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Lambda Calculus
Alonzo Church in 1930’s introduced lambda-calculus as an
alternative (with respect to recursive functions) model of
computation.

• Lambda Terms
• Variables: x , y , . . . (discrete, denumerable-infinite set)
• Application: if T and U are lambda-terms then

(T )U is a lambda-term

• Abstraction: if x ia a variable and U is a lambda term then
λx .U is a lambda term

• Term reduction as computing device:

(λx .U)V →β U [V /x ]



Lambda Calculus
Alonzo Church in 1930’s introduced lambda-calculus as an
alternative (with respect to recursive functions) model of
computation.

• Lambda Terms
• Variables: x , y , . . . (discrete, denumerable-infinite set)

• Application: if T and U are lambda-terms then

(T )U is a lambda-term

• Abstraction: if x ia a variable and U is a lambda term then
λx .U is a lambda term

• Term reduction as computing device:

(λx .U)V →β U [V /x ]



Lambda Calculus
Alonzo Church in 1930’s introduced lambda-calculus as an
alternative (with respect to recursive functions) model of
computation.

• Lambda Terms
• Variables: x , y , . . . (discrete, denumerable-infinite set)
• Application: if T and U are lambda-terms then

(T )U is a lambda-term

• Abstraction: if x ia a variable and U is a lambda term then
λx .U is a lambda term

• Term reduction as computing device:

(λx .U)V →β U [V /x ]



Lambda Calculus
Alonzo Church in 1930’s introduced lambda-calculus as an
alternative (with respect to recursive functions) model of
computation.

• Lambda Terms
• Variables: x , y , . . . (discrete, denumerable-infinite set)
• Application: if T and U are lambda-terms then

(T )U is a lambda-term

• Abstraction: if x ia a variable and U is a lambda term then
λx .U is a lambda term

• Term reduction as computing device:

(λx .U)V →β U [V /x ]



Lambda Calculus
Alonzo Church in 1930’s introduced lambda-calculus as an
alternative (with respect to recursive functions) model of
computation.

• Lambda Terms
• Variables: x , y , . . . (discrete, denumerable-infinite set)
• Application: if T and U are lambda-terms then

(T )U is a lambda-term

• Abstraction: if x ia a variable and U is a lambda term then
λx .U is a lambda term

• Term reduction as computing device:

(λx .U)V →β U [V /x ]



Lambda Calculus
Alonzo Church in 1930’s introduced lambda-calculus as an
alternative (with respect to recursive functions) model of
computation.

• Lambda Terms
• Variables: x , y , . . . (discrete, denumerable-infinite set)
• Application: if T and U are lambda-terms then

(T )U is a lambda-term

• Abstraction: if x ia a variable and U is a lambda term then
λx .U is a lambda term

• Term reduction as computing device:

(λx .U)V →β U [V /x ]



Turing Completeness

• Lambda Definability of Recursive Functions: by encoding
of integers as lambda-terms;

•

0 = λf .λx .x
1 = λf .λx .(f )x
2 = λf .λx .(f )(f )x
...

n = λf .λx .(f )nx



History

• At the beginning of digital computers in the 1950’s one of
the first language was lisp by Mc Carthy (MIT)

• Then in the 1960’s functional programming languages
exploiting formal proofs of correctness were studied: ML,
erlang, scheme, clean, caml, …

• Nowdays functional languages are enriched with many
special constructs which imperative languages cannot
support (i.e. clojure, scala, F#).
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GOI and PELCR
• Geometry of Interaction is the base of (a familiy of)

semantics for programming languages (game semantics).
• GOI is (a kind of) operational semantics.
• GOI realized an algebraic theory for the sharing of

sub-expressions and permitted the development of
optimal lambda calculus reduction and a parallel evaluation
mechanism based on a local and asynchronous calculus.

> λ @

X

Optimal reduction was introduced in J.J. Levy’s PhD Thesis and
defined (on sharing graphs) by J. Lamping in 1990.



TERMS as GRAPHS
We use to interpret a lambda term M as its syntactic graph [M ]:

[(λx .x )λx .x ] =

>

λ

AX

AX

@

CUT

λ

AX



Reduction Example

>

λ

@

λ

Syntactic tree of (λxx )λxx
(with binders).



Reduction Example
>

λ

@

λ

We orient edges in accord to
the five types of nodes and
we introduce explicit nodes
for variables.
We also added sharing ope-
rators in order to manage du-
plications (even if unneces-
sary in this example for the
linearity of x in λxx ).

ciao



Reduction Example
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We introduce axiom and
cut nodes to reconcile edge
orientations.



