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This survey is modeled on the CIMPA introductory lectures I gave
in Guanajuato in February 2016 about moduli of curves. Surveys on
this topic abound and for this reason I decided to focus on few specific
aspects giving some illustration of the relation between local and global
properties of moduli. The central theme is the interplay between the
various notions of “generality” for a curve of genus g. Of course these
notes reflect my own view of the subject. For a recent comprehensive
text on moduli of curves I refer to [5].

1. Parameters

All schemes will be defined over C. The category of algebraic schemes
will be denoted by (Schemes).

1
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Algebraic varieties depend on parameters. This is clear if we define
them by means of equations in some (affine or projective) space, be-
cause one can vary the coefficients of the equations. For example, by
moving the coefficients of their equation we parametrize nonsingular
plane curves of degree d in P2 by the points of (an open subset of) a

PN , where N = d(d+3)
2

.

Less obviously, consider a nonsingular rational cubic curve C ⊂ P3.
Up to choice of coordinates it can be defined by the three quadric
equations:

(1) X1X3 −X2
2 = X0X3 −X1X2 = X0X2 −X2

1 = 0

that I will write as

(2) rk

(
X0 X1 X2

X1 X2 X3

)
≤ 1

If we deform arbitrarily the coefficients of the equations (1) their inter-
section will consist of 8 distinct points. Bad choice!

Good choice: deform the entries of the matrix (2) to general linear
forms in X0, . . . , X3. This will correspond to ask that the corresponding
family of subvarieties is flat, and will guarantee that we obtain twisted
cubics again.

2. From parameters to moduli

Parameters are a naive notion. Moduli are a more refined notion:
they are parameters of isomorphism classes of objects.

Typical example: the difference between parametrizing plane conics
and parametrizing plane cubics. Conics depend on 5 parameters but
have no moduli, cubics depend on 9 parameters and have one modulus.

What does it mean that cubics have one modulus? This has been
an important discovery in the XIX century. It consists of the following
steps ([13], ch. 3):

• given an ordered 4-tuple of pairwise distinct points Pi = [ai, bi] ∈
P1, i = 1, . . . , 4, consider their cross ratio

λ =
(a1b3 − a3b1)(a2b4 − a4b2)

(a1b4 − a4b1)(a2b3 − a3b2)

It is invariant under linear coordinate changes (direct compu-
tation) and takes all values 6= 0, 1.

As we permute the points their cross ratio takes the values

λ, 1− λ, 1

λ
,

1

1− λ
,

λ

1− λ
,
1− λ
λ
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and the expression

j(λ) := 28 (λ2 − λ+ 1)3

λ2(λ− 1)2

takes the same value if and only if we replace λ by any of the
above six expressions. Moreover each j ∈ C is of the form j(λ)
for some λ 6= 0, 1. Therefore we obtain a 1-1 correspondence
between A1

C and unordered 4-tuples of distinct points of P1 up
to coordinate changes.
• Given a nonsingular cubic C ⊂ P2 and P ∈ C there are 4 dis-

tinct tangent lines to C passing through P besides the tangent
line at P . View them as points of P(TPP2) ∼= P1, and compute
their j(λ). Then it can be proved that j(λ) is independent of
P . Call it j(C).

For example if C is in Hesse normal form

X3
0 +X3

1 +X3
2 + 6αX0X1X2 = 0

then 1 + 8α3 6= 0 and j(C) = 64(α−α4)3

(1+8α3)3

• For every j ∈ C there exists a nonsingular cubic C such that
j = j(C).
• (Salmon) Two nonsingular cubics C,C ′ are isomorphic if and

only if j(C) = j(C ′).

Therefore in some sense the set of isomorphism classes of plane cu-
bics is identified with A1

C. Or we might say that A1
C is the moduli space

of plane cubics.
This is not yet a satisfactory definition, because the relation between

A1
C and parametrized curves is not fully transparent. We will discuss

why in §4.

It is difficult to distinguish which parameters are moduli.
For example consider the following linear pencil of plane quartics:

(3) λF4(X0, X1, X2) + µ(X4
0 +X4

1 +X4
2 ) = 0, (λ, µ) ∈ P1

where F4(X0, X1, X2) is a general quartic homogeneous polynomial.
The two quartics F4(X0, X1, X2) = 0 and X4

0 + X4
1 + X4

2 = 0 are not
isomorphic because F4 has 24 ordinary flexes and the other quartic has
12 hyperflexes (i.e. nonsingular points where the tangent lines meets
the curve with multiplicity 4).

Can we infer, from the fact that it contains two non-isomorphic mem-
bers, that the pencil depends continuously on one modulus? Of course
our intuition suggests that this should be the case. But in moduli the-
ory there are two pathologies that can appear, the existence of isotrivial
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families and the jumping phenomenon (both related to the presence of
automorphisms). They are fatal to the existence of a good moduli
space, and we cannot exclude just by intuition that they appear in this
case. We will discuss later the subtle role of isotriviality, and we now
give an example of jumping phenomenon.

Example 1. Consider the graded C[t]-algebra R = C[t,X0, X1] and
the graded R-module

M = coker[ R(−1)


X0

X1

t


// R⊕R⊕R(−1) ]

Then Proj(R) = A1 × P1 and F := M̃ is a rank-two locally free sheaf
on A1×P1. Then P(F)→ A1×P1 is a P1-bundle and, after composing
with the projection, we get a proper smooth family:

f : P(F) −→ A1

whose fibres are rational ruled surfaces. Precisely, one checks that

f−1(α) = P(OP1 ⊕OP1), α 6= 0

f−1(0) = P(OP1(−1)⊕OP1(1))

Therefore all fibres over A1 \ {0} are pairwise isomorphic, while f−1(0)
belongs to a different isomorphism class. There is no continuous vari-
ation of isomorphism classes of the fibres because we have a jumping
above 0. This excludes the possibility of having a space parametrizing
isomorphism classes of ruled surfaces and with reasonable geometric
properties. For details about this example we refer to [37], p. 53-54.

