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Abstract: We investigate the following question: let C be an integral curve contained
in a smooth complex algebraic surface X; is it possible to deform C in X into a nodal

curve while preserving its geometric genus?

We affirmatively answer it in most cases when X is a Del Pezzo or Hirzebruch
surface (this is due to Arbarello and Cornalba, Zariski, and Harris), and in some cases

when X is a K3 surface. Partial results are given for all surfaces with numerically

trivial canonical class. We also give various examples for which the answer is negative.
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Lascia lente le briglie del tuo ippogrifo, o Astolfo,
e sfrena il tuo volo dove più ferve l’opera dell’uomo.
Però non ingannarmi con false immagini
ma lascia che io veda la verità
e possa poi toccare il giusto.

– Banco del mutuo soccorso, freely
inspired by Orlando furioso

Introduction

Historically, the study of families of nodal irreducible plane curves (the
so-called Severi varieties, named after [34]) was motivated by the fact
that every smooth projective curve is birational to such a plane curve,
and that plane curves should be easier to study since they are divisors.
One can of course consider similar families of curves in any smooth alge-
braic surface and, as it has turned out, their study is rewarding whether
one is interested in surfaces or in curves.

Let X be a smooth algebraic surface, and ξ an element of its Néron–
Severi group. For δ ∈ Z≥0, we denote by V ξ,δ the family of integral
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curves in X of class ξ, whose singular locus consists of exactly δ nodes
(i.e. δ ordinary double points; we call such curves nodal, or δ-nodal).
These families are quite convenient to work with, being fairly well-
understood from a deformation-theoretic point of view. For instance,
when the canonical class KX is non-positive this enables one to show
that they are smooth of the expected dimension in the usual cases
(when KX is positive however, they tend to behave more wildly, see,
e.g., [10, 11]). Moreover, they have been given a functorial definition
in [40] (see also [33, §4.7.2]).

Yet, there is no definitive reason why one should restrict one’s atten-
tion to curves having this particular kind of singularities (even when X is
the projective plane), and it seems much more natural from a modular
point of view to consider the families V ξg , g ∈ Z≥0, of integral curves
in X of class ξ that have geometric genus g (i.e. the normalizations of
which have genus g). We call these families equigeneric. These objects
have however various drawbacks, for instance their definition only makes
sense set-theoretically, and accordingly there is no such thing as a local
equigeneric deformation functor (i.e. one that would describe equigeneric
deformations over an Artinian base).

It is a fact that every irreducible equigeneric family V of curves in X
contains a Zariski open subset, all members of which have the same kind
of singularities (families enjoying the latter property are called equisin-
gular), and these singularities determine via their deformation theory
the codimension V is expected to have in the universal family of all
class ξ curves in X. This expected codimension is the lowest possible
when the general member of V is nodal (in such a case, the expected
codimension equals the number of nodes, which itself equals the differ-
ence between the arithmetic and geometric genera of members of V ), so
that it makes sense to consider the following.

Problem (A). Let C be an integral curve in X. Is it possible to de-
form C in X into a nodal curve while preserving its geometric genus?

One may rephrase this as follows: let ξ be the class of C in NS(X),
pa(ξ) the arithmetic genus of curves having class ξ, g the geometric genus
of C, and δ = pa(ξ)− g; is V ξg contained in the Zariski closure of V ξ,δ?

Observe that whenever the answer is affirmative, the Severi varieties V ξ,δ

provide a consistent way of understanding the equigeneric families V ξg .
In any event, it is a natural question to ask what kind of singularities

does the general member of a given family V ξg have (besides, this question
is important for enumerative geometry, see [6, 16, 24]). Closely related
to this is the problem of determining whether a given equisingular family
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has the expected dimension. The actual dimension is always greater or
equal to the expected dimension, and whenever they differ the family is
said to be superabundant.

In this text, we provide an answer to various instances of Problem (A).
Some of these answers are not new, see below for details and proper
attributions.

Theorem (B).

(B.1) (Arbarello–Cornalba [1, 2], Zariski [43]). Let X = P2 and L =
OP2(1) ∈ PicX = NS(X). For integers n ≥ 1 and 0 ≤ g ≤
pa(nL), the general element of every irreducible component of V nLg
is a nodal curve.

(B.2) (Harris [20]). Let X be a degree d Hirzebruch surface. For every
effective class L ∈ PicX = NS(X) and integer 0 ≤ g ≤ pa(L), the
general member of every irreducible component of V Lg is a nodal
curve.

(B.3) (Harris [20]). Let X be a degree d Del Pezzo surface, and KX ∈
PicX = NS(X) its canonical class. For integers n ≥ 1 and 0 ≤
g ≤ pa(−nKX), the general element of every irreducible component
of V −nKXg is nodal unless dn ≤ 3 (it is at any rate immersed unless
d = n = 1 and g = 0).

(B.4) Let X be a very general algebraic K3 surface, L the positive gen-
erator of PicX = NS(X), and write L2 = 2p − 2. For p/2 <
g ≤ pa(L) = p, the general element of every irreducible component
of V Lg is nodal.

For integers k ≥ 1 and 0 < g ≤ pa(kL), the general element of
every irreducible component of V kLg is immersed; if its normaliza-

tion is non-trigonal 1, then it is actually nodal.
(B.5) Let X be an Enriques surface, and L ∈ PicX = NS(X) an effective

class. For 3 ≤ g ≤ pa(L), if [C] ∈ V Lg has a non-hyperelliptic nor-

malization C̄, then the general element of every component of V Lg
containing C is immersed. If moreover C̄ has Clifford index ≥ 5,
then C is nodal.

(B.6) Let X be an Abelian surface and ξ ∈ NS(X). For 2 < g ≤ pa(ξ),
the general element of every irreducible component of V ξg is im-
mersed; if its normalization is non-trigonal, then it is actually
nodal.

1When k = 1, [14] provides a sufficient condition for a general element of V Lg to have

a non-trigonal normalization (see Corollary 4.7).
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(Here a curve is said to be immersed if the differential of its normal-
ization morphism is everywhere injective.)

In all cases within Theorem (B), the corresponding Severi varieties
V ξ,pa(ξ)−g are smooth and of the expected dimension (if non empty; non-
emptiness is also known, except for Enriques and Abelian2 surfaces). In
addition, their irreducibility has been proven in the following cases: when
X is the projective plane [20, 21], when X is a Hirzebruch surface [39],
and when X is a Del Pezzo surface, g = 0, and (d, n) 6= (1, 1) [38]; when
X is a K3 surface, only a particular case is known [12]. These irre-
ducibility properties transfer to the corresponding equigeneric families
when Problem (A) admits a positive answer.

For surfaces with trivial canonical class one can formulate the follow-
ing conjecture, which Theorem (B) only partly solves.

Conjecture (C). Let X be a K3 (resp. Abelian) surface, and ξ ∈
NS(X). For g > 0 (resp. g > 2) the general element of every irreducible
component of V ξg is nodal.

Note however that Problem (A) does not always have a positive solu-
tion. This happens for instance when X is a K3 (resp. Abelian) surface
and g = 0 (resp. g = 2); the latter case is however somewhat exceptional,
since the corresponding equigeneric families are 0-dimensional (see Sub-
section 4.2 for further discussion).

We give other instances, hopefully less exceptional, of Problem (A)
having a negative solution in Section 5. This comes with various exam-
ples, some of them new, of equigeneric and equisingular families having
superabundant behaviour.

Surfaces of general type are missing from our analysis, as their Severi
varieties are notably not well-behaved and, especially, not keen to be
studied using the techniques of the present text. For information about
this case one may consult [10, 11].

Problem (A) was first studied (and solved) for the projective plane in
the (19)80s by Arbarello and Cornalba [1, 2] (see also [3, Chap. XXI,
§§8–10] for a unified treatment in English), and Zariski [43], with dif-
ferent approaches. The latter considers curves in surfaces as divisors
and studies the deformations of their equations (we call this the Carte-
sian point of view), while the former see them as images of maps from
smooth curves (we call this the parametric point of view). Harris gen-
eralized this result using the Cartesian theory in [20], thus obtaining as

2After the present text was completed, Knutsen, Lelli-Chiesa, and Mongardi

(arXiv:1503.04465) proved the non-emptiness of V ξ,pa(ξ)−g for ξ the numerical class

of a polarization of type (1, n) on an Abelian surface, and 2 ≤ g ≤ pa(ξ).

https://arxiv.org/abs/1503.04465
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particular cases parts (B.2) and (B.3) of the theorem above. There is
however a subtle flaw in this text [20, Prop. 2.1] which has been subse-
quently worked around using the parametric theory in [21]. Apparently
it had not been spotted before; we analyze it in detail in Subsection 3.3.

Note also that [8, Lem. 3.1] states Conjecture (C) for K3 surfaces
as a result, but the proof reproduces the incomplete argument of [20,
Prop. 2.1]; unfortunately, in this case the parametric approach does not
provide a full proof either. We also point out that the result of Conjec-
ture (C) for K3 surfaces is used in [7, proof of Thm. 3.5]; the weaker
part (B.4) of Theorem (B) should however be enough for this proof,
see [16, 6].

Eventually let us mention that the recent [24] by Kleiman and Shende
provides an answer to Problem (A) for rational surfaces under various
conditions. They use the Cartesian approach, while in the Appendix
Tyomkin reproves the same results using the parametric approach.

We need arguments from both the parametric and Cartesian ap-
proaches here. The core of the parametric theory in the present text
is Theorem 2.5, which is essentially due to Arbarello–Cornalba, Harris,
and Harris–Morrison. Except for its part (B.4), Theorem (B) is a more
or less direct corollary of Theorem 2.5; parts (B.5) and (B.6), which to
the best of our knowledge appear here for the first time3, still require
additional arguments from a different nature, admittedly not new either
(see Subsection 4.2).