Reduction Example

>

λ
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AX

@

CUT

λ

AX

We show one reduction step
(the one corresponding to
the beta-rule) the cut-node
configuration must be re-
moved and replaced by di-
rect connections among the
neighborhood nodes.



Reduction Example

>

λ

AX

AX

CUT

AX

CUT A reduction step may intro-
duce new cuts (trivial ones in
this case) but it consists es-
sentially of the composition
of paths in the graph.
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LAMBDA STAR
The so-called Girard dynamic algebra Λ∗ is the so-called

GOI monoid,

i.e., the free monoid with a morphism !(.), an involution (.)∗ and
a zero, generated by the following constants:

p, q, and a family W = (wi)i of exponential generators
such that for any u ∈ Λ∗:

(annihilation) x ∗y = δxy for x , y = p,q,wi ,
(swapping) !(u)wi = wi !

ei (u),

where δxy is the Kronecker operator, ei is an integer associated
with wi called the lift of wi , i is called the name of wi and we
will often write wi ,ei to explicitly note the lift of the generator.

Iterated morphism ! represents the applicative depth of the
target node. The lift of an exponential operator corresponds to
the difference of applicative depths between the source and
target nodes.
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STABLE FORMS and EXECUTION
FORMULA

• Orienting annihilation and swapping equations from left to right,
we get a rewriting system which is terminating and confluent.

• The non-zero normal forms, known as stable forms, are the
terms ab∗ where a and b are positive (i.e., written without ∗s).

• The fact that all non-zero terms are equal to such an ab∗ form is
referred to as the “AB∗ property”. From this, one easily gets that
the word problem is decidable and that Λ∗ is an inverse monoid.

Definition (Execution Formula)

EX (RT ) =
∑

φij∈P(RT )

W (φij )

where φij is the formal sum of all possible paths from node i to node j .



PELCR EVALUATION

• Evaluation as graph reduction technique: in the
algebraic interpretation of interaction rules, a lambda term
is interpreted as a weighted graph.

> λ @

X!d 1 !d q !d q
!d p

!d p

!d wi ,ei

• Parallel evaluation: the graph has to be distributed and
we distribute its nodes (and edges), thus a lambda term
represents the program, the evaluation state and the
network of communication channels.

PELCR stands for Parallel Environment for optimal Lambda
Calculus Reduction introduced in [PediciniQuaglia2007].



PELCR SPEEDUP (DD4 run time)
DD4 is the computation of the (shared) normal form of (δ)(δ)4
where δ := λx (x )x and 4 := λfλx (f )4x .



DD4 SPEEDUP (speed vs number of
PEs)



but... on this job (EXP3)



EXP3 - single CPU workload



EXP3 - run-time vs number of
processors



EXP3 - workload on 4 CPUs



Super-linear speedup



Pluggers
Results in parallel execution were obtained by using a directed
version of GOI, we shortly describe this version with the help of
the algebra of unification.

Computation is performed by connecting pluggers:

Two kinds of pluggers, corresponding to polarities: + and −
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Double Pluggers

Pluggers are present on both sides. There is a direction for
composition.



Combinations of Double Pluggers
Pluggers on the two sides can be of any polarity: therefore we
can have the following four types.



Plugging instructions

Pluggers can be connected by following instructions, here
represented by terms.

For instance, t = p(x ) and u = p(p(x )).
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Instruction Compliance in
Connections

Unification of terms is the performing criterion for plugging.

If t = p(x1) and u = p(p(x2)), then θ′ = x2 → x3 and
θ = x1 → p(x3).
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Execution Task
The minimal task during execution consists in connecting a
plugger u against all compatible pluggers (same color = same
node) by following instructions t1, t2, . . . tn.

Pluggers whose connection works become new connection
tasks (pairs of new double pluggers, to be connected)
decorated with the corresponding residual instructions.
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DVR - Directed Virtual Reduction

The way to perform GOI, we shortly introduced, is indeed the
so called half-combustion strategy which is derived by DVR
introduced by Danos et al. in 1997.

HC-combustion was implemented in PELCR before the PPDP
paper (PediciniQuaglia2000) and then presented in
PediciniQuaglia2007.



A bridging model
We introduce a formal description for multicore “functional”
computation as a step to quantitatively study the behaviour
of the PELCR implementation.

We already know that PELCR is sound as a “parallel”
operational semantics, this means that we do not care on
reordering of actions since the computation of the normal form
by using Geometry of interaction rules (shared optimal
reduction) is local and asynchroous.

