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4 CONTENTS

0.1. Goals and strategy of Deformation Theory
S:DTgoals

Deformation Theory (DT) is closely related with the problems of classification
in Algebraic Geometry (AG). Given a classM of objects, for instance

M = {isomorphism classes of projective nonsingular varieties of given invariants}
M = {vector bundles of fixed rank and Chern classes on a variety X}
M = {closed subschemes X ⊂ Pr with fixed Hilbert polynomial}

etc., the corresponding classification problem is: describe M. The interest and
difficulty of this problem are due to the existence of families. For each classM we
will be able to define the appropriate notion of “family of objects ofM parametrized
by a scheme S”, and this notion will be functorial. In other words we will be able
to define a (contravariant) functor:

FM : Schemes −→ Sets

by sending
S 7→ {families of objects ofM parametrized by S}

The existence of this functor implies thatM has some kind of structure, hopefully
M will be the set of (closed) points a scheme M , which will be called the (course)
moduli scheme of M. Ideally FM will even be representable, i.e. of the form
FM(−) = Hom(−,M), where M parametrizes a universal family of objects of
M. All this is very optimistic, and in fact a scheme M equipped with a universal
family almost never exists. In general the functor FM will be endowed with a
weaker structure, usually some kind of algebraic stack, and the goal is to describe
such structure.1

A more limited goal is to study M locally, i.e. to study its structure at a fixed
m ∈ M. Even this goal can be technically very hard. The purpose of DT is to
study m ∈M using only infinitesimal methods. Suppose that we are working over
a fixed algebraically closed field k and, to fix ideas, let’s consider a specific case
when FM is representable.

Theorem 0.1.1 (Grothendieck [G]). Fix r ≥ 1. Let p(t) be a polynomial with
rational coefficients such that p(k) ∈ Z for all integers k. There exists a projective
scheme H = Hr

p(t) and a closed subscheme W ⊂ Pr × H, flat over H such that

the fibres over the closed points h ∈ H are all the closed subschemes of Pr having
p(t) as Hilbert polynomial. Moreover the pair (H,W ) is universal, in the following
sense. If S is a scheme and Z ⊂ Pr × S is a closed subscheme, flat over S, such
that all fibres of Z over closed points of S have Hilbert polynomial p(t), then there
is a unique morphism S → H such that Z = S ×H W .

Suppose that we want to study H infinitesimally at the point h parametrizing a
closed subscheme C ⊂ Pr. We will then consider only flat families of the form Z ⊂
Pr × Spec(A), flat over Spec(A), where A is a local artinian k-algebra with residue
field k, such that the closed fibre is C. Note that, set theoretically, Spec(A) consists
of only one point and that, by the representability, families as above correspond
in a 1-1 fashion to homomorphisms OH,h → A. Studying such families will be
already sufficient for the understanding of several important properties of the local
ring OH,h of H at h. This provides only an intermediate, but already useful, step

1More precisely, in each case the set of all families of objects im M will be a category fibered
in groupoids (or a groupoid fibration). See [B] for definitions and details.
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towards the full local understanding of H. On the other hand infinitesimal methods
are much easier to control than general ones, and the resulting theory will be widely
applicable in practise.
In the general situation of a class M of objects, DT only considers families in
M parametrized by spectra of Artinian local k-algebras, without assuming the
existence of a “moduli space”M of any kind. Under very mild assumptions on

M, DT is able to prove the existence of a complete local ring ÔM,m, which plays
the role of a local moduli space, and to obtain useful informations on it. This will
be discussed below.

Before starting with DT it will be useful to overview the use of infinitesimal
methods in the study of a local ring, and see which kind of information it is possible
to obtain using such methods.





CHAPTER 1

Infinitesimal methods

1.1. Formal smoothness
S:formsmooth

We fix an algebraically closed field k. We will only consider k-schemes. We
denote by:

A: the category of local artinian k-algebras with residue field k.

Â: the category of complete local noetherian k-algebras with residue field k.
A∗: the category of local noetherian k-algebras with residue field k.