The parametric approach is more modern in spirit, and arguably more
agile, but although it enables one to give a full solution to Problem (A)
for minimal rational surfaces, it does not provide a fully satisfactory way
of controlling equisingular deformations of curves; somehow, it requires
too much positivity of −KX (see, e.g., Remark 2.6), which explains why
Theorem (B) is not optimal in view of Conjecture (C). For K3 surfaces,
part (B.4) of Theorem (B), which is our main original contribution to
the subject, is beyond what is possible today with the mere paramet-
ric approach; we obtain it along the Cartesian approach, with the new
tackle of formulating it in terms of generalized divisors on singular curves
(see Subsection 3.4), and with the help of additional results from Brill–
Noether theory. This is yet not a definitive answer either, and we believe
finer arguments are required in order to fully understand the subtleties
of the question.

3Part (B.6) of Theorem (B) has later on been used by Knutsen, Lelli-Chiesa, and
Mongardi (arXiv:1503.04465) to prove Conjecture (C) for X an Abelian surfaces
and ξ the numerical class of a polarization of type (1, n).

https://arxiv.org/abs/1503.04465
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The organization of the paper is as follows. In Section 1, we define
the abstract notions of equigeneric and equisingular families of curves
and specify our setup. In Section 2 we recall the relevant facts from
the parametric deformation theory, which culminate in the already men-
tioned Theorem 2.5. Section 3 is devoted to Cartesian deformation the-
ory, which involves the so-called equisingular and adjoint ideals of an
integral curve with planar singularities. In Section 4 we apply the re-
sults of the two former sections in order to prove Theorem (B), and in
Section 5 we gather examples in which the situation is not the naively
expected one.
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1. Equigeneric and equisingular families of curves

We work over the field C of complex numbers.

1.1. General definitions. While the definition of equigenericity is
rather straightforward, that of equisingularity is much more subtle, and
requires some care. The definition given here is taken from Teissier [36,
37], who slightly modified the one originally introduced by Zariski (see
[36, §5.12.2] for a comment on this). The two versions are anyway equiv-
alent in our setting (explicited in Subsection 1.2) by [37, II, Thm. 5.3.1].
We invite the interested reader to take a look at [15] as well.

Let p : C → Y be a flat family of reduced curves, where Y is any
separated scheme.

Definition 1.1. The family p : C → Y is equigeneric if

(i) Y is reduced,
(ii) the locus of singular points of fibres is proper over Y , and
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(iii) the sum of the δ-invariants of the singular points of the fibre Cy is
a constant function on y ∈ Y .

When p is proper, condition (iii) above is equivalent to the geometric
genus of the fibres being constant on Y .

Definition 1.2. The family p : C → Y is equisingular if there exist

(i) disjoint sections σ1, . . . , σn of p, the union of whose images contains
the locus of singular points of the fibres, and

(ii) a proper and birational morphism ε : C̄ → C, such that
(a) the composition p̄ := p ◦ ε : C̄ → Y is flat,
(b) for every y ∈ Y , the induced morphism εy : C̄y → Cy is a

resolution of singularities (here C̄y and Cy are the respective
fibres of p̄ and p over y), and

(c) for i = 1, . . . , n, the induced morphism p̄ : ε−1(σi(Y )) → Y is
locally (on ε−1(σi(Y ))) trivial.

In Definition 1.1, the reducedness assumption on the base is an illus-
tration of the fact that equigenericity cannot be functorially defined, un-
like equisingularity. The following result of Zariski, Teissier, Diaz–Harris
provides a more intuitive interpretation of equisingularity. Two germs of
isolated planar curve singularities (C1, 0) ⊂ (C2, 0) and (C2, 0) ⊂ (C2, 0)
are said to be topologically equivalent if there exists a homeomorphism
(C2, 0)→ (C2, 0) mapping (C1, 0) to (C2, 0) (cf. [19, I.3.4]). The corre-
sponding equivalence classes are called topological types.

Theorem 1.3 ([37, II, Thm. 5.3.1], [15, Prop. 3.32]). Let p : C → Y be
a flat family of reduced curves on a smooth surface X, i.e. C ⊂ X × Y ,
and p is induced by the second projection. We assume that C and Y
are reduced separated schemes of finite type. Let Σ ⊂ C be the locus of
singular points of fibres of p. If Σ is proper over Y the following two
conditions are equivalent:

(i) the family p : C → Y is locally equisingular in the analytic topology;
(ii) for each topological type of isolated planar curve singularity, all

fibres over closed points of Y have the same number of singularities
of that topological type.

One then has the following result, often used without any mention in
the literature. It is an application of the generic smoothness theorem.

Proposition 1.4 ([37, II, 4.2]). Let p : C → Y be an equigeneric family
of reduced curves. There exists a dense Zariski-open subset U ⊂ Y such
that the restriction C ×Y U → U is equisingular.
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The latter result implies the existence, for any flat family p : C → Y
of reduced curves on a smooth surface X, with Y reduced separated
and of finite type, of an equisingular stratification of Y in the Zariski
topology. Indeed, the geometric genus of the fibres being a lower semi-
continuous function on Y (see e.g. [15, §2]), our family restricts to an
equigeneric one over a Zariski-open subset of Y , to which we can apply
Proposition 1.4.

Eventually we need the following result of Teissier, which shows that
equigenericity can be interpreted in terms of the existence of a simulta-
neous resolution of singularities.

Theorem 1.5 ([37, I, Thm. 1.3.2]). Let p : C → Y be a flat family of
reduced curves, where C and Y are reduced separated schemes of finite
type. If Y is normal, then the following two conditions are equivalent:

(i) the family p : C → Y is equigeneric;
(ii) there exists a proper and birational morphism ε : C̄ → C such that

p̄ = p ◦ ε is flat and, for every y ∈ Y , the induced morphism
C̄y → Cy is a resolution of singularities of the fibre Cy = p−1(y).

In addition, whenever it exists, the simultaneous resolution ε is nec-
essarily the normalization of C.

1.2. Superficial setting. We now introduce our set-up for the remain-
ing of this paper.

Unless explicit mention to the contrary, X shall design a nonsingular
projective connected algebraic surface. Given an element ξ ∈ NS(X) of
the Néron–Severi group of X we let

Picξ(X) := {L ∈ Pic(X) | L has class ξ}.

The Hilbert scheme of effective divisors of X having class ξ, which we

denote by CurvesξX , is fibered over Picξ(X)

CurvesξX → Picξ(X)

with fibres linear systems. We write pa(ξ) for the common arithmetic

genus of all members of CurvesξX . In case q(X) := h1(X,OX) = 0,

i.e. X is regular, CurvesξX is a disjoint union of finitely many linear

systems |L|, with L varying in Picξ(X).

For any given integer δ such that 0 ≤ δ ≤ pa(ξ) there is a well de-

fined, possibly empty, locally closed subscheme V ξ,δ ⊂ CurvesξX , whose
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geometric points parametrize reduced and irreducible curves having ex-
actly δ nodes and no other singularities. These subschemes are defined
functorially in a well known way [40] and will be called Severi varieties.

More generally, given a reduced curve C representing ξ ∈ NS(X),

there is a functorially defined subscheme ES(C) ⊂ CurvesξX whose geo-
metric points parametrize those reduced curves that have the same num-
ber of singularities as C for every equivalence class of planar curve sin-
gularity [41]. The restriction to ES(C) of the universal family of curves

over CurvesξX is the largest equisingular family of curves on X that con-
tains C.

We will also consider, for any given integer g such that 0 ≤ g ≤
pa(ξ), the locally closed subset V ξg ⊂ CurvesξX whose geometric points
parametrize reduced and irreducible curves C having geometric genus g,
i.e. such that their normalization has genus g. When δ = pa(ξ) − g we
have V ξ,δ ⊂ V ξg .

There is also, for each L ∈ Picξ(X), a subscheme V δL = V ξ,δ ∩ |L|
of |L|, and a locally closed subset VL,g = V ξg ∩|L|. These are the natural
objects to consider when X is regular.

2. A parametric approach

2.1. The scheme of morphisms. We briefly recall some facts from
the deformation theory of maps with fixed target, which will be needed
later on. Our main reference for this matter is [33, §3.4]; [3, Chap. XXI,
§§8–10] may also be useful. We consider a fixed nonsingular projective
n-dimensional variety Y .

Remark 2.1. We use the definition of modular family, as given in [23,
p. 171]. For every g ≥ 0, there is a modular family πg : Dg → Sg of
smooth projective connected curves of genus g by [23, Thm. 26.4 and
Thm. 27.2], and Sg has dimension 3g − 3 + ag, with ag the dimension
of the automorphism group of any genus g curve. Then, setting Mg(Y )
to be the relative Hom scheme Hom(Dg/Sg, Y × Sg/Sg) and Dg(Y ) :=
Dg×SgMg(Y ), there is a modular family of morphisms from nonsingular
projective connected curves of genus g ≥ 0 to Y in the form of the
commutative diagram

Dg(Y )
Φg //

��

Y ×Mg(Y )

ww
Mg(Y )

(2.1)
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which enjoys properties (a), (b), (c) of [23, Def. p. 171] (note that here we
declare two morphisms to be isomorphic if they are equal). Note that
the scheme Mg(Y ) and diagram (2.1) are unique only up to an étale
base change; nevertheless, with an abuse of language we call Mg(Y ) the
scheme of morphisms from curves of genus g to Y .

Let

φ : D → Y

be a morphism from a nonsingular connected projective curve D of
genus g and [φ] ∈ Mg(Y ) a point parametrizing it. There is an exact
sequence [33, Prop. 4.4.7]

(2.2) 0→ H0(D,φ∗TY )→ T[φ]Mg(Y )→ H1(D,TD)→ H1(D,φ∗TY ),

and it follows from [25, I.2.17.1] that

(2.3) −KY · φ∗D + (n− 3)(1− g) + dim(Aut(D)) ≤ dim[φ]Mg(Y ).

We denote by Defφ/Y the deformation functor of φ with fixed tar-
get Y , as introduced in [33, §3.4.2]. Recall that Nφ, the normal sheaf
of φ, is the sheaf of OD-modules defined by the exact sequence on D

(2.4) 0→ TD → φ∗TY → Nφ → 0.

