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Implementation of lambda-calculus
reduction

• Optimal reduction was introduced in J.J. Levy’s PhD
Thesis in 1978 and defined (by means of sharing graphs)
by J. Lamping in 1990.

• Geometry of Interaction was introduced by J.-Y. Girard in
1985.

• In 1992, M. Abadi, J. Gonthier and J.-J. Levy made a link
between optimal reduction and Geometry of Interaction.

• Virtual Reduction (Danos-Regnier 1993) is a way to make
GoI close to optimal implementation.

• Directed Virtual Reduction (Danos-Pedicini-Regnier
1997) is a modification of the VR to ease implementation.

• PELCR (Pedicini-Quaglia 2007) is a complete
implementation which permits parallel execution on
multi-core machines.



Is a Graph Reduction Technique ?

• The machine state is represented by a pair:
• a dynamic graph
• a list of pending actions.

• Any machine transition is obtained by applying the action
α to the current graph G, from which we get a pair

α.G → (∆α,G ∪ {α}).

∆α = {α1, β
′
1, . . . , αm, β

′
m} is a set of residual actions to be

added to pending actions already in the state and G ∪ {α} is
the updated dynamic graph.



Machine Transition
More precisely:

Let A be the set of pending actions, so that the couple (A,G)
denotes the state of the machine. The transition associated to
the action α ∈ A is then

(A,G)
τα→ (A \ {α} ∪∆α,G ∪ {α})

that is, residual actions ∆α are added to the list of pending
actions.

The basic computational step is borrowed from half-combustion
strategy of DVR it includes a symbolic computation in the
algebraic structure associated to the graph (the dynamic
monoid) and it is a generalisation of the algebraic computations
at the base of Geometry of Interaction.



A computation

The memory of the machine is initialized with an empty graph,
so that the execution of a terminating program on the abstract
machine is represented by the finite sequence of transitions

(A0, ∅)
τα0−→ (A1,G1)

τα1−→ · · ·
ταn−1−→ (An,Gn)

ταn−→ (∅,Gn+1)

where αi ∈ Ai for all i = 0, . . . ,n. Note that the initial action set
A0 is the interpretation of the program, and the final graph Gn+1

represents the result of the evaluation.

In general, the execution of the machine may not terminate and,
consequently, be represented by a possibly infinite sequence of
elementary steps.



Non termination

When executing on parallel machines, the sequence of
residuals produced by non terminating execution on one
machine and directed to another one can be infinite.

To cope with this situation we adopt streams as data structures
for the pending actions.

Description of the Sequential Abstract Machine, whose setting
is reminiscent of SECD machines, employed to give the
operational semantics of λ-calculus.



A bridging model
We introduce a formal description for multicore “functional”
computation as a step to quantitatively study the behaviour
of the PELCR implementation.

As a starting poit we assume (what we already know) that
PELCR is sound as a “parallel” operational semantics, this
means that we do not care on reordering of actions since the
computation of the normal form by using Geometry of
interaction rules (shared optimal reduction) is local and
asynchroous.

Definition (PELCR Actions)

Given a dynamic graph G, which is a graph
G = (V ,E ⊂ V × V ) with edges labeled on the Girard dynamic
algebra Λ∗, we define an action α on G as 〈ε,e,w 〉 where
ε ∈ {+,−}2, e = (vt , vs) ∈ V 2 is an edge in G and w ∈ Λ∗.
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PELCR-VM
We describe the pelcr virtual machine (PVM) as an abstract
machine working on its state (C ,D).

• C contains the computational task: a stream of
closures (FIFO).

• A closure is a signed edge.
• A signed edge e is represented by a triplet
〈(εt , εs), (vt , vs),w 〉, where: εt , εs ∈ {+,−} are the target
and source polarities of e; vt , vs ∈ V are the target and
source nodes of e and can be considered as their memory
addresses; and w ∈ M is the label of e.

• D represents the current memory, and contains
environment elements.

• any environment element has a memory address ei and is
called node.

• memory at address ei contains signed edges.



Machine Representation

current graph/state of the machine

vt

v1 v2 v3 vm

w1 w2 w3 wm

pending actions

vt

vs

w

Girard dynamic algebra is traditionally used in the execution
formula of Geometry of Interaction, which is a power series of
matrices. Consequently Λ∗ is considered together with a formal
sum of its elements, and consequently it is a (monoid) algebra.