As observed, we cannot a priori exclude that a similar jumping phe-
nomenon takes place in the pencil (3). We will eventually do, but
after some hard work has been done. It’s now time to move to a more
advanced point of view.

3. Families

A family of projective nonsingular irreducible curves of genus g
parametrized by a scheme B is a projective smooth morphism:

f : C −→ B

whose fibres are projective nonsingular curves of genus g. The fibre
over a point b ∈ B will be denoted by f−1(b) or by C(b). Recall that
the genus of a nonsingular curve C is

g(C) := dim(H1(C,OC)) = dim(H0(C,Ω1
C))
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More generally, if C is a possibly singular projective curve we define
its arithmetic genus by

pa(C) := 1− χ(OC)

Clearly g(C) = pa(C) if C is nonsingular and irreducible.
A family of deformations of a given projective nonsingular curve C

parametrized by a pointed scheme (B, b) is a pullback diagram:

(4) C

��

� � // C
f

��
Spec(C)

b // B

where f is a family of projective nonsingular curves of genus g. This
means that, in addition to the family f , an isomorphism C ∼= C(b) is
given.

In the above definitions we can replace smooth curves by possibly
singular ones, but then we must require that the family f is flat.

An isomorphism between two families of curves f : C → B and
ϕ : D → B is just a B-isomorphism:

C Φ //

f ��

D

ϕ~~
B

The family f : C → B is trivial if it is isomorphic to a product family

p : B × C → B

for some curve C.
An isomorphism between two families of deformations of C, say (4)

and

C

��

� � // D
ϕ

��
Spec(C)

b // B

is an isomorphism between the families f and ϕ which commutes with
the identifications of C with C(b) and with D(b). Similarly one defines
the notion of trivial deformation of C.
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A family of curves embedded in a projective variety X is a commu-
tative diagram:

C � � j //

f
��

B ×X

π
{{

B

where f is a family of projective curves of genus g and π is the projec-
tion.

Most important case: X = Pr. One may include the case r = 1 by
replacing the inclusion j by a finite flat morphism. In this case for each
closed point b ∈ B the fibre j(b) : C(b) → P1 will be a ramified cover
of degree independent of b.

If B is irreducible then dim(B) is defined to be the number of pa-
rameters of the family f .

In practice one often considers families including singular curves
among their fibres. One then replaces the smoothness condition by
flatness, which guarantees the constancy of the arithmetic genus of the
fibres.

For example, the pencil of plane quartics considered before defines a
family of curves embedded in P2:

C � � //

��

P1 × P2

{{
P1

parametrized by P1, where C is defined by the bihomogeneous equation
of the pencil. The general fibre of this pencil is nonsingular, but there
are some singular fibres.

4. Moduli functors

We would like to construct, for each g ≥ 0, an algebraic C-scheme
Mg, to be called “moduli space of curves”, whose closed points are in
1–1 correspondence with the set of isomorphism classes of projective
nonsingular irreducible curves (shortly “curves”) of a given genus g.

We saw in §2 that in the case g = 1 the affine line A1
C does the job,

even though we were not completely satisfied by this solution. One
question remained unanswered:

Where should the structure of scheme of Mg come from?

We expect that such structure is natural in some sense, i.e. that
it reflects in a precise way the nature of moduli as parameters. More
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clearly stated, we want a precise relation between Mg and families of
curves of genus g. The functorial point of view comes to help at this
point.

To every scheme X there is associated its functor of points

hX : (Schemes)→ (Sets), hX(S) = Mor(S,X)

and conversely X can be reconstructed from this functor. So we must
look for a functor on the first place and it must be related with families
of curves of genus g. Here is one.

Setting

Mg(B) =

{
families C → B

of curves of genus g

}/
∼=

(where by ∼= we mean “isomorphism”) we obtain a contravariant func-
tor

Mg : (Schemes)→ (Sets)

called the moduli functor of nonsingular curves of genus g.

The optimistic expectation is that Mg is representable, i.e. that it
is the functor of points of a scheme Mg. The representability implies
that Mg comes equipped with a universal family π : X →Mg of curves
of genus g.

“Universal” means that every other family f : C → B of curves
of genus g is obtained by pulling back π via a unique morphism µf :
B →Mg. This property implies that the closed points of Mg are in 1-1
correspondence with the set of isomorphism classes of curves of genus
g (because such isomorphism classes are in turn in 1-1 correspondence
with families of the form C → Spec(C) up to isomorphism). Therefore
the morphism µf necessarily maps a C-rational point b ∈ B to the
isomorphism class [C(b)].

The pair (Mg, π) would then represent the functor Mg. In other
words it would imply the existence of an isomorphism of functors

Mg
∼= hMg

and it would be fair to call suchMg the moduli space (or moduli scheme)
of curves of genus g. Actually its name would be fine moduli space.

The situation is not that simple though. A universal family of curves
of genus g does not exist and this is due to the existence of non-trivial
families f : C → B whose geometric fibres are pairwise isomorphic. In
fact, such a family, like any other, should be induced by pulling back
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the universal family:

C
f

��

// X
π

��
B µf

// Mg

But since all fibres of f are isomorphic µf is constant and therefore f
would be trivial.

Example 2. The above phenomenon appears already in genus g = 0.
There is only one isomorphism class of curves of genus zero, namely
[P1]. So if M0 were representable the universal family would just be
P1 → Spec(C). This would imply, as shown above, that every family
f : C → B of curves of genus zero is trivial. But this contradicts the
existence of non-trivial ruled surfaces C → B, i.e. ruled surfaces not
isomorphic to B × P1 → B.