It controls the functor Defφ/Y : one has Defφ/Y (C[ε]) = H0(D,Nφ), and

H1(D,Nφ) is an obstruction space for Defφ/Y ; in particular, if Rφ is the
complete local algebra which prorepresents Defφ/Y [33, Thm. 3.4.8], we
have

χ(Nφ) ≤ dim(Rφ) ≤ h0(Nφ).

Using the exact sequence (2.4), one computes

(2.5) χ(Nφ) = χ(ωD ⊗ φ∗ω−1
Y ) = −KY · φ∗D + (n− 3)(1− g),

hence

(2.6) −KY ·φ∗D+(n−3)(1−g) ≤ dim(Rφ) ≤ h0(Nφ)=χ(Nφ)+h1(Nφ).

In particular, Rφ is smooth of dimension −KY · φ∗D + (n− 3)(1− g) if

and only if H1(Nφ) = 0.

In analyzing the possibilities here, one has to keep in mind thatNφ can
have torsion. In fact there is an exact sequence of sheaves of OD-modules

(2.7) 0→ Hφ → Nφ → N̄φ → 0,

where Hφ is the torsion subsheaf of Nφ, and N̄φ is locally free. The
torsion sheaf Hφ is supported on the ramification divisor Z of φ, and
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it is zero if and only if Z = 0. Moreover, there is an exact sequence of
locally free sheaves on D

(2.8) 0→ TD(Z)→ φ∗TY → N̄φ → 0.

The scheme Mg(Y ) and the functors Defφ/Y are related as follows.
For each [φ] ∈Mg(Y ) we get by restriction a morphism from the prorep-
resentable functor hÔMg(Y ),[φ]

to Defφ/Y . Call ρφ this morphism. Its

differential is described by the diagram:

0 // H0(D,φ∗TY )

��

// T[φ]M

dρφ

��

// H1(D,TD) // H1(D,φ∗TY )

0 // H0(D,φ∗TY )/H0(D,TD) // H0(D,Nφ) // H1(D,TD) // H1(D,φ∗TY )

where the top row is the sequence (2.2) and the second row is deduced
from the sequence (2.4). This diagram shows that dρφ is surjective with
kernel H0(D,TD), whose dimension is equal to dim(Aut(D)). In par-
ticular, if Mg(Y ) is smooth at [φ], then Defφ/Y is smooth as well and
dim(Rφ) = dim[φ](Mg(Y ))−dim(Aut(D)). This analysis is only relevant
when g = 0, 1, because otherwise ρφ is an isomorphism.

2.2. Equigeneric families and schemes of morphisms. In view of
the superficial situation set up in Subsection 1.2, we will often consider
the case when φ is the morphism ϕ : C̄ → X, where C is an integral
curve in a smooth projective surface X, and ϕ is the composition of the
normalization ν : C̄ → C with the inclusion C ⊂ X; we may loosely refer
to ϕ as the normalization of C. We then have

N̄ϕ ∼= ϕ∗ω−1
X ⊗ ωC̄(−Z)

by the exact sequence (2.8). The embedded curve C is said to be im-
mersed if the ramification divisor Z of ϕ is zero; in this case, we may
also occasionally say that C has no (generalized) cusps.

The following result is based on a crucial observation by Arbarello
and Cornalba [2, p. 26].

Lemma 2.2. Let B be a semi-normal 4 connected scheme, 0 ∈ B a closed
point, π : D → B a flat family of smooth projective irreducible curves of
genus g, and

D
π ��

Φ // X ×B

pr2zz
B

4We refer to [25, §I.7.2] for background on this notion.
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a family of morphisms. We call D0 the fibre of D over 0 ∈ B, φ0 : D0 →
X the restriction of Φ, which we assume to be birational on its image,
and ξ the class of φ0(D0) in NS(X).

(i) The scheme-theoretic image Φ(D) is flat over B. This implies that
there are two classifying morphisms p and q from B to Mg(X) and

CurvesξX respectively, with differentials

dρφ0
◦dp0 : TB,0→H0(D0, Nφ0

) and dq0 : TB,0→H0(φ0(D0), Nφ0(D0)/X).

(ii) The inverse image by dρφ0
◦ dp0 of the torsion H0(D0,Hφ0

) ⊂
H0(D0, Nφ0

) is contained in the kernel of dq0.

Proof: The morphism $ = pr2 : Φ(D) → B is a well-defined family of
codimension 1 algebraic cycles of X in the sense of [25, I.3.11]. Since B
is semi-normal, it follows from [25, I.3.23.2] that $ is flat.

Given a non-zero section σ ∈ H0(D0, Nφ0
), the first order deformation

of φ0 defined by σ can be described in the following way: consider an
affine open cover {Ui}i∈I of C0, and for each i ∈ I consider a lifting
θi ∈ Γ(Ui, φ

∗
0TX) of the restriction σ|Ui . Each θi defines a morphism

ψi : Ui × Spec(C[ε])→ X

extending φ0|Ui : Ui → X. The morphisms ψi are then made compatible

after gluing the trivial deformations Ui × Spec(C[ε]) into the first order
deformation of D0 defined by the coboundary ∂(σ) ∈ H1(C0, TC0

) of the
exact sequence (2.4). In case σ ∈ H0(D0,Hφ0

), everyone of the maps ψi
is the trivial deformation of σ|Ui over an open subset. This implies that
the corresponding first order deformation of φ0 leaves the image fixed,
hence the vanishing of dq0(σ).

Lemma 2.3. Let m0 ∈ Mg(X) be a general point of an irreducible
component of Mg(X), and φ0 : D0 → X the corresponding morphism.
Assume that φ0 is birational onto its image C0 := φ0(D0), and that
[C0] ∈ V ξg . Then [C0] belongs to a unique irreducible component of V ξg
and

dim[C0] V
ξ
g = dimRφ0

= dimm0
Mg(X)− dim(AutD0),

where Rφ0 is the complete local C-algebra that prorepresents Defφ0/X .

Proof: Consider the reduced scheme Mred := Mg(X)red, and let M̃ be
its semi-normalization. Let

DM̃
��

ΦM̃ // X × M̃

zz
M̃
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be the pullback of the modular family (2.1). Then we have a diagram

ΦM̃ (DM̃ )

π ��

� � // X × M̃

xx
M̃

where ΦM̃ (DM̃ ) is the scheme-theoretic image. The morphism π is flat
by Lemma 2.2, and therefore we have an induced functorial morphism
Ψ: M̃ → V ξg .

Suppose that Ψ(m1) = Ψ(m0) = [C0] for some m1 ∈ M̃ . Then m0

and m1 parametrize the same morphism up to an automorphism of the
source D0. By property (a) of modular families in [23], this implies that
the fibres of Ψ have the same dimension as AutD0, and therefore that

dimm0
Mg(X)− dim(AutD0) ≤ dim[C] V

ξ
g .

On the other hand, consider the normalization map V̄ ξg → V ξg , and

the pull-back to V̄ ξg of the universal family of curves over CurvesξX . It

has a simultaneous resolution of singularities Ū → V̄ ξg by Theorem 1.5,

which comes with a family of morphisms N : Ū → X × V̄ ξg over V̄ ξg . By
property (c) of the modular family Mg(X) in [23], this implies that there
exist an étale surjective η : W → V̄ ξg and a morphism w : W → Mg(X)

such that ŪW := Ū ×V̄ ξg W fits in the Cartesian diagram

ŪW //

��
�

Dg

��
W

w // Mg(X)

where the left vertical map is the pullback of N . The map W →Mg(X)
is generically injective because the universal family of curves over V ξg is
nowhere isotrivial. Moreover, its image is transverse at every point m
(corresponding to a morphism φ) to the subvariety of Mg(X) parametriz-
ing morphisms gotten by composing φ with an automorphism of its
source. This implies that, for c0 ∈ η−1([C0])

dim[C0] V
ξ
g = dimc0 W ≤ dimm0 Mg(X)− dim(AutD0).

It is then clear that [C0] belongs to a unique irreducible component
of V ξg .

Remark 2.4. It can happen that Mg(X) is non-reduced. For an example
of such a situation, consider the pencil |L| constructed in Example 5.1
below (we use the notations introduced therein), and let C ⊂ X be a
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general element of VL,9, which is open and dense in |L|. The curve C
has one ordinary cusp s and no further singularity; we let s′ ∈ C̄ be the
unique ramification point of the normalization ϕ : C̄ → X.

One has χ(Nϕ) = −8+8 = 0 whereas dim[ϕ]M9(X) = 1. The torsion

part of Nϕ is the skyscraper sheaf Cs′ , and accordingly h0(Hϕ) = 1.

One has h0(ωC̄ ⊗ ϕ∗ω−1
X ) = 1, and the unique divisor in |ωC̄ ⊗ ϕ∗ω−1

X |
contains s′ (with multiplicity 4), so that

h0(N̄ϕ) = h0
(
ωC̄ ⊗ ϕ∗ω−1

X (−s′)
)

= h0
(
ωC̄ ⊗ ϕ∗ω−1

X

)
= 1.

We then deduce from the exact sequence (2.7) that h0(Nϕ) = 2 and
h1(Nϕ) = 2.

2.3.Conditions for the density of nodal (resp. immersed) curves.
The following result is essentially contained in [20, 21]; the idea of con-
dition (c) therein comes from [1].

Theorem 2.5. Let V ⊂ V ξg be an irreducible component and let [C] ∈ V
be a general point, with normalization ϕ : C̄ → X.

(i) Assume that the following two conditions are satisfied:
(a) ωC̄ ⊗ ϕ∗ω−1

X is globally generated;

(b) dim(V ) ≥ h0
(
C̄, ωC̄ ⊗ ϕ∗ω−1

X

)
.

Then C is immersed, i.e. all its singularities consist of (possibly
non transverse) linear branches.