Definition (PELCR Actions)

Given a dynamic graph G, which is a graph
G = (V ,E ⊂ V × V ) with edges labeled on the Girard dynamic
algebra Λ∗, we define an action α on G as 〈ε,e,w 〉 where
ε ∈ {+,−}, e = (vt , vs) is a pair of nodes in G and w ∈ Λ∗.
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PELCR-VM
We describe the pelcr virtual machine (PVM) as an abstract
machine working on its state (C ,D).

• C contains the computational task: a stream of
closures (FIFO).

• A closure is a signed edge.
• An edge α = (s, t ,w ), a signed edge αε is an edge with a

polarity ε ∈ {+,−}; s and t are memory addresses, and w
is a weight in the dynamic algebra.

• D represents the current memory, and contains
environment elements.

• any environment element has a memory address ei and is
called node.

• memory ei contains signed edges αεi
i .

current graph/state of the machine

vt

v1 v2 v3 vm

w1 w2 w3 wm

pending actions

vt

vs

w



PELCR in SECD style
0 reading from the input interface:

(0,NULL,nil, ∅) 7→ (0,NULL, read(), ∅)

1 action α extraction from stream C :

(0,NULL, α :: C ′,D) 7→

{
(α,NULL,C ′,D) if α 6= 0,
(0,NULL,C ′,D) if α = 0

2 action α’s environment access:

(α,NULL,C ,D) 7→ (α, vt ,C ,D ′)

where α = 〈ε,e,w 〉, the edge is e = (vt , vs) and

D ′ =

{
D if vt already is a node of D,
D ∪ {vt} if vt is a new node to be added to D.
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4 action execution

(α, vt ,C ,D) =

{
(0,NULL,C ,D ′) if X is empty
(0,NULL,C ⊗ X ,D ′) if X 6= ∅

where let be X = execute(α) the set of residuals of the
action α on its context v−εt and D ′ = D ∪ {((vt , vs)ε,w )}

vs vt

v1

v2

v3 →

vm

vs v ′3

v1

v2

v3

vm

v ′1

v ′2

v ′m

w

w1

w2

w3

wm

w ′3 w 3

w ′1

w 1

w ′2

w 2

w ′m

w m

Note that v ′i are new nodes introduced by the execution step,
that can be freely allocated on one of the processing element.



Parallel Abstract Machines
We show a parallel machine with two computing units, whose
state is therefore represented by

(S,E ,C ,D) = (S1 ⊗ S2,E1 ⊗ E2,C1 ⊗ C2,D1 ⊗ D2).

D1

read()

write()

D2

ZIPZIP



Synchronous Machine

0 read from input stream

(0⊗ 0,NULL ⊗ NULL,nil⊗ nil, ∅ ⊗ ∅) 7→
(0⊗ 0,NULL ⊗ NULL, read()⊗ nil, ∅ ⊗ ∅)

1 actions α1 and α2 are synchronously extracted from
streams C1 and C2

(0⊗ 0,NULL ⊗ NULL, α1 :: C ′1 ⊗ α2 :: C ′2,D1 ⊗ D2) 7→
(α1 ⊗ α2,NULL ⊗ NULL,C ′1 ⊗ C ′2,D1 ⊗ D2)



Synchronous Machine (cont.)
3 simultaneous environment access for both actions:

(α1 ⊗ α2,NULL ⊗ NULL,C1 ⊗ C2,D1 ⊗ D2) 7→
(α1 ⊗ α2, v 1

t ⊗ v 2
t ,C1 ⊗ C2,D ′1 ⊗ D ′2)

when αi = 〈εi ,ei ,wi 〉 and either ei = (v i
t , v

i
s) or v i

t is
undefined if αi = 0 then

D ′i =

{
Di if v i

t already is a node of D i ,
Di ∪ {v i

t } if v i
t is a new node to be added to D i .

4 actions execution

(α1 ⊗ α2, v 1
t ⊗ v 2

t ,C1 ⊗ C2,D1 ⊗ D2) 7→
(0⊗0,NULL⊗NULL, ((C1 ⊗ execute1(α1))⊗ execute1(α2))⊗

⊗ ((C2 ⊗ execute2(α1))⊗ execute2(α2)) ,D ′1 ⊗ D ′2)

The graph D ′i = Di ∪ ((v i
t , v

i
s)εi ),wi ).



Aynchronous Machine

The state of the asynchronous machine is annotated with the
scheduled processing unit:

(p,S,E ,C ,D) = (p,S1 ⊗ S2,E1 ⊗ E2,C1 ⊗ C2,D1 ⊗ D2)

where p ∈ {1,2} is the order number of the scheduled
processor.

The sequence of controls p is by itself a stream (of integers
{1,2}). We may either choose a random sequence or we may
force a particular scheduling by explicitly giving it.