Example 3. Consider the pencil of nonsingular plane cubics C → A1

given in affine coordinates by:

(5) Y 2 = X3 + t, t ∈ A1 \ {0}
The j-invariant of C(t) is constant and equal to zero. Therefore all C(t)
are pairwise isomorphic. But it is impossible to give an isomorphism of
this family with the constant family Y 2 = X3 + 1 without introducing
the irrationality t1/6. Therefore (5) is non-trivial.

A systematic way of producing non-trivial families of curves of higher
genus whose geometric fibres are pairwise isomorphic is by means of
the notion of isotriviality.

Definition 4. Let f : Z → S be a flat family of algebraic schemes.
Then f is called isotrivial if there is a finite surjective and etale mor-
phism S ′ → S such that the induced family fS′ : S ′ ×S Z → S ′ is
trivial. If S ′ ×S Z ∼= S ′ × Z we say that f is isotrivial with fibre Z.

Example 5 (An example of isotrivial family). Consider the family

f : Spec(C[Z, t, t−1]/(Z2 − t)) −→ Spec(C[t, t−1]) = A1 \ {0}
For each 0 6= a ∈ A1 the fibre f−1(a) = Spec(C[Z]/(Z2 − a)) consists
of two distinct reduced points: hence all fibres of f are isomorphic to
X = Spec(C[Z]/(Z2−1)). As in Example 3 one checks that the family
is not trivial. Consider the etale morphism:

β : Spec(C[u, u−1]) −→ Spec(C[t, t−1]), t 7→ u2
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Pulling back f by β we obtain the family:

Spec(C[Z, u, u−1]/(Z2 − u2)) −→ Spec(C[u, u−1])

and this family is trivial. Therefore f is isotrivial but not trivial.

The existence of isotrivial families is regulated by the following sim-
ple result.

Proposition 6. The following conditions are equivalent on a quasi-
projective scheme X:

• There exists a non-trivial isotrivial family with fibre X.
• The group Aut(X) contains a non-trivial finite subgroup.

For the proof we refer to [44], Th. 2.6.15. For each g ≥ 2 there exist
curves of genus g with non-trivial automorphisms, and all such curves
have a finite group of automorphisms; therefore the proposition applies
to them and implies the existence of non-trivial isotrivial families of
curves of any genus g ≥ 2.

The conclusion is that a universal family of curves of genus g does
not exist, for all g ≥ 0. Equivalently, the moduli functor Mg is not
representable for all g.

No panic: despite these discouraging phenomena we still are on the
right track because any reasonable structure on the set of genus g curves
must be somehow compatible with the moduli functor. All we have to
do is to weaken the condition that there is a universal family. There
are several ways to do this. The one we choose is via the notion of
coarse moduli space.

5. The coarse moduli space of curves

The following definition is due to Mumford [39].

Definition 7. The coarse moduli space of curves of genus g is an
algebraic scheme Mg such that:

• There is a morphism of functors Mg → hMg which induces a
bijection

Mg(C) ∼= Mg(C) = {C-rational points of Mg}
• If N is another scheme such that there is a morphism of functors
Mg → hN then there is a unique morphism Mg → N such that
the following diagram commutes:

Mg
))// hMg
// hN

The definition implies that:
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• The closed points of Mg are in 1–1 correspondence with the
isomorphism classes of (nonsingular projective) curves of genus
g.
• for every family f : C → B of curves of genus g the set theoretic

map

B(C) 3 b 7→ [f−1(b)] ∈Mg

defines a morphism µf : B →Mg. (this is the universal property
of Mg).

It is easy to prove that, if it exists, Mg is unique up to isomorphism.
In that case we say that Mg is coarsely represented by Mg.

The case g = 0 is trivial: M0 = Spec(C) because [P1] is the unique
isomorphism class of curves of genus 0.

The case of genus 1, despite having served us as a useful heuristic
introductory example, requires a special treatment because curves of
genus 1 have a continuous group of automorphisms. It turns out to
be more natural to consider families of pointed curves of genus 1. The
functor of such curves then admits a coarse moduli space, which is
isomorphic to A1

C. The details of its construction are worked out in
[28]. The general case is covered by the following deep result.

Theorem 8. Let g ≥ 2. Then:
(i) (Mumford [39]) Mg exists and is a quasi-projective normal al-

gebraic scheme of dimension 3g − 3.
(ii) (Deligne-Mumford [11], Fulton [18]) Mg is irreducible.

The construction of Mg is obtained by means of Geometric Invariant
Theory, which will not be considered in these lectures. As explained
in the introduction of [11] the irreducibility of Mg had already been
proved classically, via a topological analysis of families of branched
coverings of P1. But an algebro-geometric proof was still lacking.

Moduli are local parameters on Mg around a given point [C] and
the number of moduli on which an abstract curve C depends is the
dimension of Mg at [C].

Now it is clear, at least theoretically, how to distinguish moduli
among parameters. A family of curves f : C → B, with B an irreducible
algebraic scheme, depends on dim(B) parameters and on dim(µf (B))
moduli.

For example in the product family

p : B × C −→ B
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all closed fibres are isomorphic to C and therefore µf (B) = {[C]}:
thus the number of moduli of this family is zero. This happens more
generally if the family is isotrivial.

On the opposite side, an effectively parametrized family is one which
depends on dim(B) moduli and such that µf is finite. This means that
the fibre C(b) over any closed point b ∈ B is isomorphic to only finitely
many others.

Because of the universal property, every 1-parameter family of curves
which contains two non-isomorphic fibres is effectively parametrized.
In particular we can now deduce that the pencil of plane quartics (3)
considered in §2 depends on one modulus.

A family f : C → B is said to have general moduli if µf : B → Mg

is dominant. If a curve C is given as the general member of a family
having general moduli, we say C has general moduli or that C is a
general curve of genus g. This definition can be sometimes misleading
because it presupposes that a family containing C has been given before
we can say that it is a general curve. Nevertheless it is a classical and
ubiquitous terminology.