(ii) Assume in addition that the following condition is satisfied:
(c) the line bundle ωC̄ ⊗ ϕ∗ω−1

X separates any (possibly infinitely
near) 3 points, i.e.

h0
(
C̄, ωC̄ ⊗ ϕ∗ω−1

X (−A)
)

= h0
(
C̄, ωC̄ ⊗ ϕ∗ω−1

X

)
− 3

for every effective divisor A of degree 3 on C̄.

Then C is nodal. Equivalently V ⊂ V ξ,δ, with δ = pa(ξ)− g.

Proof: For simplicity we give the proof in the case g ≥ 2. Assume by
contradiction that the curve C has (generalized) cusps. This is equivalent
to the fact that Z 6= 0, where Z ⊂ C̄ is the zero divisor of the differential
of ϕ. By generality, [C] is a smooth point of V , so we may (and will)
assume without loss of generality that V is smooth. As in the proof of
Lemma 2.3, it follows from Theorem 1.5 that there is a simultaneous
resolution of singularities

C̄

π̄ ��

Φ // C
π��

V
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of the universal family of curves over V . This is a deformation of the
morphism ϕ, so we have a characteristic morphism p : V →Mg(X). The
differential

dp[ϕ] : T[C]V → H0(C̄,Nϕ)

is injective because to every tangent vector θ ∈ T[C]V corresponds a non-
trivial deformation of C. On the other hand, it follows from Lemma 2.2
that the intersection Im dp[ϕ] ∩H0(C̄,Hϕ) is trivial. Eventually, we thus
have

dimV = dimT[C]V ≤ h0(C̄, N̄ϕ) = h0
(
ωC̄ ⊗ ϕ∗ω−1

X (−Z)
)
.

By assumption (a), this implies dimV < h0
(
ωC̄ ⊗ ϕ∗ω−1

X

)
, a contradic-

tion. This proves (i).
Assume next that (c) is also satisfied and, by contradiction, that C is

not nodal. We shall show along the lines of [1, pp. 97–98] that it is
then possible to deform C into curves with milder singularities, which
contradicts the generality of C in V and thus proves (ii). First note
that since C is immersed by (i), one has Nϕ = N̄ϕ, so that condition (b)
implies the smoothness of the scheme of morphisms Mg(X) at a point [ϕ]
parametrizing ϕ, the tangent space at this point being

H0(Nϕ) = H0
(
ωC̄ ⊗ ϕ∗ω−1

X

)
.

The assumption that C is not nodal means that there is a point x ∈ C
at which C has either (1) (at least) 3 local branches meeting transversely,
or (2) (at least) 2 local branches tangent to each other. In case (1),
there are three pairwise distinct points p, q, r ∈ C̄ such that ϕ(p) =
ϕ(q) = ϕ(r) = x. It follows from condition (c) that there exists a
section σ ∈ H0(Nϕ) such that σ(p) = σ(q) = 0 and σ(r) 6= 0. Such a
section corresponds to a first-order deformation (hence, by smoothness,
to an actual deformation) of ϕ leaving both ϕ(p) and ϕ(q) fixed while
moving ϕ(r): it therefore turns the triple point constituted at x by the
3 local branches of C under consideration into 3 nodes. In particular it
is not equisingular, a contradiction.

In case (2), there are 2 distinct points p, q ∈ C̄, such that ϕ(p) = ϕ(q),
and im(dϕp) = im(dϕq), and it follows from condition (c) that there

exists a section σ ∈ H0(Nϕ) such that σ(p) = 0 and σ(q) 6∈ im(dϕp).
The corresponding deformation of C leaves ϕ(p) fixed and moves ϕ(q)
in a direction transverse to the common tangent to the 2 local branches
of C under consideration (if the 2 branches of C are simply tangent, the
tacnode they constitute at x is turned into 2 nodes). It is therefore not
equisingular either, a contradiction also in this case.
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In many cases the conditions considered in Theorem 2.5 are not sat-
isfied: this tends to happen when ω−1

X is not positive enough.

• Clearly enough, (a) does not hold in general. Critical occurrences
of this phenomenon are to be observed for rational curves on
K3 surfaces (Remark 4.10) and for anticanonical rational curves on
a degree 1 Del Pezzo surface (Remark 4.3). In these two situations,
the conclusion of Theorem 2.5 is not true in general.
• There can also be actual obstructions to deform the normalization

of the general member of V and then (b) does not hold, see Re-
mark 2.4 and Example 5.1. The conclusion of Theorem 2.5 is not
true for this example.

Remark 2.6. Condition (c) of Theorem 2.5, albeit non-redundant (see
Warning 3.8), is too strong, as the following example shows. Let (X,L)
be a very general primitively polarized K3 surface, with L2 = 12. It
follows from Proposition 4.8 that the general element C of every irre-
ducible component of VL,4 is nodal. On the other hand, having genus 4
the curve C̄ is trigonal, i.e. there exists an effective divisor of degree 3
on C̄ such that h0

(
OC̄(A)

)
= 2, whence

h0
(
ωC̄(−A)

)
= 2 > h0

(
ωC̄
)
− 3 = 1,

and condition (c) does not hold.
A finer analysis is required in order to get the right condition. The

approach described in Section 3 might provide a possibility for doing so.

The following result provides a convenient way to apply Theorem 2.5.

Corollary 2.7. Assume that V ⊂ V ξg is an irreducible component and

let [C] ∈ V be general. If ωC̄ ⊗ ϕ∗ω−1
X is non-special and base-point-free

then C has no cusps. If moreover

(2.9) deg(ωC̄ ⊗ ϕ∗ω−1
X ) ≥ 2g + 2

then C is nodal.

Proof: Condition (a) of Theorem 2.5 is satisfied by hypothesis. The
non-speciality of ωC̄ ⊗ ϕ∗ω−1

X implies that

χ(Nϕ) ≥ h0(ωC̄ ⊗ ϕ∗ω−1
X )

and therefore also condition (b) is satisfied, thanks to (2.6). The last as-
sertion is clear because (2.9) implies that condition (c) is also satis-
fied.
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3. A Cartesian approach

The situation and notations are as set-up in Subsection 1.2.

3.1. Ideals defining tangent spaces. Let C be a reduced curve in
the surface X. We consider the sequence of sheaves of ideals of OC

J ⊆ I ⊆ A ⊆ OC ,

where:

(1) J is the Jacobian ideal: it is locally generated by the partial deriva-
tives of a local equation of C;

(2) I is the equisingular ideal [41]: it does not have any non-deforma-
tion-theoretic interpretation;

(3) A is the adjoint ideal: it is the conductor Cν := HomOC (ν∗OC̄ ,OC)
of the normalization ν : C̄ → C of C.

Being ν birational, Cν is the annihilator ideal AnnOC
(
ν∗OC̄/OC

)
. It

follows that A ⊂ OC is also a sheaf of ideals of ν∗OC̄ , which implies that
there exists an effective divisor ∆̄ on C̄ such that

(3.1) A ∼= ν∗
(
OC̄(−∆̄)

)
.

Moreover, we have

(3.2) ωC̄ = ν∗(ωC)⊗OC̄(−∆̄).

Lemma 3.1. For i = 0, 1, one has

Hi
(
C,A⊗OC(C)

) ∼= Hi
(
C̄, ωC̄ ⊗ ϕ∗ω−1

X

)
,

where ϕ : C̄ → X is the composition of the normalization map ν with the
inclusion C ⊂ X.

Proof: By (3.1) and the projection formula, we have

H0
(
C,OC(C)⊗A

)
= H0

(
C,OC(C)⊗ ν∗

(
OC̄(−∆̄)

))
= H0

(
C̄, ν∗OC(C)⊗OC̄(−∆̄)

)
.

By (3.2) and the adjunction formula ωC = OC(C)⊗ ωX , we have

ν∗OC(C)⊗OC̄(−∆̄) = ν∗ωC ⊗ ϕ∗ω−1
X ⊗OC̄(−∆̄) = ωC̄ ⊗ ϕ∗ω−1

X ,

and the statement follows in the case i = 0. For the second identity,
observe that R1ν∗(ωC̄ ⊗ ϕ∗ω−1

X ) = 0, hence

H1
(
C,OC(C)⊗A

)
= H1

(
C, ν∗(ωC̄ ⊗ ϕ∗ω−1

X )
)

= H1
(
C̄, ωC̄ ⊗ ϕ∗ω−1

X

)
by Leray’s spectral sequence.
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Let ξ ∈ NS(X) be the class of C. From the functorial identifica-

tion of T[C]CurvesξX with H0
(
C,OC(C)

)
we may deduce the sequence of

inclusions

(3.3) H0
(
C, J ⊗OC(C)

)
⊆ H0

(
C, I ⊗OC(C)

)
⊆ H0

(
C,A⊗OC(C)

)
⊆ T[C]CurvesξX ,

which has the following deformation-theoretic interpretation.

Proposition 3.2 ([15, Prop. 4.19]). (i) H0
(
C, J⊗OC(C)

)
is the tan-

gent space at [C] to the subscheme of CurvesξX of formally locally
trivial deformations of C.

(ii) H0
(
C, I ⊗OC(C)

)
is the tangent space at [C] to ES(C). In partic-

ular,

dim[C] ES(C) ≤ h0
(
C, I ⊗OC(C)

)
.

(iii) H0(C,A⊗OC(C)) contains the reduced tangent cone to V ξg(C) at [C].

In particular,

dim[C] V
ξ
g(C) ≤ h

0
(
C,A⊗OC(C)

)
= h0

(
C̄, ωC̄ ⊗ ϕ∗ω−1

X

)
.

As is the case for ES(C), the subscheme of CurvesξX of formally locally
trivial deformations of C is functorially defined [40]; in contrast, V ξg is
only set-theoretically defined.

Proof: (i) is based on results of Artin and Schlessinger respectively; since
we will not use this, we refer to [15] for the precise references. (ii) follows
from [37, 41], as explained in [28, Prop. 3.3.1]. (iii) stems from [36] (the
last equality comes from Lemma 3.1).

The next result is conceptually important: it explains why one would
envisage an affirmative answer to Problem (A) in the first place.