Girard dynamic algebra Λ∗

The so-called Girard dynamic algebra Λ∗ is the dynamic monoid
generated by the constants p, q, and a family W = {wi}i of
exponential generators, with a morphism !(.), such that for any
u ∈ Λ∗:

(annihilation) x ∗y = δxy for x , y = p,q,wi ,
(swapping) !(u)wi = wi !

ei (u),

where δxy is the Kronecker operator,ei is an integer associated
with wi called the lift of wi , i is called the name of wi and we
often write wi ,ei to explicitly note the lift of the generator.
Notice that swapping and annihilation rules imply that for every
a,b ∈ Λ∗ either b∗a = 0 or it has a stable form, that is Λ∗

satisfies SF condition.



Stable Form

For instance, setting a = w1,2 and b =!2q, by applying the
annihilation rule we get:

b∗a = (!2q)∗w1,2 =!(!q∗)w1,2 = w1,2!2(!q∗) = w1,2(!3q)∗ = a′b′∗

with a′ = a and b′ =!b.



Example: (∆)I

⊗

[ax ]1 [ax ]2

?

`

`

[ax ]4

!

[cut ]1

⊗

[ax ]3

[t ]1



GoI interpretation

The matrix with entries in the Girard dynamic algebra:



[ax]1 [ax]2 [ax]3 [ax]4 [cut]1 [t]1
[ax]1 0 0 0 0 qx2 + qx1q 0
[ax]2 0 0 0 0 qx1p + p 0
[ax]3 0 0 0 0 q!q + q!p 0
[ax]4 0 0 0 0 p 1
[cut]1 x ∗2 q∗ + q∗x ∗1 q∗ p∗x ∗1 q∗ + p∗ (!q∗)q∗ + (!p∗)q∗ p∗ 0 0
[t]1 0 0 0 1 0 0





The corresponding graph

Nodes are axioms, cuts and conclusions (terminal nodes):

V = {[ax]1, [ax]2, [ax]3, [ax]4, [cut]1, [t]1}

and edges ((vt , vs),w ) get a weight w ∈ Λ∗ where vt is the
target node and vs is the source node. In this example, the
“sparse” representation, consisting of the list of edges with a
non-null weight, is more compact:

E = {(([cut]1, [ax]1),qx1q), (([cut]1, [ax]1),qx2), (([cut]1, [ax]2),qx1p),

(([cut]1, [ax]2),p), (([cut]1, [ax]3),q!q), (([cut]1, [ax]3),q!p),

(([cut]1, [ax]4),p), (([t]1, [ax]4),1)}.



How to control reduction
In a way similar to that of classical SECD machines we define
the state of the machine in terms of four components:

• a stack S, which is used to store the current action;
• an environment E , is a node of the graph and it provides

the local environment where the current action has to be
performed;

• a control C is the stream of all actions either provided as
initial input or created during the execution of other actions,
it has to be executed in the context of the graph stored in
the memory of the machine;

• a dump D corresponds to the current graph and
represents the global environment for all future actions.

Transitions are therefore given as

(S,E ,C ,D)
τ7→ (S ′,E ′,C ′,D ′)



Full Combustion
0. If (S,E ,C ,D) = (〈〉,NULL,nil, ∅) then the machine is in its initial

state.
The initialisation step is

(〈〉,NULL,nil, ∅) τ7→

(〈〉,NULL, read(), ∅).
read() returns a stream of actions corresponding to the coding of

the input in the form of a polarised dynamic graph.
1. If v is a node and its view is not empty Cv 6= 0, we have a

reordering of actions σ such that C = σ(C ′ n Cv ) and
C ′ ≈ σ(C ′ n 0), then

(〈〉,NULL,C ,D)
τ7→ (Cv , ({v}, ∅),C ′,D)

2. If S = α :: S ′, E = ({v},Y ), and α = 〈(ε, εs), (v , vs),w 〉 then

(S,E ,C ,D)
τ7→ (S ′, ({v},Y ∪ {α}),C n executev (α),D),

3. When the stack is empty we set the environment to NULL:

(〈〉,E ,C ,D)
τ7→ (〈〉,NULL,C ,D)

and continue with step 1.
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Synchronous Machine

0 read from input stream

(0⊗ 0,NULL ⊗ NULL,nil⊗ nil, ∅ ⊗ ∅) 7→
(0⊗ 0,NULL ⊗ NULL, read()⊗ nil, ∅ ⊗ ∅)

1 actions α1 and α2 are synchronously extracted from
streams C1 and C2

(0⊗ 0,NULL ⊗ NULL, α1 :: C ′1 ⊗ α2 :: C ′2,D1 ⊗ D2) 7→
(α1 ⊗ α2,NULL ⊗ NULL,C ′1 ⊗ C ′2,D1 ⊗ D2)