Variants: moduli of pointed curves
Given g ≥ 0 and n ≥ 1 a useful variant of Mg is the coarse moduli

space Mg,n of n-pointed curves of genus g.
It parametrizes pairs (C; p1, . . . , pn) consisting of a curve C of genus

g and an ordered n-tuple (p1, . . . , pn) of distinct points of C.

The corresponding moduli functor is

Mg,n(B) = {(f : C → B, σ1, . . . , σm)} /isomorphism

where σ1, . . . , σn : B → C are disjoint sections of f : C → B, and the
notion of isomorphism is the obvious one.

6. The dimension of Mg

Riemann was able to count the number of moduli of curves of genus
g, i.e. dim(Mg), by exhibiting a family of curves of genus g with general
moduli in the following way. Assume g ≥ 4.

Consider the family of all ramified covers of P1 of genus g and of a
fixed degree n such that

g + 2

2
≤ n ≤ g − 1
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We can represent it as

C � � j //

f
��

B × P1

π
{{

B

where B is a certain irreducible scheme. Riemann existence theorem
implies that, associating to a cover the (ordered) set of its branch points
we obtain a finite morphism r : B → (P1)2(n+g−1). Therefore dim(B) =
2(n+ g − 1).

Consider µf : B →Mg. We have the following facts:

• each curve of genus g can be expressed as a ramified cover of
P1 defined by a line bundle of degree n provided n ≥ g+2

2
.

Therefore µf is surjective.
• Composing a cover f : C → P1 with a non-trivial automorphism
α : P1 → P1 we obtain another cover α · f : C → P1 defined on
the same curve by the same line bundle L.
• In the range g+2

2
≤ n ≤ g − 1 the line bundles L of degree n

with two sections on a given curve C depend on 2n − 2 − g
parameters.

Therefore the general fibre of µf has dimension

dim(PGL(2)) + 2n− 2− g = 2n+ 1− g

Then we conclude that:

dim(Mg) = dim(Im(µf))

= dim(B)− (2n+ 1− g)

= 2(n+ g − 1)− (2n+ 1− g)

= 3g − 3

This computation depends on several implicit assumptions but is es-
sentially correct.

If g = 2, 3 one can take n = 2, 3 resp. and get the same result by a
similar computation.

The previous computation is an example of parameter counting, a
method that can be applied in several situations and is useful in com-
puting the dimension of various loci in Mg. In such computations the
universal property of Mg is used. There is a better way to perform
them and it is by means of deformation theory (see §9).
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7. Stable curves

The moduli space Mg is quasi-projective but it is not projective. The
reason is that curves varying in a family may become singular. In that
case one speaks of a degenerating family of curves.

It is therefore natural to consider the functor M̃g, of whichMg is a
subfunctor, defined as follows:

M̃g(B) :=

{
isom. classes of flat families

of curves of arithmetic genus g

}
and ask: is it possible to embed Mg into a projective scheme M̃g which

is a coarse moduli scheme for the functor M̃g?
The answer is NO, as the following example shows.

Example 9. Consider a nonsingular curve C and a parameter nonsin-
gular curve B. Let β : S → B×C be the blow-up at a point x ∈ B×C.
We get a flat family:

f : S
β // B × C p // B

whose fibres over B \ p(x) are isomorphic to C while f−1(p(x)) is a
reducible curve. This is again an example of jumping phenomenon and

it implies that the functor M̃g cannot be coarsely represented.

But there is a nice solution if we modify the question by allowing
only certain singular curves.

Definition 10. A stable curve of genus g ≥ 2 is a connected reduced
curve of arithmetic genus g having at most nodes (i.e. ordinary dou-
ble points) as singularities and such that every nonsingular rational
component meets the rest of the curve in ≥ 3 points.

Define the moduli functor of stable curves of genus g ≥ 2 as follows:

Mg(B) :=

{
isom. classes of flat families

of stable curves of genus g

}
We obviously have injective natural transformations of functors:

Mg(B) ⊆Mg(B) ⊆ M̃g(B)

Theorem 11 (Deligne-Mumford). There is a projective scheme M g

containing Mg and coarsely representing the functor Mg. The comple-
ment M g \Mg is a divisor with normal crossings.

Remark 12. Mg is not projective but not affine either. It is known that
a priori it may contain projective subvarieties having up to dimension
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g−2 (Diaz [12]) but the precise bound for their dimension is not known
in all genera.

Other variants of Mg are the moduli spaces of stable pointed curves.
We will not introduce them since they will not appear in our discussion.

8. The local structure of a scheme

Denote by L̂oc the category of local noetherian complete C-algebras
with residue field C, and local homomorphisms. Let

C[ε] := C[t]/(t2)

and D := Spec(C[ε]). If (R,m) is in L̂oc then

tR =
(
m/m2

)∨
= Hom(R,C[ε])

is the (Zariski) tangent space of R.
The strictly local structure of a scheme X around a point x ∈ X(C)

is encoded by the complete local ring ÔX,x, which is by definition the

following object of L̂oc :

ÔX,x = lim
←−
OX,x/mn

X,x

This ring tells us in particular about the dimension and the singularity
of X at x. For example, X is nonsingular of dimension d at x if and only

if ÔX,x is isomorphic to the formal power series ring C[[X1, . . . , Xd]]
where d = dim(tR).