Morphisms are local k-homomorphisms. A is a full subcategory of Â, which is a
full subcategory of A∗.
Let S be a ring. A surjective homomorphism π : A→ A of S-algebras with kernel
I is called a square-zero extension of A by I if I2 = 0; in this case I has a structure
of A-module. The notion of isomorphism of square-zero extensions is given in the
obvious way. The set of isomorphism classes of square-zero extensions of A by I is
denoted by ExS(A, I). Exactly as in the case of module extensions, it is possible
to give ExS(A, I) a structure of A-module.
A surjection π : A → A in A is called a semi-small extension if mAI = 0, and it
is small if dimk(I) = 1. By definition, the kernel I of a semi-small extension is
a k = A/mA-vector space. This holds in particular for a small extension. Every
semi-small extension is square-zero.

The ring of dual numbers is k[t]/(t2), usually written as k[ϵ], where ϵ = t mod
(t2), and ϵ2 = 0. Clearly

0 −→ kϵ −→ k[ϵ] −→ k −→ 0

is a small extension.
More generally, given a finite dimensional k-vector space V , we can consider

the k-vector space k⊕ V , and define a ring structure by

(a, v)(b, w) = (ab, aw + bv)

We denote this ring by k[V ]. Clearly k[V ] is a local artinian k-algebra with square-
zero maximal ideal V . The square zero extension π : k[V ] → k has a section
σ : k→ k[V ], given by

σ(a) = (a, 0)

π is called the trivial extension with kernel V .

L:small Lemma 1.1.1. Every surjection π : A → A in A can be obtained as a com-
position of small extensions, hence, in particular, as a composition of semi-small
extensions.

Proof. By induction on d := dimk(A). If d = 1 there is nothing to prove.
Assume d ≥ 2. Let I = ker(π), and let n be the highest integer such that mnAI ̸=

7



8 1. INFINITESIMAL METHODS

(0), and let 0 ̸= t ∈ mnAI. Then (t) = k · t is a 1-dimensional k-vector space,

A → A′ := A/(t) is a small extension and A = A′/(I/(t)) Therefore we have a
factorization:

A //

π
��

A′

π′
��

A

with π′ surjective and dimk(A
′) < dimk(A). Now we conclude by induction. □

Let (R,m) be a noetherian local k-algebra with residue field k. Typically R
will be the local ring of an algebraic scheme, or the completion of such a ring. To
R there is associated the representable functor

HomA∗(R,−) : A∗ −→ Sets,

We can consider the restriction of this functor to A, to be denoted by

hR : A −→ Sets, hR(A) = HomA∗(R,A)

This is an example of functor of Artin rings, i.e. of a covariant functor F : A → Sets.
Those of the form hR as above are called prorepresentable. They have the special
property that hR(k) consists of one point, namely the unique map R→ R/m = k,
sending r 7→ r, where r = r mod mR. If we consider any k-algebra R, not necessarily
local, we can still consider the corresponding functor of Artin rings hR : A −→ Sets:
in this case hR(k) will consist of the k-rational points of Spec(R).

Returning to the local case, note that if R̂ is the m-adic completion of R, the two
functors hR and hR̂ coincide. In particular the functor hR will not be able to
distinguish R from any other local ring S having the same completion.
An infinitesimal notion on objects and morphisms of A∗ is one which can be de-
fined in terms of the corresponding functors hR and natural transformations be-

tween them. For example, the Zariski tangent space tR :=
(
m/m2

)∨
of R is an

infinitesimal object associated to R because

tR = hR(k[ϵ])

Ex:tgspace Example 1.1.2. It is an easy exercise to check that the vector space structure
on tR can be deduced in a functorial way from properties of the functor F = hR.
Consider the homomorphism

