})

POP
(〈〉,NULL, α :: S,G)

(〈α〉,NULL,S,G)

NENV
(〈α〉,NULL,S,G) α = 0

(〈〉,NULL,S,G)

HC
(〈α〉, target(α),S,G)

(〈〉,NULL,S n execute(α),G ∪ {α})



Girard dynamic algebra Λ∗

The so-called Girard dynamic algebra Λ∗ is the dynamic monoid
generated by the constants p, q, and a family W = {wi}i of
exponential generators, with a morphism !(.), such that for any
u ∈ Λ∗:

(annihilation) x ∗y = δxy for x , y = p,q,wi ,
(swapping) !(u)wi = wi !

ei (u),

where δxy is the Kronecker operator,ei is an integer associated
with wi called the lift of wi , i is called the name of wi and we
often write wi ,ei to explicitly note the lift of the generator.
Notice that swapping and annihilation rules imply that for every
a,b ∈ Λ∗ either b∗a = 0 or it has a stable form, that is Λ∗

satisfies SF condition.



GOI Actions
An action α belongs to the set

A := (N × {+,−})2 × Λ∗ ∪ {0}.

Roughly speaking, α is either a labeled edge or a null action.
Labels are in Λ∗, the so-called Girard Dynamic Monoid, whose
product satisfies the decidable stable form condition and
may thus be expressed by two functions

A : Λ∗ → Λ∗

and
B : Λ∗ → Λ∗

giving the positive and the ∗ part of the stable form of a product;
N is a countable set of names, on which a function new()
providing a new fresh name (i.e., a reference to a node which is
in any graph) is defined.



Dynamic graphs

The dump component of a configuration is a polarised dynamic
graph:

G = (V ,E ),where V and E denote a set of nodes and a set of edges, respectively.

For nodes v ∈ V we have

h : V → N

and its inverse
ρ : N → V

which provide a reference corresponding to a node, and the
node identified by the name, respectively.



Labelled edges

Any edge of E labeled with a weight taken in Λ∗ and polarities
attached to source and target nodes:

((x εs , y εt ),w ) .

In what follows, we make reference to sequences of graphs
Gi = (Vi ,Ei ), each for any step of execution, and to a function ρ
providing a cumulated (in time) node reference ρ : N →

⋃
i Vi

and ρi : N → Vi , whenever we want to stress the specific graph
Gi .



Elementary computational step

The elementary computational step turns out to be the half
combustion of an action α with respect the current dump graph
Gi .

The function
HCi : A→ 2A,

and the evaluation HCi (α) which is a set of newly produced
actions;

α is an action,
α = ((x εs , y εt ),w )

where x , y ∈ N , εs , εt ∈ {+,−} and w ∈ Λ∗; y ∈ N , ρi : N → Vi
so that ρi (y ) ∈ Vi can be split in two parts according to the
target polarities of the edges pointing to it.



Polarised compositions

Let us denote y−εt = {β1, . . . βm} the set of edges pointing to y
with opposite target polarity with respect to εt , the target polarity
of α.
Any of the βi is an edge in a polarised dynamic graph, namely
βi = ((x εii , y

−εt ),wi ).



Persistent compositions
Then, for any pair βi we have that their composition hc(α, βi ) is
defined if

A(w ∗wi ) and B(w ∗wi )

are defined as well.

That is, w ∗wi 6= 0 and

hc(α, βi ) = {β′i , αi}

where z = new(),

αi = ((z+, x−εii ),A(w ∗wi ))

and
β′i = ((z−, x εii ),B(w ∗wi )).



Residual Edges

The set of residual edges with all the pairs such that

hc(α, βi )

is defined
RES(α) :=

⋃
βi

hc(α, βi )

and this set is applied in the rule HC to define the stream
execute(α) which is combined with the current stream S in the
current configuration (S n execute(α)).


	fd@rm@0: 