If µ : B →M is a morphism of reduced and irreducible schemes and
b ∈ B(C) is a nonsingular point then much of the local behaviour of µ
at b is encoded by the local homomorphism:

µ̂] : ÔM,µ(b) → ÔB,b
induced by µ. For example if

Spec(ÔB,b)→ Spec(ÔM,µ(b))

is dominant then µ is dominant. The smoothness of µ at b is also
encoded by the local homomorphism µ̂] because it is equivalent to the
surjectivity of the differential:

dµb : tÔB,b = TbB → Tµ(b)M = tÔM,µ(b)

To a ring R in L̂oc one may associate a covariant functor defined on
the category Art of local artinian C-algebras with residue field C:

ĥR : Art −→ (Sets)
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defined by:

ĥR(A) = HomC−alg(R,A)

for all objects A of Art. Covariant functors F : Art −→ (Sets) are

called functors of Artin rings and one of the type ĥR is said to be

prorepresented by R. Note that ĥR is the restriction to Art of the
representable functor

hR : L̂oc −→ (Sets) , hR(S) = HomC−alg(R, S)

on the larger category L̂oc.

A morphism ϕ : R → S in L̂oc induces a natural transformation

ĥS → ĥR which, among other information, encodes the differential

dϕ : tS = ĥS(C[ε])→ ĥR(C[ε]) = tR

For an arbitrary functor of Artin rings F one can consider tF :=
F (C[ε]). Under some conditions tF ha a structure of C-vector space
and we are authorized to call it the tangent space to the functor F .

It is interesting that a ring R in L̂oc can be recovered if we know the

functor ĥR ([44], Prop. 2.3.1). Therefore the prorepresentable functors
play a role with respect to local properties of schemes analogous to
(the role of) functors of points in characterizing schemes globally. One
can start from a functor of Artin rings and try to find conditions for
its prorepresentability. This problem arises naturally for example in
the formalization of deformation theory due to A. Grothendieck. He
introduced the functors of Artin rings and gave a characterization of
the prorepresentable ones (see [22, 23]). His results have been later
improved by M. Schlessinger [42].

9. The local structure of Mg

We want to apply the remarks made in the previous section to the
study of the local structure of Mg at a given point [C]. For doing this
some of the technicalities of deformation theory are needed. Since they
are not appropriate for a survey article of this kind we will only briefly
outline the main steps.

Using the universal property it is natural to consider families of the
form f : C → Spec(A), where (A,m) is in Art, such that there exists
an isomorphism C ∼= f−1([m]). We call them infinitesimal families at
[C] parametrized by A (or by Spec(A)).

We can now define a functor of Artin rings:1

Inf [C] : Art −→ (Sets)

1This functor is called the crude local functor in [28], §18.
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by setting:

Inf [C](A) :=

(
infinitesimal families at [C]

parametrized by A

)/
∼=

Since Mg represents the moduli functor Mg only coarsely, we cannot
expect that Inf [C] is prorepresentable. All we can get from the universal
property of Mg is a natural transformation:

µC : Inf [C] −→ ĥÔ

where Ô = ÔMg ,[C]. But this is not very useful. On the other hand an
infinitesimal family at [C]

f : C → Spec(A)

is very close to being a deformation of C; we only need to further
specify an isomorphism C ∼= f−1([m]). Once we do this we call the
resulting deformation:

C //

��

C
f

��
Spec(C) // Spec(A)

an infinitesimal deformation of C parametrized by A and we define a
functor of Artin rings DefC by:

DefC(A) :=

(
infinitesimal deformations of C

parametrized by A

)/
∼=

This functor is more interesting. For example its tangent space is easy
to describe.

Definition 13. A first order deformation of C is a family of deforma-
tions of C parametrized by C[ε]:

(6) C

��

� � // C
f

��
Spec(C)

(ε)
// D

Therefore tDefC = DefC(C[ε]) is the set of isomorphism classes of first
order deformations of C.

Proposition 14. There is a natural identification:

κ : DefC(C[ε]) ∼= H1(C, TC)

The cohomology class κ(f) associated to a first order deformation (6)
is called the Kodaira-Spencer class of f (KS class).
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For a proof of Proposition 14 we refer to [44], Prop. 1.2.9, where it
is proved, more generally, for the deformation functor of a nonsingular
projective variety of any dimension. The KS class can be used to
introduce an important map associated to any family of deformations
of C:

C

��

� � // C
f

��
Spec(C)

b // B

called Kodaira-Spencer map of f . It is the map:

κ : TbB −→ H1(C, TC)

which associates to a tangent vector v : D → B at b the KS class
κ(fv) of the first order deformation of C:

C

��

� � // CD
fv
��

// C
f

��
Spec(C)

(ε)
// D

v // B

obtained by pulling back f to D. The KS map is linear. As the name
suggests, it has been introduced by Kodaira and Spencer in [34], and
will play an important role in what follows.

Since two isomorphic infinitesimal deformations of C are supported
on isomorphic infinitesimal families at [C], we get a natural “forgetful”
transformation of functors

DefC −→ Inf [C]

obtained by forgetting the isomorphism C ∼= f−1([m]). By composition
with the transformation µC we obtain a natural transformation:

Φ : DefC −→ ĥÔ

The precise relation between these functors is given by the following:

Theorem 15. (i) DefC is prorepresentable. Precisely, if g ≥ 2
DefC is prorepresented by R = C[[X1, . . . , X3g−3]], if g = 1 by
C[[X]] and if g = 0 by C.

(ii) Φ corresponds to a local homomorphism Ô → R such that the

induced morphism Φ̃ : Spec(R) → Spec(Ô) is dominant with
finite fibres.

(iii) The following conditions are equivalent:
– C has no non-trivial automorphisms.

– Φ̃ is an isomorphism.
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– Mg is nonsingular at [C].

Proof. See [44] and [28]. �

As far as the study of families of curves is concerned, it is not so

important to dig into the structure of the local ring Ô anymore. It
suffices to record that the GIT construction shows that, for g ≥ 2, Mg

is locally the quotient of a nonsingular variety of dimension 3g − 3 by
the finite group Aut(C). Theorem 15 is the formal analogue of this
fact.

