Attractors in synchronous and
asynchronous genetic
regulatory networks

Marco Pedicini (Roma Tre University)
in collaboration with Maria Concetta Palumbo (IAC-CNR),
Filippo Castiglione (IAC-CNR)

ITALIAN WORKSHOP ON ARTIFICIAL LIFE
AND EVOLUTIONARY COMPUTATION

2017 Edition - 19th-21st September 2017, Venice, ltaly



Networks and Graphs

» For Genetic Regulatory Networks various presentations
are possible:

* boolean networks,
+ polynomial dynamical systems,
+ activation/inhibition graphs.
For a fixed network R, we have to associate its dynamics
TR :S— S;
* For any R, the Ty determines the state transition graph

G(Tr) ={(s,8')|s" = Tr(s)}-



Networks Properties

Since Stuart Kauffman studies one relevant task in systems
biology consists in inferring properties of the STG starting from
the network and its dynamics.

The typical question is to characterise/find stability in the space
of the states:
+ point attractors: s € S such that Tgz(s) = s,

+ limit cycles: sy, sp,... 8¢ € S such that s;, 1 = Tg(s;), and
S1 = Sg.



Boolean Expressions

Let us consider a boolean regulatory network of 3 genes,
components are given as boolean expressions:

fi(x1, X2, X3) = ~X3 A\ (X1 V X2)
(X1, X2, X3) = X1 A\ X3
(X1, X2, X3) = X3 V (X1 A X2)

So that, if (x1, X2, X3) represents an element of S, then we have:
Tr(X1, X2, X3) = (—X3 A (X1 V X2), X1 A X3,7X3 V (X1 A X2))

This is called synchronous dynamics since expressions for all
the genes are updated at the same time:

Tr(s) = (fi(s), 2(s), f3(s))



STG of the 3-genes boolean network:

Evolution is deterministic: for any given state there is one
possible way to proceed, in the graph out-degree for any node
is exactly 1.



Synchronous Dynamics

Another example with 8 genes:




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




Attractors with synchronous dynamics

In the previous example the entire STG of the network was
explored in order to find the two cycles.

In general, since the STG of a boolean network of n genes
contains 2" nodes, we go easily beyond the current
computational capacity even when n > 50.

But, under certain hypothesis on the cycles structure (

, to reach them, )itis
possible to find them even in networks with thousands of
genes:

n |G(T)| # limit cy- visited no- paths  (# max length reference time

cles des SAT calls) of paths
10 P 1x6,1x1 | 25 6 16 [2] 0.260959
10 210 1x7,1x1 | 29 6 16 2] 0.206969
23 223 3 x 1 42 7 16 [?] 0.275958
40 ZY 1x6,8x1 | 136 14 32 2] 3.59245
51 25T 2x1,1x3 | 97 10 64 2] 5.96909
52 P 7 x 1 172 13 32 [2] 7.71783
1000 D 2x2 92 7 32 random net 444.09




A SAT based approach

Elena Dubrova designed an algorithm to find these limit cycles

in networks with synchronous dynamics:
1: function Cycles(T)

2 Initialise
g path_length := 1
4 F := PathExpression[—path_length, 0]
5:  while Satisfiability[F] do
6: (C—path_tength; - - - » Co) := SAT[F]
7: if TestLoops[(Cc_path length - - - » Co)] then
8 ¢; minimal state forming the loop
] Attractors(sy) := Attractors(sg) A (Sp <+ ;)
10: F := F A —Attractors(sp)
11: end if
12: if aftractor _is_found then
13: attractor_is_found := false
14: else
15: F := PathExpression[—2path_length, 0]
16: path_length := 2 path_length
17: end if

18: end while
19: end function



Presented in Pedicini et al. Combining network modelling and
gene expression microarray analysis to explore the dynamics of
th1 and th2 cell requlation, PLoS computational biology,
6(12):e1001032, 2010

We have a n = 51 genes
network for which we want to
compute the lattice of loose
attractors



For a given network specification, we can derive a
non-deterministic dynamics, by taking in account the update of
a single gene expression at each step:

(fi(s), x2, x3) if we decide to update gene 1
Tr(x1,X2,X3) = ¢ (X1, f2(S), x3) if we decide to update gene 2
(x1, %2, f3(s)) if we decide to update gene 3

In our first example we get the following STG:




Asynchronous Dynamics

With the non deterministic evolution the STG is more complex:




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



In analogy, with previous results on the synchronous case we
extended Dubrova-Teslenko’s approach to the asynchronous
case in order to find loose attractors and relations between
them.