Synchronous Machine (cont.)
3 simultaneous environment access for both actions:

(α1 ⊗ α2,NULL ⊗ NULL,C1 ⊗ C2,D1 ⊗ D2) 7→
(α1 ⊗ α2, v 1

t ⊗ v 2
t ,C1 ⊗ C2,D ′1 ⊗ D ′2)

when αi = 〈εi ,ei ,wi 〉 and either ei = (v i
t , v

i
s) or v i

t is
undefined if αi = 0 then

D ′i =

{
Di if v i

t already is a node of D i ,
Di ∪ {v i

t } if v i
t is a new node to be added to D i .

4 actions execution

(α1 ⊗ α2, v 1
t ⊗ v 2

t ,C1 ⊗ C2,D1 ⊗ D2) 7→
(0⊗0,NULL⊗NULL, ((C1 ⊗ execute1(α1))⊗ execute1(α2))⊗

⊗ ((C2 ⊗ execute2(α1))⊗ execute2(α2)) ,D ′1 ⊗ D ′2)

The graph D ′i = Di ∪ ((v i
t , v

i
s)εi ),wi ).



Aynchronous Machine

The state of the asynchronous machine is annotated with the
scheduled processing unit:

(p,S,E ,C ,D) = (p,S1 ⊗ S2,E1 ⊗ E2,C1 ⊗ C2,D1 ⊗ D2)

where p ∈ {1,2} is the order number of the scheduled
processor.

The sequence of controls p is by itself a stream (of integers
{1,2}). We may either choose a random sequence or we may
force a particular scheduling by explicitly giving it.



Asynchronous parallel SECD
0 reading from the input interface:

(1,0⊗ 0,NULL ⊗ NULL,nil⊗ nil, ∅ ⊗ ∅) 7→
(1,0⊗ 0,NULL ⊗ NULL, read()⊗ nil, ∅ ⊗ ∅)

1 action αp extraction from the stream Cp :

(p,S1 ⊗ S2,E1 ⊗ E2,C1 ⊗ C2,D1 ⊗ D2) 7→
(p′,S ′1 ⊗ S ′2,E

′
1 ⊗ E ′2,C

′
1 ⊗ C ′2,D

′
1 ⊗ D ′2)

if Sp = 0, Ep = NULL, Cp = αp :: C ′p then

S ′i =

{
Si if i 6= p
αi if i = p

E ′i = Ei , C ′i = Ci if i 6= p and D ′i = Di , finally p′ is taken in
accord to the scheduling function.



Asynchronous parallel SECD (cont.)
2 action αp ’s environment access:

(p,S1 ⊗ S2,E1 ⊗ E2,C1 ⊗ C2,D1 ⊗ D2) 7→
(p′,S ′1 ⊗ S ′2,E

′
1 ⊗ E ′2,C

′
1 ⊗ C ′2,D

′
1 ⊗ D ′2)

when Sp = αp = 〈εp ,ep ,wp〉, where

E ′i =

{
Ei if i 6= p
v p

t if i = p

S ′i = Si , C ′i = Ci and

D ′i =

{
Di if i 6= p or i = p and v p

t ∈ Dp ,
Di ∪ {v p

t } if i = p and v p
t 6∈ Dp .



Asynchronous parallel SECD (cont.)

3 action execution:

(p,S1 ⊗ S2,E1 ⊗ E2,C1 ⊗ C2,D1 ⊗ D2) 7→
(p′,S ′1 ⊗ S ′2,E

′
1 ⊗ E ′2,C

′
1 ⊗ C ′2,D

′
1 ⊗ D ′2)

when Sp = αp = 〈εp ,ep ,wp〉, Ep = v p
t , then

S ′i =

{
Si if i 6= p
0 if i = p

E ′i =

{
Ei if i 6= p
NULL if i = p

C ′i = Ci ⊗ executei (αp)

and the graph D ′i = Di for all i 6= p and D ′p is obtained from
Dp by adding the edge ((v p

t , v
p
s )

εp ,wp).



New ideas to extend the computation

The parallel machine can read from two different channels and
execute "in parallel" reading the interpretation of two terms:

(〈〉,NULL,nil, ∅) τ7→

(〈〉,NULL, read(0)⊕ read(1), ∅).

the only missing part is now the way we can read-back the two
results which are independently evaluated by the machine.

Execution in the asynchronous version can now be extended to
execute non-deterministic within a processor one of the two
terms, so schedules are of type p.b wher p is the processor
and b is one of the two subterms.
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