Proposition 3.3 ([43]). Let (C, p) be a reduced planar curve germ, and
consider the local ideals Ip ⊆ Ap ⊆ OC,p. Then Ip = Ap if and only if
p is a node.

This also occurs as [28, Thm. 3.3.2] and [15, Lem. 6.3], where en-
lightening proofs are provided.
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3.2. Effective computations. Next, we collect some results enabling
one to compute in practice the ideals A and I which will be needed in
the sequel.

Lemma 3.4 ([35, II.6–7]). Let C ⊂ X be a reduced curve in a smooth
surface. Consider a finite chain of birational morphisms

Xs+1
εs−→ Xs → · · · → X2

ε1−→ X1 = X

such that each εr is the blow-up of a single closed point qr ∈ Xr, with
exceptional divisor Er (1 ≤ r ≤ s). Let furthermore

• εs,r = εr ◦ · · · ◦ εs : Xs+1 → Xr,
• Cr be the proper transform of C in Xr (C1 = C), and
• mr be the multiplicity of Cr at qr ∈ Xr.

If the proper transform of C in Xs+1 is smooth, then the adjoint ideal
of C is

AC =(εs,1)∗OXs
(
−(m1 − 1)ε∗s,2E1 − · · ·

· · · − (ms−1 − 1)ε∗s,sEs−1 − (ms − 1)Es

)
⊗OX OC .

As far as the equisingular ideal is concerned, we shall only need two
special instances of [19, Prop. 2.17], and refer to loc. cit. §II.2.2 for
further information.

Recall that a polynomial f =
∑

(α,β)∈N2 aα,βx
αyβ is said to be quasi-

homogeneous if there exist positive integers w1, w2, d such that

∀ (α, β) ∈ N2, aα,β 6= 0 =⇒ w1α+ w2β = d.

In such a case, (w1, w2; d) is called the type of f . An isolated planar
curve singularity (C, 0) is said to be quasihomogeneous if it is analytically
equivalent to the singularity at the origin of a plane affine curve defined
by a quasihomogeneous polynomial f , i.e. if the complete local ring ÔC,0
is isomorphic to C[[x, y]]/〈f〉.

Lemma 3.5 ([19, Prop. 2.17]). Let f ∈ C[x, y] be a quasihomogeneous
polynomial of type (w1, w2; d), and consider the affine plane curve C
defined by f . If C has an isolated singularity at the origin 0, then the
local equisingular ideal of C at 0 is

I = J + 〈xαyβ | w1α+ w2β ≥ d〉,

in the local ring OC,0 (where J denotes as usual the Jacobian ideal
〈∂xf, ∂yf〉).
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Recall that simple curve singularities are those defined by one of the
following equations:

Aµ : y2 − xµ+1 = 0 (µ ≥ 1),

Dµ : x(y2 − xµ−2) = 0 (µ ≥ 4),

E6 : y3 − x4 = 0,

E7 : y(y2 − x3) = 0,

E8 : y3 − x5 = 0.

Simple singularities are quasihomogeneous, and one obtains as a corol-
lary of Lemma 3.5 that the equisingular ideal I of a simple singularity
equals its Jacobian ideal J . This means that simple singularities do not
admit non topologically trivial equisingular deformations.

Example 3.6 (Double points). Any double point of a curve is a simple
singularity of type Aµ, µ ≥ 1. At such a point p, the adjoint and
equisingular ideals are respectively

A = 〈y, xb
µ+1
2 c〉 and I = 〈y, xµ〉

in the local ring of the curve at p.

Example 3.7 (Ordinary m-uple points). Let m be a positive integer.
An ordinary m-uple point of a curve is analytically equivalent to the
origin in an affine plane curve defined by an equation

(3.4) f(x, y) = fm(x, y) + f̃(x, y) = 0,

where fm is a degree m homogeneous polynomial defining a smooth sub-
scheme of P1, and f̃ is a sum of monomials of degree > m; such a poly-
nomial f is said to be semi-homogeneous. In particular, [19, Prop. 2.17]
applies to this situation, and the adjoint and equisingular ideals at the
origin of the curve defined by(3.4) are respectively

A = 〈xαyβ | α+β ≥ m−1〉 and I = 〈∂xf, ∂yf〉+ 〈xαyβ | α+β ≥ m〉

in the local ring of the curve (A is computed with Lemma 3.4).

3.3. Pull-back to the normalization. In this subsection we discuss
the possibility of proving Theorem 2.5 by “lifting” the sequence of tan-
gent spaces (3.3) on the normalization of a general member of a maximal
irreducible equigeneric family. First of all, we would like to point out a
fallacy: we explain below why a certain line of argumentation does not
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enable one to remove assumption (c) in (ii). This incomplete argumen-
tation is used in the proofs of [20, Prop. 2.1] (last paragraph of p. 448)
and of [8, Lem. 3.1] (last paragraph of the proof). As indicated in [20],
it is nevertheless possible to prove [20, Prop. 2.1] using the parametric
approach, see, e.g., [21, pp. 105–117]. As for [8, Lemma 3.1] however,
we do not know of any valid proof.

Warning 3.8. As in Theorem 2.5, consider an irreducible component V
of V ξg , and [C] a general member of V , and assume that conditions (a)
and (b) of Theorem 2.5 hold. Suppose moreover that C is not nodal;
this implies by Proposition 3.3 that IC  AC .

Being C ∈ V general, one has T[C]V ⊂ T[C] ES(C) by Proposition 1.4.
Therefore

(3.5) dimV ≤ dimT[C]V ≤ dim
(
T [C] ES(C)

)
= h0

(
C, IC ⊗OC(C)

)
≤ h0

(
C̄, ν∗

(
IC ⊗OC(C)

))
= h0

(
C̄, I ′ ⊗ ωC̄ ⊗ ϕ∗ω−1

X

)
,

where I ′ is the ideal of OC̄ determined by the relation ν∗IC = I ′⊗ν∗AC
(as usual, ν : C̄ → C is the normalization of C and ϕ its composition
with the inclusion C ⊂ X).

Now: although ωC̄⊗ϕ∗ω−1
X is globally generated by our hypothesis (a)

and IC  AC because C is not nodal, in general it does not follow from
the sequence of inequalities (3.5) that dimV < h0

(
C̄, ωC̄ ⊗ ϕ∗ω−1

X

)
, i.e.

there is a priori no contradiction with assumption (b).
The reason for this is that ν∗IC and ν∗AC may be equal even if IC and

AC are not (see Examples 3.9 and 3.10 below). In such a situation, I ′ is
trivial, and (3.5) only gives dimV ≤ h0(C̄, ωC̄ ⊗ ϕ∗ω−1

X ). Example 4.14
displays a situation when both (a) and (b) hold, but the general member
C ∈ V is not nodal (i.e. conditions (a) and (b) hold but the conclusion
of (ii) doesn’t): in this example one has H0

(
IC ⊗ OC(C)

)
= H0

(
AC ⊗

OC(C)
)

although ν∗
(
AC ⊗OC(C)

)
is globally generated and IC  AC .

Therefore, condition (c) of (ii) is not redundant.
With this respect, it is important to keep in mind that base-point-

freeness of the linear system ν∗
∣∣A⊗OC(C)

∣∣ on C̄ does not imply base-
point-freeness of the linear system (of generalized divisors, see Re-
mark 3.13 below)

∣∣A ⊗ OC(C)
∣∣ on C. And indeed, it is almost always

the case that
∣∣A⊗OC(C)

∣∣ has base points (see Remark 3.16).

Also, note that the linear subsystem ν∗
∣∣IC ⊗ OC(C)

∣∣ of
∣∣ν∗(IC ⊗

OC(C)
)∣∣ is in general not complete (see Example 3.9), in contrast with

the fact that ν∗
∣∣A⊗OC(C)

∣∣ =
∣∣ν∗(A⊗OC(C)

)∣∣ by independence of the
adjoint conditions (Lemma 3.1).
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Example 3.9 ([30]). Let C ⊂ P2 be a degree n curve with one ordinary
tacnode (i.e. a singularity of type A3) at a point p and smooth otherwise.
At p, there are local holomorphic coordinates (x, y) such that C has
equation y2 = x4. Then

AC,p = 〈y, x2〉 and IC,p = 〈y, x3〉,

(see Example 3.6) whence the linear system
∣∣AC ⊗OC(C)

∣∣ (resp.
∣∣IC ⊗

OC(C)
∣∣) on C is cut out by the system of degree n curves tangent at p

to the two local branches of C there (resp. having third order contact
at p with the reduced tangent cone to C there).

Now, a third order contact with the reduced tangent cone at p does
not imply anything beyond simple tangency with each of the two local
branches of C there. In coordinates, this translates into the fact that

ν∗AC,pi = ν∗IC,pi = 〈t2i 〉

at the two preimages pi, i = 1, 2, of p, ti being a local holomorphic
coordinate of C̄ at pi. Nevertheless the linear system ν∗

∣∣IC ⊗ OC(C)
∣∣

has codimension 1 in
∣∣ν∗(IC ⊗OC(C)

)∣∣ =
∣∣ν∗(AC ⊗OC(C)

)∣∣ and is free
from base point.

Example 3.10. We consider an ordinary m-uple planar curve singular-
ity (C, 0) as in Example 3.7. Without loss of generality, we assume that
the line x = 0 is not contained in the tangent cone of C at 0. Then
x is a local parameter for each local branch, and it follows from the
computations of AC,0 and IC,0 in Example 3.7 that

ν∗AC,0 = ν∗IC,0 = 〈xm−1〉,

where ν is the normalization of C.

It might nevertheless be possible to use the argument given in Warn-
ing 3.8 to give another proof of (i), i.e. that (a) and (b) of Theorem 2.5
imply that the general member of V is immersed. We have indeed not
found any example of a non immersed planar curve singularity such that
the pull-backs by the normalization of I and A are equal. The next
statement is a first step in this direction.