The problem is well known on graphs, and it has an optimal
solution by Tarjan’s Algorithm (a variant of depth first graph
visit).

The problem is that in order to visit the graph, we have to know
the graph, but here, we cannot have direct access to the STG
graph.






~Jar s\




Adversarial order

We implemented an algorithm which combines
Dubrova-Teslenko’s algorithm with the Tarjan one: in the code,
when we get a new path from the SAT solver we replace the
test for the presence of a loop in the path with the execution of
the DFS of Tarjan.

We developed a multithread version of Tarjan’s algorithm, in
order to manage multiple instances of the visit at the same time.

The idea we take from Dubrova is the interleaving the SAT
solver with the DFS visit algorithm and we develop the Tarjan
variant in order to manage DFS visit in adversarial order.



n=10STG




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



Results on Random Networks

n visited nodes paths (# SAT max length of density inh/(act+inh) time
calls) paths (K/N)

5) 32 18 4 0.28 0.142857 4.64729
7 57 12 16 0.285714 0. 4.38933
7 128 62 16 0.142857 0.142857 189.885
8 144 12 32 0.265625 0.176471 25.0422
8 162 17 32 0.15625 0.1 61.0997
8 230 41 32 0.265625 0.176471 106.767
8 244 36 32 0.265625 0.176471 138.548
8 249 61 32 0.234375 0.0666667 282.521
8 256 130 8 0.09375 0.5 408.086
8 255 124 8 0.203125 0.384615 474.364
8 256 109 16 0.203125 0.615385 481.884
8 256 125 ] 0.140625 0.222222 486.152
10 210 10 [Z3 0.2 0.1 34.9877
10 253 13 [Z] 0.15 0.0666667 57.6532
10 693 52 64 0.29 0.0344828 738.52
10 732 117 32 0.2 0.2 1570.55
10 834 135 32 0.18 0.444444 2101.32
10 830 125 32 0.14 0.571429 2382.64
10 1002 169 32 0.24 0.25 3529.33
10 1018 182 32 0.13 0.230769 4561.46
10 1024 224 32 0.17 0.117647 6125.17
10 1024 485 16 0.23 0.478261 7703.87
11 286 17 [} 0.190083 0. 100.223
11 2048 572 16 0.14876 0.111111 27188.9




Tractable Beaion

percentof visited nodes vs time

L 1 L L L L 1 L L L L 1 L L L L 1 L L L L 1 L L
5000 10000 15000 20000 25000

time




Tractable

time vs edges

5000 10000 15000 20000

time




Thanks !




R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D
Hachtel, Enrico Macii, Abelardo Pardo, and Fabio Somenzi.
Algebraic decision diagrams and their applications.

Roderick Bloem, Harold N Gabow, and Fabio Somenzi.
An algorithm for strongly connected component analysis in
n log n symbolic steps.

Hidde De Jong.
Modeling and simulation of genetic regulatory systems: a
literature review.

E. Dubrova and M. Teslenko.
A SAT-based algorithm for finding attractors in synchronous
boolean networks.



B Harold N Gabow.
Path-based depth-first search for strong and biconnected
components.

B Abhishek Garg, Kartik Mohanram, Alessandro Di Cara,
Giovanni De Micheli, and loannis Xenarios.
Modeling stochasticity and robustness in gene regulatory
networks.

B Martin Hopfensitz, Christoph Miissel, Markus Maucher, and
Hans A Kestler.
Attractors in boolean networks: a tutorial.



Stuart A Kauffman.
The origins of order: Self-organization and selection in
evolution.

lan Munro.
Efficient determination of the transitive closure of a directed
graph.

Marco Pedicini, Fredrik Barrenas, Trevor Clancy, Filippo
Castiglione, Eivind Hovig, Kartiek Kanduri, Daniele Santoni,
and Mikael Benson.

Combining network modeling and gene expression
microarray analysis to explore the dynamics of th1 and th2
cell regulation.

Paul Purdom.
A transitive closure algorithm.



B Robert Tarjan.
Depth-first search and linear graph algorithms.

B Alan Veliz-Cuba and Reinhard Laubenbacher.
On the computation of fixed points in Boolean networks.

B Desheng Zheng, Guowu Yang, Xiaoyu Li, Zhicai Wang,
Feng Liu, and Lei He.
An efficient algorithm for computing attractors of
synchronous and asynchronous boolean networks.