Asynchronous parallel SECD
0 reading from the input interface:

(1,0⊗ 0,NULL ⊗ NULL,nil⊗ nil, ∅ ⊗ ∅) 7→
(1,0⊗ 0,NULL ⊗ NULL, read()⊗ nil, ∅ ⊗ ∅)

1 action αp extraction from the stream Cp :

(p,S1 ⊗ S2,E1 ⊗ E2,C1 ⊗ C2,D1 ⊗ D2) 7→
(p′,S ′1 ⊗ S ′2,E

′
1 ⊗ E ′2,C

′
1 ⊗ C ′2,D

′
1 ⊗ D ′2)

if Sp = 0, Ep = NULL, Cp = αp :: C ′p then

S ′i =

{
Si if i 6= p
αi if i = p

E ′i = Ei , C ′i = Ci if i 6= p and D ′i = Di , finally p′ is taken in
accord to the scheduling function.



Asynchronous parallel SECD (cont.)
2 action αp ’s environment access:

(p,S1 ⊗ S2,E1 ⊗ E2,C1 ⊗ C2,D1 ⊗ D2) 7→
(p′,S ′1 ⊗ S ′2,E

′
1 ⊗ E ′2,C

′
1 ⊗ C ′2,D

′
1 ⊗ D ′2)

when Sp = αp = 〈εp ,ep ,wp〉, where

E ′i =

{
Ei if i 6= p
v p

t if i = p

S ′i = Si , C ′i = Ci and

D ′i =

{
Di if i 6= p or i = p and v p

t ∈ Dp ,
Di ∪ {v p

t } if i = p and v p
t 6∈ Dp .



Asynchronous parallel SECD (cont.)

3 action execution:

(p,S1 ⊗ S2,E1 ⊗ E2,C1 ⊗ C2,D1 ⊗ D2) 7→
(p′,S ′1 ⊗ S ′2,E

′
1 ⊗ E ′2,C

′
1 ⊗ C ′2,D

′
1 ⊗ D ′2)

when Sp = αp = 〈εp ,ep ,wp〉, Ep = v p
t , then

S ′i =

{
Si if i 6= p
0 if i = p

E ′i =

{
Ei if i 6= p
NULL if i = p

C ′i = Ci ⊗ executei (αp)

and the graph D ′i = Di for all i 6= p and D ′p is obtained from
Dp by adding the edge ((v p

t , v
p
s )

εp ,wp).



Stream equivalence
Definition (node-view (or view of base v ) of a stream of
actions S)

Given a stream of actions S and a node v we define the stream Sv by
selecting actions with target node v . More formally:

Sv =


0 if S = 0
S(0) :: shift(S)v if S(0) = 〈ε, (v , vs),w 〉
shift(S)v if S(0) = 〈ε, (vt , vs),w 〉 and v 6= vt

or S(0) = 0

Polarised view of base v ε by selecting actions with the opposite
polarity with respect to the polarity of the base. Namely:

Sv ε =


0 if S = 0
S(0) :: shift(S)v ε if S(0) = 〈−ε, (v , vs),w 〉
shift(S)v ε if S(0) = 〈ε, (vt , vs),w 〉 and v 6= vt

or S(0) = 0



Execution equivalence
Definition

The states (S1,E1,C1,D1) and (S2,E2,C2,D2) of two
machines M1 and M2 are ordered w.r.t � if

1 there is a graph-isomorphism φ between D1 and a
sub-graph of D2 such that the weights and polarities are
preserved, and

2 for any node w ∈ φ(D1) we have that equivalent views on
the controls (the two streams of actions) when taking v and
its corresponding node φ(v ), (C1)v ≈ (C2)φ(v ), and

Theorem

Given a (sequential) machine M1 and a (parallel) machine M2
such that M1 'σ M2 by the isomorphism φ, then we have that
v .M1 'σ φ(v ).M2.



LOAD BALANCING and
AGGREGATION

Distribution the evaluation is obtained by
• Processing Elements (PE) with separate running PVMs;
• Global Memory Address Space for the environments;
• Message Communication Layer for streaming among

PEs.
Issues we have considered:

• Granularity: fine grained vs. coarse grained;
• Load Balancing: liveness, avoid deadlocks.



ARCHITECTURE

• Multicore: the type of parallelism we considered is MIMD,
and it behaves very well on modern multicore machines
(super-linear speedup !!);

• Vectorial: there is space for further improving the
evaluation strategy to cope with vectorial parallelism like in

• Cell: evolution of the power-pc architecture developed by
IBM-SONY-TOSHIBA (and used in BlueGene and PS3);

• FPGA: arrays of programmable logic gates;
• GPU: in graphics cards many computational cores can be

executed.



Thanks!
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