Remark 3.11. Let (C, 0) be a simple curve singularity, and ν its normal-
ization. Then ν∗AC,0 6= ν∗IC,0 if and only if (C, 0) is not immersed.
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Proof: This is a basic computation. We treat the case of E8, and leave
the remaining ones to the reader. The normalization ν of the E8 singu-
larity factors as the sequence of blow-ups ε1 ◦ ε2 corresponding to the
morphisms of C-algebras

C[u1, v2]

〈u1 − v2
2〉

C[x, u1]

〈x2 − u3
1〉

ε∗2oo C[x, y]

〈y3 − x5〉
ε∗1oo

(v2 u1, u1) (x, u1) ; (x, u1 x)�oo (x, y)�oo

and it follows from Lemma 3.4 that its adjoint is

A = (ε1)∗〈x, u1〉 · 〈x, y〉2 = 〈x3, x2y, xy2, u1x
2, u1xy, u1y

2〉
= 〈x3, x2y, xy2, yx, y2, x4〉
= 〈x3, xy, y2〉.

On the other hand, its equisingular ideal is I = J = 〈x4, y2〉 by Lem-
ma 3.5. Eventually, one has

ν∗A = ε∗2ε
∗
1〈x3, xy, y2〉 = ε∗2〈x3, u1x

2, u2
1x

2〉 = ε∗2〈x3, u1x
2〉

= 〈v3
2u

3
1, v

2
2u

3
1〉 = 〈v2

2u
3
1〉 = 〈v8

2〉
and

ν∗I = ε∗2ε
∗
1〈x4, y2〉 = ε∗2〈x4, u2

1x
2〉 = 〈v4

2u
4
1, v

2
2u

4
1〉 = 〈v2

2u
4
1〉 = 〈v10

2 〉,
so that ν∗A 6= ν∗I, and indeed the E8 singularity is non-immersed.

Remark 3.12. In any event, the tendency is that one loses information
during the pull-back, even in the case of non-immersed singularities. For
instance, in the case of an A2n singularity one has dimC ν

∗A/ν∗I = 1
whereas dimCA/I = n.

3.4. Generalized divisors. As explained in the previous subsection,
one loses information as one pulls back the strict inclusion I  A to the
normalization. In other words, in order to exploit the full strength of
this inequality, it is required to work directly on the singular curve under
consideration. Here, we describe a possibility for doing so, namely by
using the theory of generalized divisors on curves with Gorenstein singu-
larities (a condition obviously fulfilled by divisors on smooth surfaces),
as developed by Hartshorne [22]. A meaningful application will be given
for K3 surfaces in Subsection 4.2.

Recall from [22, §1] that generalized divisors on an integral curve C
with Gorenstein singularities are defined as being fractional ideals of C,
i.e. as those nonzero subsheaves of KC (the constant sheaf of the function
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field of C) that are coherent OC-modules; note that fractional ideals
of C are rank 1 torsion-free coherent OC-modules. As a particular case,
nonzero coherent sheaves of ideals of OC are generalized divisors; these
correspond to 0-dimensional subschemes of C, and are called effective
generalized divisors.

The addition of a generalized divisor and a Cartier divisor is well-
defined (and is a generalized divisor), but there is no reasonable way to
define the addition of two generalized divisors. There is an inverse map-
ping D 7→ −D, which at the level of fractional ideals reads I 7→ I−1 :=
{f ∈ KC | f · I ⊂ OC}. Hartshorne moreover defines a degree function
on the set of generalized divisors, which in the case of a 0-dimensional
subscheme Z coincides with the length of OZ . He then shows that both
the Riemann–Roch formula and Serre duality hold in this context.

Remark 3.13. Let Z be a generalized divisor on C, andOC(Z) the inverse
of the fractional ideal corresponding to Z. The projective space of lines
in H0

(
OC(Z)

)
is in bijection with the set |Z| of effective generalized

divisors linearly equivalent to Z. A point p ∈ C is a base point of |Z|
if p ∈ SuppZ ′ for every Z ′ ∈ |Z|. One has to be careful that OC(Z)
may be generated by global sections even though |Z| has base points,
and that it is in general not possible to associate to |Z| a base-point-free
linear system by subtracting its base locus, the latter being a generalized
divisor, see [22, pp. 378–379 and Ex. (1.6.1)].

Let C be an integral curve in a smooth surface X, and ξ its class
in NS(X). The adjoint and equisingular ideals A and I of C define two
effective generalized divisors on C, which we shall denote respectively
by ∆ and E. As a reformulation of Proposition 3.3, we have:

C not nodal ⇐⇒ degE > deg ∆.

Now, to argue along the lines of Warning 3.8, one has to estimate

h0
(
C,NC/X⊗A

)
−h0

(
C,NC/X⊗I

)
=h0

(
C,OC(C−∆)

)
−h0

(
C,OC(C−E)

)
.

Lemma 3.14. If in the situation above C is not nodal, then

h0
(
C,NC/X ⊗A

)
− h0

(
C,NC/X ⊗ I

)
>h0

(
C,ωX ⊗OC(∆)

)
− h0

(
C,ωX ⊗OC(E)

)
.

Proof: By the Riemann–Roch formula together with Serre duality and
the adjunction formula, we have[

h0
(
C,NC/X ⊗A

)
− h0

(
C,ωX ⊗OC(∆)

)]
−
[
h0
(
C,NC/X ⊗ I

)
−h0

(
C,ωX ⊗OC(E)

)]
=−deg ∆ + degE.
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Remark 3.15. As a sideremark (which will nevertheless be useful in our
application to K3 surfaces), note that deg ∆ = pa(C) − g(C), the so-
called δ-invariant of the curve C. Moreover, it follows from Serre duality
and Lemma 3.1 that

h1
(
C,OC(∆)

)
= h0

(
C,ωC(−∆)

)
= g(C).

The Riemann–Roch formula then tells us that h0
(
OC(∆)

)
= 1, i.e. ∆ is

a rigid (generalized) divisor.

Remark 3.16. The linear system |NC/X ⊗ A| has almost always base
points. To see why, consider the typical case when C has an ordinary
m-uple point p and no further singularity. Then it follows from Exam-
ple 3.7 that |NC/X ⊗ A| consists of those effective generalized divisors
linearly equivalent to NC/X − (m − 1)p. Now, every effective divisor
linearly equivalent to NC/X and containing p has to contain it with mul-
tiplicity ≥ m, so that |NC/X ⊗A| has p as a base point.

4. Applications

Historically, the first instance of Problem (A) to be studied was that
of curves in the projective plane, by Zariski on the one hand, and by
Arbarello and Cornalba on the other. In this situation, the parametric
approach of Section 2 can be efficiently applied.

Usually, inequality (b) of Theorem 2.5 is obtained from the estimate

(4.1) dim
(
G2
d

)
≥ 3d+ g − 9

proved in [1], where G2
d is the moduli space of pairs (C, V ) consisting

of a genus g (smooth projective) curve C and of a g2
d on C (i.e., V is a

degree d linear system of dimension 2 on C), together with the fact that
the group of projective transformations of the plane has dimension 8.
As a sideremark, note that

3d+ g − 9 = dimMg + ρ(2, d, g),

where Mg is the moduli space of genus g curves, and ρ(r, d, g) = g −
(r + 1)(g + r − d) is the Brill–Noether number (see [4, p. 159]).

In Subsection 4.1 below, we deduce inequality (b) of Theorem 2.5 in
a more abstract nonsensical way from (2.6), which actually shows that
we have equality in (b) of Theorem 2.5, hence also in (4.1), even when
ρ < 0.
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4.1. Applications to rational surfaces. We now collect various ap-
plications of Corollary 2.7 that settle Problem (A) for common rational
surfaces. The paper [24] contains results going in the same direction.

We make repeated use of the elementary fact that any line bundle
of degree ≥ 2g on a smooth genus g curve is non-special and globally
generated.

Corollary 4.1 ([1, 43]). The general element of the Severi variety Vd,g
of integral plane curves of degree d and genus g is a nodal curve.

Proof: This is trivial for d = 1, and if d ≥ 2, one has for [C] ∈ Vd,g
deg(ωC̄ ⊗ ϕ∗ω−1

X ) = 2g − 2 + 3d ≥ 2g + 2,

whence Corollary 2.7 applies.

Corollary 4.2. Let X be a Del Pezzo surface of degree d, i.e. −KX is
ample and K2

X = d. Then for every n ≥ 1, the general element C of any
irreducible component of V−nKX ,g is nodal, unless dn ≤ 3. In any event,
C is immersed unless d = n = 1 and g = 0.

Proof: For [C] ∈ V−nKX ,g we have

deg(ωC̄ ⊗ ϕ∗ω−1
X ) = 2g − 2 + nd,

which is ≥ 2g + 2 if nd ≥ 4 and ≥ 2g if nd ≥ 2, so that Corollary 2.7
applies. When d = n = 1, we are considering the pencil | − KX |, the
general member of which is a smooth irreducible curve of genus 1.

Remark 4.3. Observe that the case of V−KX ,0 when X is a Del Pezzo
surface of degree 1 is a true exception, as the following example shows.

Let D ⊂ P2 be an irreducible cuspidal cubic, and let X be the blow-
up of P2 at eight of the nine points of intersection of D with a general
cubic. The proper transform C of D is isolated in V−KX ,0, and is not
nodal. In fact C̄ = P1, and

h0
(
C̄, ωC̄ ⊗ ϕ∗ω−1

X

)
= h0

(
P1,OP1(−1)

)
= 0 = dim

(
Vω−1

X ,0

)
,

but ωC̄ ⊗ ϕ∗ω−1
X = OP1(−1) is not globally generated, so that Theo-

rem 2.5 does not apply.
It is remarkable that, when unlike the situation above X is P2 blown-

up at eight general enough points, all members of V−KX ,0 are nodal
curves.