10. Families with general moduli

Suppose given a family of curves of genus g:

f : C → B

parametrized by an algebraic variety B. Let b ∈ B be a closed non-
singular point and C = f−1(b). We would like to have a criterion to
decide whether µf : B →Mg is dominant, i.e. if f has general moduli,
using only local information about f at b. If the differential:

dµf,b : TbB −→ T[C]Mg

is surjective then µf is smooth at b and therefore the family f has gen-
eral moduli. This criterion can possibly work only if Mg is nonsingular
at [C]. A more efficient result is the following.

Proposition 16. Let f : C → B be a family of curves of genus g
parametrized by an algebraic variety B, let b ∈ B be a closed nonsin-
gular point and C = f−1(b). If the KS map:

κ : TbB −→ H1(C, TC)

is surjective then f is a family with general moduli.

Proof. Let S = ÔB,b. The family f defines a natural transformation
of functors of Artin rings:

ĥS −→ DefC

by associating to every A in Art and (α : S → A) ∈ ĥS(A) the infini-
tesimal deformation:

C //

��

Spec(A)×B C

��
Spec(C) // Spec(A)
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obtained by pulling f via α. This natural transformation corresponds
to a homomorphism: Ψ : R → S where R is the ring prorepresenting
DefC (Theorem 15(i)). We have a commutative diagram:

Spec(S)
µ̂ //

Ψ̃ %%

Spec(Ô)

Spec(R)
Φ̃

99

where µ̂ is induced by the functorial morphism µf : B → Mg. Since

κ = dΨ is surjective Ψ̃ is smooth, and by Theorem 15(ii) Φ̃ is dominant.
Thus µ̂ is dominant and therefore also µf is dominant. �

Note that the criterion of Proposition 16 applies regardless of whether
Aut(C) is trivial or not.

11. The Hilbert scheme

The next step is to have a good description of families of curves
in a given projective space, which are the most important families
appearing in nature. This is done by introducing new objects, the
Hilbert schemes. For details on this section we refer to [5, 44].

We will introduce first the functors that are represented by the
Hilbert schemes. Fix a polynomial p(t) ∈ Q[t] and define a contravari-
ant functor:

Hilbrp(t) : (Schemes) −→ (Sets)

setting

Hilbrp(t)(B) =

{
families of closed subschemes of Pr

param. by B and with Hilbert polyn. p(t)

}
This is the Hilbert functor for the polynomial p(t).

Theorem 17 (Grothendieck [24]). For every r ≥ 2 and p(t) there is a
projective scheme Hilbrp(t) and a family

(7) X � � //

f

��

Hilbrp(t) × Pr

xx
Hilbrp(t)

which is universal for the functor Hilbrp(t). In particular Hilbrp(t) is
representable.



20 E. SERNESI

Hilbrp(t) is called Hilbert scheme of Pr relative to the Hilbert polyno-
mial p(t).

It is a very complicated object, highly reducible and singular, in
general non-reduced, but connected. Its local properties at a point
[X ⊂ Pr] depend only on the geometry of the embedding X ⊂ Pr, as
the following shows.

Theorem 18 (Grothendieck [24]). Let X ⊂ Pr be a local complete
intersection with Hilbert polynomial p(t). Let I ⊂ OPr be its ideal
sheaf and N = NX/Pr := Hom(I/I2,OX) its normal bundle. Then:

• H0(X,N) is the Zariski tangent space to Hilbrp(t) at [X].

• h0(X,N)− h1(X,N) ≤ dim[X](Hilbrp(t)) ≤ h0(X,N).

• If H1(X,N) = 0 then Hilbrp(t) is nonsingular of dimension

h0(X,N) at [X].

If C ⊂ Pr is a nonsingular curve of degree d and genus g then the
Hilbert polynomial of C is p(t) = dt+1−g and we write Hilbrd,g instead
of Hilbrp(t). Then:

h0(C,N)− h1(C,N) = χ(C,N) = (r + 1)d+ (r − 3)(1− g)

For example, if C is a nonsingular plane curve of degree d its genus
is g =

(
d−1

2

)
and N = OC(d). Then H1(C,N) = 0 and

h0(C,N) = 3d+ g − 1 =
d(d+ 3)

2
=

(
d+ 2

2

)
− 1

If C ⊂ P3 is a nonsingular curve of degree d and genus g then χ(N) = 4d
does not depend on g. Hilb3

d,g can be singular and/or of dimension> 4d.

If C ⊂ Pr is nonsingular of degree d and genus g the KS map of the
universal family (7) at the point [C] is a map:

(8) κC : T[C]Hilbrd,g = H0(C,NC/Pr) −→ H1(C, TC)

Proposition 19. κC is the coboundary map of the normal sequence

0 // TC // TPr|C // NC/Pr // 0

Proof. An easy diagram chasing. �

It is of primary importance to decide for which d, g, r there is an
irreducible component of the Hilbert scheme Hilbrd,g such that the uni-
versal family restricted to it has general moduli. For the investigation
of this condition we introduce a new object.
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Definition 20. Let C be a curve and L an invertible sheaf on C. The
multiplication map:

µ0(L) : H0(L)⊗H0(ωCL
−1) −→ H0(ωC)

is the Petri map relative to L.

We have:

Proposition 21. Let C ⊂ Pr be of degree d and genus g, L = OC(1),
and assume that µ0(L) is injective. Then [C] ∈ Hilbrd,g is a nonsingular
point and the map (8) is surjective. Therefore the universal family
(7) has general moduli around [C] (shortly, the curves parametrized by
Hilbrd,g nearby [C] have general moduli).