Corollary 4.4. Let X := Fn = P
(
OP1 ⊕ OP1(n)

)
be a Hirzebruch

surface (n ≥ 0). For every effective L ∈ PicX and 0 ≤ g ≤ pa(L), the
general member of every irreducible component of VL,g is a nodal curve.
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Proof: Let E and F be the respective linear equivalence classes of the
exceptional section and a fibre of the ruling, and H = E + nF . It
is enough to consider the case L = dH + kF , d, k ≥ 0, since every
effective divisor on X not containing the exceptional section belongs to
such an |L|. Consider an integral curve C ∈ |L| of genus g. One has

deg
(
ωC̄ ⊗ ϕ∗ω−1

X

)
= 2g − 2−KX · C = 2g − 2 + dn+ 2d+ 2k,

which is ≥ 2g + 2 (so that Corollary 2.7 safely applies), unless either
d = 0 and k = 1 or d = 1, k = 0, and n ≤ 1. An elementary case by case
analysis shows that the latter cases are all trivial.

4.2. Applications to surfaces with numerically trivial canonical
bundle. We now deal with the case when KX ≡ 0. In this situation
Corollary 2.7 does not apply directly and further arguments are required.

K3 surfaces. Let (X,L) be a polarized K3 surface, with L2 = 2p− 2,
p ≥ 2, and let 0 ≤ g ≤ p. Then X is regular, and p equals both the
dimension of |L| and the arithmetic genus of a member of this linear
system. Moreover, it follows from Lemma 2.3 and (2.6) that

(4.2) g − 1 6 dimVL,g 6 g.

In this case, the existence of deformations of projective K3 surfaces into
non algebraic ones enables one to refine the former dimension estimate,
still by using the techniques of Subsection 2.1. This is well-known to the
experts. We shall nevertheless prove it here for the sake of completeness,
along the lines of [25, Exercise II.1.13.1] and [29, Corollary 4].

Proposition 4.5. Every irreducible component V of VL,g has dimen-
sion g.

Proof: Using Lemma 2.3 and inequality (4.2), it suffices to prove that for
every irreducible component M of Mg(X) and general [φ : D → X] ∈M ,
one has

(4.3) dim[φ]M ≥ g + dim(AutD).

We consider X → ∆ an analytic deformation of X parametrized by the
disc, such that the fibre over t 6= 0 does not contain any algebraic curve.
Then we let πg : Dg → Sg be a modular family of smooth projective
curves of genus g as in Remark 2.1, and

M ′g(X ) := Hom(Dg ×∆/Sg ×∆,X × Sg/Sg ×∆).
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By [25, Theorem II.1.7], we have

dim[φ]M
′
g(X ) ≥ χ(ϕ∗(TX)) + dim(S ×∆)

=
[
−deg(ϕ∗KX) + 2χ(OC̄)

]
+
[
3g − 2 + dim(AutD)

]
= g + dim(AutD).

By construction and functoriality, an étale cover of M ′g(X ) maps finite-
to-one intoMg(X), so the inequality above implies the required (4.3).

Note that Proposition 4.5 does not imply that the varieties VL,g are
non-empty. If the pair (X,L) is general, this is true for 0 ≤ g ≤ pa, as a
consequence of the main theorem in [8].

Proposition 4.6. For g > 0, the general element C of every irreducible
component of VL,g is immersed. If moreover C has a non-trigonal nor-
malization, then it is nodal.

Proof: We have ωC̄⊗ϕ∗ω−1
X = ωC̄ . This line bundle is globally generated

since g ≥ 1, and h0
(
ωC̄ ⊗ ϕ∗ω−1

X

)
= g = dim(V ) by Proposition 4.5.

Therefore conditions (a) and (b) of Theorem 2.5 are satisfied and the first
part follows. If the normalization C̄ is not trigonal, then condition (c)
of Theorem 2.5 is also satisfied and C is nodal.

Corollary 4.7. Let (X,L) be a very general primitively polarized K3 sur-
face (i.e. L is indivisible in PicX) with L2 = 2p − 2, p ≥ 2, and
0 < g ≤ p. If

(4.4) g +
⌊g

4

⌋(
g − 2

⌊g
4

⌋
− 2
)
> p,

then the general element of every irreducible component of VL,g is nodal.

Proof: By [14, Thm 3.1], inequality (4.4) ensures that for every C ∈ |L|,
the normalization of C does not carry any g1

3 .

Proposition 4.8. Let (X,L) be a very general primitively polarized
K3 surface, with L2 = 2p − 2. If g > p

2 , then the general element
of every irreducible component of VL,g is nodal.

Before we prove this, recall that the Clifford index of an integral
projective curve C of arithmetic genus p ≥ 2 is

Cliff(C) := min

{⌊p− 1

2

⌋
,

min{A∈PicC | r(A)≥1 and r(KC−A)≥1}
(
degA− 2r(A)

)}
,
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where PicC is the set of rank 1 torsion-free sheaves on C, and r(M)
stands for h0(M) − 1 for any M ∈ PicC. The bigger Cliff(C) is, the
more general C is with respect to Brill–Noether theory.

Proof of Proposition 4.8: We apply the strategy described in Warn-
ing 3.8, and circumvent the issue therein underlined by using the theory
of generalized divisors on singular curves, as recalled in Subsection 3.4
(we freely use the notations introduced in that subsection): let V be an
irreducible component of VL,g, [C] a general member of V , and assume
by contradiction that C is not nodal. We have

dimV ≤ dim ES(C) = h0
(
C, IC ⊗OC(C)

)
,

and we shall show that

(4.5) h0
(
C, IC ⊗OC(C)

)
< h0

(
C,AC ⊗OC(C)

)
= g,

thus contradicting Proposition 4.5 and ending the proof (the right-hand-
side equality in (4.5) comes from Lemma 3.1).

If h1
(
C,OC(E)

)
< 2, then

h0
(
I ⊗OC(C)

)
= h0

(
ωC(−E)

)
= h1

(
OC(E)

)
≤ 1 < g,

and (4.5) holds. If on the other hand h0
(
C,OC(E)

)
< 2, then (4.5) still

holds, since Lemma 3.14 together with Remark 3.15 yield

h0
(
C,NC/X ⊗A)

)
− h0

(
C,NC/X ⊗ I

)
> 1− h0

(
C,OC(E)

)
.

For the remaining of the proof, we therefore assume that both
h0
(
C,OC(E)

)
and h1

(
C,OC(E)

)
are ≥ 2.

Now, being (X,L) a very general primitively polarized K3 surface,
and C ∈ |L| an integral curve of geometric genus g ≥ 2, it follows
from [5] together with [17] that the Clifford index of C is that of a
general smooth curve of genus p, i.e. Cliff(C) = bp−1

2 c. This implies

p+ 1−
[
h0
(
OC(E)

)
+ h0

(
ωC(−E)

)]
= degE − 2r(E) ≥

⌊p− 1

2

⌋
,

hence

h0
(
ωC(−E)

)
≤ p

2
+ 2− h0

(
OC(E)

)
≤ p

2
,

so that (4.5) again holds.

Remark 4.9. In a private correspondence concerning a previous version
of this paper, X. Chen has shown (using methods completely different
from ours) that the statement of Proposition 4.8 holds more generally
without the limitation g > p

2 .
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Remark 4.10. The case g = 0 in Proposition 4.6 is a true exception.
For example, there exist irreducible rational plane quartic curves with
one cusp and two nodes. Pick a general such curve: then there is a
nonsingular quartic surface in P3 containing it as a hyperplane section.

On the other hand, it seems fairly reasonable to formulate the fol-
lowing conjecture, which predicts that the case g = 0 holds for very
general (X,L). It is of particular interest in the context of enumera-
tive geometry, in that it provides a good understanding of the various
formulae counting rational curves on K3 surfaces (see [16, 6]).

Conjecture 4.11. Let (X,L) be a very general polarized K3 surface.
Then all rational curves in |L| are nodal.

This has been proved by Chen [9] in the particular case of indivisi-
ble L, using a degeneration argument.

Enriques surfaces.

Theorem 4.12. Let X be an Enriques surface and L an invertible sheaf
on X. If g ≥ 3, and [C] ∈ VL,g has a non-hyperelliptic normalization C̄,
then the general element of every component of VL,g containing C has
no cusps. If moreover Cliff(C̄) ≥ 5 then C is nodal.

Proof: The sheaf M := ωC̄ ⊗ ϕ∗ω−1
X has degree 2g − 2, and it is Prym-

canonical: in particular, it is non-special. On a non-hyperelliptic curve,
every Prym-canonical sheaf is globally generated (see, e.g., [26, Lem-
ma (2.1)]). Therefore, the first part follows from Corollary 2.7. If
Cliff(C̄) ≥ 5 then ϕM (C̄) ⊂ Pg−2 has no trisecants, by [26, Prop. (2.2)],
and therefore condition (c) of Theorem 2.5 is also satisfied.

Abelian surfaces. Let (X, ξ) be a polarized Abelian surface, and let

p = pa(ξ). For each [C] ∈ CurvesξX we have dim |C| = p − 2, so that

CurvesξX is a Pp−2-fibration over the dual Abelian surface X̂. A general
Abelian surface does not contain any curve of geometric genus ≤ 1. On
the other hand, the arguments for Propositions 4.5 and 4.6 apply mutatis
mutandis to this situation, so one has:

Proposition 4.13. Let 2 ≤ g ≤ pa, and V an irreducible component
of V ξg . Then dimV = g, and the general [C] ∈ V corresponds to a
curve with only immersed singularities. If moreover C has non-trigonal
normalization, then it is nodal.

Note however that, unlike the case of K3 surfaces, we do not know in
general whether the varieties V ξg are non-empty for 2 ≤ g ≤ pa.
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For genus 2 curves, more is known [27, Prop. 2.2]: if (X,L) is an
Abelian surface of type (d1, d2), then any genus 2 curve in |L| has at most
ordinary singularities of multiplicity ≤ 1

2 (1 +
√

8d1d2 − 7). We have the
following enlightening and apparently well-known example which, among
other things, shows that this bound is sharp.

Example 4.14. Let X be the Jacobian of a general genus 2 curve Σ, and
choose an isomorphism X ' Pic1 Σ; it yields an identification Σ ' ΘX .
Denote by {ΘX} the corresponding polarization on X. The curve Σ has
six Weierstrass points w1, . . . , w6, and the divisors 2wi on Σ are all lin-
early equivalent. It follows that the image of Σ ⊂ X by multiplication
by 2 is an irreducible genus 2 curve C which belongs to the linear sys-
tem

∣∣22 · ΘX

∣∣, and has a 6-fold point, the latter being ordinary by [27,
Prop. 2.2] quoted above.

The curve C and its translates are parametrized by an irreducible

(two-dimensional) component V of V
{4ΘX}
2 . Since ωΣ ⊗ ϕ∗ω−1

X = ωΣ

is globally generated and dimV = 2 = h0(ωΣ), conditions (a) and (b)
of Theorem 2.5 are satisfied. On the other hand, condition (c) of The-
orem 2.5 is clearly not fullfilled and C is not nodal, showing that this
condition is not redundant.

We emphasize that this is an explicit illustration of Warning 3.8. We
have here (letting as usual ν denote the normalization of C)

ν∗
∣∣NC/X ⊗AC∣∣ =

∣∣ν∗(NC/X ⊗AC)
∣∣ = |ωΣ|

which is a base-point-free linear system on C̄, whereas∣∣NC/X ⊗AC∣∣ =
∣∣NC/X ⊗ IC∣∣

even though IC  AC . Observe also that ν∗IC = ν∗AC by Example 3.10.

5. A museum of noteworthy behaviours

5.1. Maximal equigeneric families with non-nodal general mem-
ber. The examples in this subsection are mainly intended to show that
the assumption that ωC̄ ⊗ ϕ∗ω−1

X is globally generated in Theorem 2.5
is necessary. The same goal was achieved by the examples provided in
Remarks 4.3 and 4.10, but the ones presented here are hopefully less
peculiar (e.g., the involved equigeneric families are in general not 0-di-
mensional).

Example 5.1 (A complete positive dimensional ample linear system on a
rational surface, all members of which have a cuspidal double point). The
surface will be a plane blown-up at distinct points, which will allow us the
use of a Cayley–Bacharach type of argument. Let C1, C2 ⊂ P2 be two
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irreducible sextics having an ordinary cusp at the same point s0 ∈ P2,
with the same principal tangent line, no other singularity, and meeting
transversely elsewhere. Their local intersection number at s0 is (C1 ·
C2)s0 = 6, so we can consider 26 pairwise distinct transverse intersection
points p1, . . . , p26 ∈ C1 ∩ C2 \ {s0}. Let π : X → P2 be the blow-up at
p1, . . . , p26, and let L := 6H −

∑
1≤i≤26Ei, where H = π∗OP2(1), and

the Ei’s are the exceptional curves of π. Then, since dim |OP2(6)| = 27,
|L| is a pencil generated by the proper transforms of C1 and C2, hence
consists entirely of curves singular at the point s = π−1(s0) and with
a non ordinary singularity there. The general C ∈ |L| is irreducible of
genus nine, and VL,9 is therefore an open subset of |L|, not containing
any nodal curve.

For general C ∈ |L|, one computes h0
(
ωC̄ ⊗ϕ∗ω−1

X

)
= 1, which shows

that the line bundle ωC̄ ⊗ϕ∗ω−1
X on C̄ is not globally generated (we let,

as usual, C̄ → C be the normalization of C, and ϕ its composition with
the inclusion C ⊂ X). Thus condition (a) of Theorem 2.5 does not hold,
while condition (b) is verified. As a sideremark, note that (−KX ·L) < 0
and L is ample (see also Remark 2.4 above about this example).

This example can be generalized to curves with an arbitrary num-
ber of arbitrarily nasty singularities: simply note that the dimension
of |OP2(d)| grows as d2/2 when d tends to infinity, and is therefore
smaller by as much as we want than the intersection number of two
degree d plane curves for d big enough.

The forthcoming examples all are degree n cyclic coverings π : X →
P2, branched over a smooth curve B ⊂ P2 of degree d. They are smooth
and regular. Let L = π∗OP2(1). One has

H0
(
X, kL

)
= π∗H0

(
P2,OP2(k)

)
if and only if k < d

n .

Example 5.2 (A complete ample linear system with a codimension 1
equigeneric stratum, the general member of which has an An−1-double
point). As a local computation shows, the inverse image in X of a plane
curve simply tangent to B is a curve with an An−1-double point at the
preimage of the tangency point.

It follows that for 1 ≤ k < d
n there is a codimension 1 locus in |kL| that

parametrizes curves with an An−1-double point, although the general
member of |kL| is a smooth curve. This is an irreducible component of
VkL,pa(kL)−bn/2c. It is superabundant, since one expects in general that
codimension c equigeneric strata are components of VkL,pa(kL)−c.
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Example 5.3 (A complete ample linear system containing two codimen-
sion 1 equigeneric strata, that respectively parametrize curves of genera
g1 and g2, g1 6= g2). The inverse image in X of a plane curve having a
node outside of B is a curve having n distinct nodes. Consequently, there
is for every 3 ≤ k < d

n a codimension 1 locus in |kL| that parametrizes
integral curves with n distinct nodes. This is an irreducible component
of VkL,pa(kL)−n, and it is superabundant.

As a conclusion, notice that the discriminant locus in |kL| is reducible,
and has two of its irreducible components contained in VkL,pa(kL)−[n/2]

and VkL,pa(kL)−n respectively.

Example 5.4 (A further example of 0-dimensional equigeneric locus).
Assume there exists a line which meets B at some point s with mul-
tiplicity 4. Then its inverse image in X is a curve with a singular-
ity of type yn = x4. The corresponding point of |L| is a component
of VL,pa(L)−δ, where δ is the δ-invariant of the singularity yn = x4,
which may be computed using Lemma 3.4.

When n = 2, this singularity is a tacnode and δ = 2. In this
case, one gets a component of VL,pa(L)−2 that is not superabundant and
parametrizes non-nodal curves.

It should be clear by now, how these two examples (5.1 and the se-
ries 5.2–5.4) can be generalized to produce an infinite series of examples.

5.2. Singular maximal equisingular families. Let X be a smooth
projective surface, ξ ∈ NS(X), and C an integral curve of genus g and
class ξ. We wish to illustrate in this subsection the fact that the local
structures at [C] of both V ξg and ES(C) are not as nice as one would
expect them to be by looking at their counterparts in the deformation
theory of a single planar curve singularity. In fact, the situation is al-
ready messy in the simplest case X = P2.

Let p1, . . . , pδ be the singular points of C, and let Ĉi be the germ of C
at pi for each i = 1, . . . , δ, and

Ĉi

��

� � // Ĉi

��
Spec(C) // Bi

be the étale semiuniversal deformation of Ĉi (see [15] for a precise ac-
count on this). By their universal properties, there exists an étale neigh-

borhood W → CurvesξX of [C] such that there is a restriction morphism

r : W →
∏
iBi.
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The general philosophy we want to underline can be summed up as
follows.

Remark 5.5. In general, the restriction map r is not smooth.

Note that both domain and codomain of r are smooth. In particular,
the smoothness of r is equivalent to the surjectivity of its differential.

The equigeneric and equisingular loci inside each one of the defor-
mation spaces Bi are known to be well-behaved (we refer to [15] for
details). Among others, let us mention that the equisingular locus is
smooth, and that the general point in the equigeneric locus corresponds
to a deformation of pi in a union of nodes. Now, the smoothness of r
would transport these good properties to V ξg and ES(C). In particular,
it would imply the two following facts:

(1) the general point of every irreducible component V of V ξg corre-
sponds to a nodal curve;

(2) ES(C) is smooth, and of the expected codimension in CurvesξX .

Now Remark 5.5 follows from the fact that neither (1) nor (2) is true
in general. For (1), this was discussed previously in Subsection 5.1. On
the other hand, property (2) can be contradicted in several ways: we
refer to [18] for a discussion of these problems and for a survey of what
is known. Here we solely mention a few examples which are relevant to
our point of view.

If C has n nodes, κ ordinary cusps, and no further singularity, then
ES(C) is the locus of curves with n nodes and κ cusps, and has expected

codimension n + 2κ in CurvesξX . Here, we let X = P2, and adopt
the usual notation Vd,n,κ for the scheme of irreducible plane curves of
degree d, with n nodes, κ cusps, and no further singularity.

Example 5.6 (B. Segre [31], see also [42, p. 220]). For m ≥ 3, there
exists an irreducible component of V6m,0,6m2 , which is nonsingular and
has dimension strictly larger than the expected one.

Example 5.7 (Wahl [40]). The scheme V104,3636,900 has a non-reduced
component of dimension 174 > 128 = 104·107

2 − 3636− 2 · 900.

Example 5.8. There also exists an equisingular stratum Vd,n,κ having
a reducible connected component.
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The construction of the latter, which we shall now outline, follows the
same lines as that of Wahl [40], and is based on the example of [32] (for
a thorough description of which we refer to [23, §13 Exercises]).

Start from a nonsingular curve A of type (2, 3) on a nonsingular
quadric Q ⊂ P3, and let F,G ⊂ P3 be respectively a general quartic
and a general sextic containing A. Then F ∩G = A∪γ where γ is a non-
singular curve of degree 18 and genus 39. As shown in [32], the curve γ is

obstructed. Precisely, [γ] is in the closure of two components of HilbP3

,
each consisting generically of projectively normal, hence unobstructed,
curves.

Now consider an irreducible surface S ⊂ P3 of degree N � 0, having
γ as an ordinary double curve, and let C ⊂ P2 be the branch curve of a
generic projection of S on P2, d := deg(C). By [13], C is irreducible, and
has n nodes and κ-cusps as its only singularities. It then follows from the

results of [40], that HilbP3

at [γ] is smoothly related with Vd,n,κ at [C].
Therefore Vd,n,κ is analytically reducible at [C].

In fact, one can show more precisely that Vd,n,κ is reducible at [C], by
taking generic projections of irreducible surfaces S′ of degree N having
ordinary singularities along curves γ′ which are in a neighbourhood of

[γ] ∈ HilbP3

.
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