Proof. We can reduce to the case r + 1 = h0(L). Then we use the
restricted Euler sequence

0 // OC // H0(L)∨ ⊗ L // TPr|C // 0

to show that the injectivity of µ0(L) is equivalent to H1(C, TPr|C) =
0. Then we use Proposition 16, Theorem 18 and Proposition 19 to
conclude. �

If L is an invertible sheaf on C such that deg(L) = d and h0(L) = r+1
then the expected corank of µ0(L) is

ρ(g, r, n) := g − (r + 1)(g − d+ r)

It is called the Brill-Noether number relative to g, r, d. Of course for
µ0(L) to be injective it is necessary that ρ(g, r, n) ≥ 0. The condition
ρ(g, r, d) ≥ 0 is equivalent to d ≥ 1

2
g + 1 if r = 1, and to d ≥ 2

3
g + 2 if

r = 2, etc.
On the other hand µ0(L) can have a non-zero kernel even if ρ(g, r, n) ≥

0, as shown by plenty of examples. Nevertheless the following impor-
tant result holds.

Theorem 22. Let r ≥ 3 and d, g ≥ 0 such that ρ(g, r, d) ≥ 0. Then
Hilbrd,g has a unique irreducible component Ird,g whose general point

parametrizes a nonsingular irreducible curve C ⊂ Pr such that h0(OC(1)) =
r+1 and µ0(OC(1)) is injective. In particular an open non-empty subset
of Ird,g parametrizes a family of curves of genus g with general moduli.

If r = 2 and d, g ≥ 0 are such that d ≥ 2
3
g + 2 then there is an ir-

reducible locally closed Vd,g ⊂ |H0(P2,O(d))| parametrizing irreducible
plane curves of degree d and geometric genus g such that:
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(a) Every Γ ⊂ P2 parametrized by a point of Vd,g has only nodes as
singularities and the sheaf L = ν∗OΓ(1) on the normalization
ν : C → Γ satisfies h0(L) = 3 and µ0(L) injective.

(b) The restriction to Vd,g of the universal family can be simulta-
neously desingularized and the resulting family of nonsingular
curves of genus g has general moduli.

(c) There is a unique Vd,g maximal with respect to properties (a)
and (b).

This theorem has been forseen since the beginning of curve theory,
starting from Brill-Noether [6] and Severi [46]. It is due to the con-
centrated efforts of several mathematicians during the 1970’s and 80’s:
Kleiman-Laksov [33], Kempf [32], Arbarello-Cornalba [4], Eisenbud-
Harris [14], Gieseker [20], Fulton-Lazarsfeld [19], Harris [26].

12. Petri general curves

The Petri map is a central object in curve theory.

Definition 23. A curve C is called Petri general if the Petri map
µ0(L) is injective for all invertible sheaves L ∈ Pic(C).

Note that if deg(L) < 0 or deg(L) > 2g − 2 then µ0(L) is clearly
injective. Moreover µ0(L) = µ0(ωCL

−1). Therefore the condition that
C is Petri general has to be checked only on invertible sheaves such
that 0 ≤ deg(L) ≤ g − 1.

A Petri general curve has the property that any embedding C ⊂
Pr, r ≥ 3, by a complete linear system corresponds to a nonsingular
point of one of the components Ird,g of the Hilbert scheme described by
Theorem 22.

The definition of Petri general curve is completely intrinsic, i.e. it
does not make use of families. In a footnote to [41] K. Petri, a student
of M. Noether, stated as a fact what has been subsequently considered
as

Petri’s conjecture: For every g a general curve of genus g is Petri
general.

This conjecture asserts that for a curve C the condition of being Petri
general does not impose any closed condition on its moduli. According
to the conjecture Petri general curves should be the most natural ones
available in nature. But in fact this is not the case.

For example nonsingular plane curves of degree d ≥ 5 are not Petri
general.
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In fact if C ⊂ P2 is of degree d then ωC = O(d− 3) and therefore

H0(ωCL
−2) = H1(OC(2))∨ 6= 0

if d ≥ 5. Then use a simple remark which shows that H0(ωCL
−2) ⊂

ker(µ0(L)) for any L on any curve. A similar argument holds for com-
plete intersections of multidegree (d1, . . . , dr−1) such that

∑
dj ≥ r+3.

It is very difficult to produce explicit examples of Petri general curves
(see the final section for more about this). So the challenge of Petri’s
conjecture, if true, is to modify our intuitive idea of a general curve.

The conjecture is in fact true. It has been proved for the first time
by Gieseker [20], and subsequently it has been given simpler proofs by
Eisenbud and Harris [14] and by Lazarsfeld [35]. Special cases of the
conjecture had been proved before by Arbarello and Cornalba [4].

13. Unirationality

To describe explicitly a general curve of genus g is the most elu-
sive part of the theory. To write down equations of a general curve
with coefficients depending on parameters requires solving a mixture
of abstract and concrete problems that are very difficult to concile.

For instance, it is very difficult to give an explicit description/construction
of the family parametrized by Ird,g described in Theorem 22, even if we
know that it exists. The attempts to construct such explicit families
have a long history and have motivated a large amount of work on Mg.
The classical geometers succeeded for the first values of g and observed
that for the families they got the parameter variety is rational or unira-
tional. For example, a canonical curve of genus 3 is just a nonsingular
plane quartic: it moves in the linear system |H0(P2,O(4))| ∼= P14. A
similar remark can be made for genus 4 and 5 since canonical curves
of genus 4 and 5 are complete intersections in P3 (resp. P4).

One can prove, because of Theorem 22, that the general curve C of
genus 6 can be realized as a plane sextic curve with 4 double points
(see the table below). The linear system of adjoints to C of degree
3 maps P2 birationally to a Del Pezzo surface S ⊂ P5 containing the
canonical model of C. Now C ⊂ P5 is the complete intersection of S
with a quadric, therefore it varies in the linear system |OS(2)|, which is
15-dimensional. Since any two general 4-tuples of points in P2 are pro-
jectively equivalent, all the Del Pezzo surfaces costructed in this way are
isomorphic. Therefore the general curve C of genus 6 is parametrized
by a point varying in a (15 = 3 · 6− 3)-dimensional linear system on a
fixed surface S, and M6 is thus unirational. A more delicate argument,
due to Shepherd-Barron [47], shows that M6 is even rational.
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One may ask whether an analogous statement is true for higher val-
ues of g, namely whether it is possible to produce a family of projective
curves with general moduli parametrized by a rational variety, say an
open subset of a projective space. For such a family f : C → B the
functorial morphism µf : B →Mg, being dominant, proves that Mg is
unirational.

To my knowledge M. Noether was the first to ask such a question.
He extended the above constructions to the more difficult case of genus
7 proving the unirationality of M7 by explicit describing the canonical
curves [40].

Subsequently Severi [45] extended the result up to genus 10. The
proof given by Severi is quite simple and can be easily understood by
looking at the following table which lists degree and number of nodes of
plane curves of minimal degree and non-negative Brill-Noether number.

genus degree δ d(d+3)
2
− 3δ ρ

0 1 0 2 0
1 3 0 9 1
2 4 1 11 2
3 4 0 14 0
4 5 2 14 1
5 6 5 12 2
6 6 4 15 0
7 7 8 11 1
8 8 13 5 2
9 8 12 8 0
10 9 18 0 1
11 10 25 -10 2
12 10 24 -7 0
...

...
...

...
...

Families of plane nodal curves with general moduli

In outline it goes as follows. The table shows that if g ≤ 10 it is
possible to realize a general curve of genus g as a plane curve of degree
d with δ singular points in such a way that

3δ ≤ d(d+ 3)

2

This implies, modulo a careful argument, that we can assign the singu-
lar points of such a curve in general position. Then the parameter space
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of the corresponding family f : C → Vd,g is fibered over an open subset
of (P2)(δ) with fibres linear systems, and therefore Vd,g is rational.

Based on such limited evidence Severi conjectured the unirationality
of Mg for all g [45]. This conjecture resisted for 67 years, even though
it was certainly considered with great interest (see e.g. [38]), until it
was finally disproved by Harris and Mumford in 1982 [27]. One year
earlier the unirationality of M12 had been proved [43] and other results
followed promply ([36, 8, 15, 9, 29, 30, 31, 47]. Other results have
been proved in more recent years [16, 7, 17, 48]. Now we have a quite
precise information about the Kodaira dimension of Mg for almost all g,
summarized in the table below. The problem is not yet closed though
because as of today (june 2016) we have no idea about the Kodaira
dimension of Mg for 17 ≤ g ≤ 21. This is a challenge for younger
generations!

For a detailed discussion of the vast topic touched in this section I
refer the reader to the survey article of Verra [49].

genus K-dim credit
1, 2, 3, 4, 6 rational Weierstrass-Salmon (1), Igusa (2)

Katsylo (3,4,5), Shepherd-Barron (6)
11 uniruled Mori-Mukai
≤ 14 unirational Noether (≤ 7), Severi (≤ 10),

Sernesi (12),
Chang-Ran (11, 13), Verra (14)

15 rat.lly connected Chang-Ran (κ = −∞), Bruno-Verra
16 uniruled Chang-Ran (κ = −∞), Farkas

22,≥ 24 gen. type Farkas (22), Harris-Mumford (odd),
Eisenbud-Harris (even)

23 ≥ 2 Farkas

State of the art about the Kodaira dimension κ of Mg

14. Construction of Petri general curves

The existence of Petri general curves has been proved originally [20]
by degeneration, thus in a non-effective way. The following has been a
breakthrough:

Theorem 24 (Lazarsfeld [35]). If S is a K3 surface with Pic(S) =
Z[H] then a general curve C ∈ |H| is Petri general.

This result is still non-effective, but it brings very clearly on the
forefront the fact that Petri general curves are not necessarily appearing
in families with general moduli. In fact the specific classes of Petri
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general curves described by Theorem 24 (we will call them K3-curves)
are an illustration of this fact. Let’s count parameters.

• Pairs (S,H) depend on 19 moduli.
• The linear system |H| on a given (S,H) has dimension g =

1
2
(H ·H) + 1.

Therefore K3-curves depend on ≤ g + 19 moduli. If g ≥ 12 then
3g − 3 > g + 19 and therefore a K3-curve of genus g is not a general
curve if g ≥ 12, even though it is Petri general.

K3-curves of genus g ≥ 12 have been characterized recently among
the Petri general ones by means of a cohomological condition by Ar-
barello, Bruno and Sernesi [3]. The condition is that the so-called Wahl
map

(9)
2∧
H0(ωC) −→ H0(ω3)

is not surjective. Precisely, the map (9) is known to be surjective on
general curves [10] and therefore its non-surjectivity defines a closed
locus W ⊂ Mg. It has also been known since some time [50] that
the locus of K3-curves is contained in W . In [3] it is proved that W
intersects the open set of Petri general curves precisely along the closure
of the locus of K3-curves.

This argument leaves open the possibility that there exist Petri gen-
eral curves in W that are limits of K3-curves without being K3-curves,
namely Petri general curves not contained in a K3 surface but only on
a (singular) limit of K3 surfaces. This question has been considered
recently by Arbarello, Bruno, Farkas and Saccà in [2]. In their work
the authors give examples of Petri general curves C of every genus
g ≥ 1 on certain rational surfaces that are limits of K3 surfaces. These
surfaces are obtained by contracting the exceptional elliptic curve on
the blow-up of P2 at 10 points p1, . . . , p10 ∈ P2 conveniently chosen on
a cubic. The curves C, called Du Val curves, are the images of the
proper transforms of curves of degree 3g passing through the points
p1, . . . , p9, p10 with multiplicity (g, . . . , g, g− 1, 1). In [1] Arbarello and
Bruno have finally shown that there exist Du Val curves which are not
K3-curves even though they are limits of K3-curves, thereby proving
that the result of [3] is sharp.
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