(α, β) : k[ϵ]×k k[ϵ]→ k[ϵ]

given by (c+ aϵ, c+ bϵ) 7→ c+ (αa+ βb)ϵ. The canonical map

D : F (k[ϵ]×k k[ϵ]) −→ F (k[ϵ])× F (k[ϵ])

sends ϕ : R→ k[ϵ]×kk[ϵ], v 7→ v+d1(v)+d2(v), to (ϕ1, ϕ2), where ϕi(v) = v+di(v).
Therefore D is bijective. Then the vector space structure on F (k[ϵ]) is given by the
composition

F (k[ϵ])× F (k[ϵ]) D−1
// F (k[ϵ]×k k[ϵ])

F (α,β)// F (k[ϵ])

Note that we have used the property F (k) = {one point}.
More generally, assume given a functor of Artin rings F satisfying F (k) = {one point}
and such that the map D is bijective. Then in the same fashion we can define a



1.1. FORMAL SMOOTHNESS 9

k-vector space structure on tF := F (k[ϵ]). This will be called the tangent space of
F , and we will say that F has a tangent space.

The most important infinitesimal notion is given by the following:

Definition 1.1.3. A ring homomorphism f : S → R is called formally smooth
(resp. formally étale) if for every commutative diagram:

E:smoothdia1E:smoothdia1 (1.1) R
φ // A

S

f

OO

// A

π

OO

where π : A → A is a surjection in A, there exists φ : R → A (resp. a unique
φ : R→ A) such that the resulting diagram

E:smoothdia2E:smoothdia2 (1.2) R
φ //

φ
��

A

S

f

OO

// A

π

OO

is commutative. If S = k and f : k→ R is formally smooth then we say that R is
a formally smooth k-algebra.
f is called smooth (resp. étale) if it is formally smooth (resp. formally étale) and
essentially of finite type (i.e. R is a localization of an S-algebra of finite type).

R:sqzero Remark 1.1.4. Thanks to Lemma 1.1.1, in order to check if f : S → R is
formally smooth (resp. étale) one can limit to check the condition of the definition
on square-zero extensions A→ A in A, or even on small extensions.

R:smooth Remark 1.1.5. It can be proved that if f : S → R is formally smooth then
φ as in (1.2) exists for every diagram (1.1) where π is any surjection of rings with
ker(π) nilpotent (see [Se], theorem C9).

We can rephrase the previous definition as follows.

P:formsmooth Proposition 1.1.6. A morphism f : S → R in A∗ is formally smooth (resp.
formally étale) if and only if for every surjection π : A→ A in A the natural map:

hR(A) −→ hR(A)×hS(A) hS(A)

is surjective (resp. bijective). In particular R is formally smooth if and only if
hR(A)→ hR(A) is surjective for all π surjective.

Proof. Observing that elements of hR(A)×hS(A) hS(A) are precisely commu-

tative diagrams (1.1), the proposition is obvious. □

C:formsmooth Corollary 1.1.7. Suppose that f : S → R is a formally smooth (resp formally
étale) homomorphism of local rings. Then, for every A in A the map

hR(A) −→ hS(A)

is surjective (resp. bijective). In particular the differential df : tR → tS is surjective
(resp. an isomorphism).

Proof. Just apply Proposition 1.1.6 to π : A→ k. □
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Proposition 1.1.6 characterizes formal smoothness of S → R only in terms of
the morphism of functors hR → hS . We can generalize as follows:

D:formsmfunctor Definition 1.1.8. Let Φ : F → G be a morphism (a natural transformation)
of functors of Artin rings such that F (k) and G(k) consist of one element. Then
Φ is called smooth if for every surjection A→ A in A the natural map:

F (A) −→ F (A)×G(A) G(A)

is surjective.
F is called smooth if the morphism to the constant functor

G(A) = {one element} for all A

is smooth.

The following is an obvious consequence of the definitions:

Proposition 1.1.9. If F → G is a smooth morphism of functors of Artin rings
such that F (k) and G(k) consist of one element, then F (A) → G(A) is surjective
for all A in A.
F is smooth if and only if F (A) → F (A) is surjective for every surjection A → A
in A.

L:relabssmooth Lemma 1.1.10. (i) Let f : S → R be a formally smooth homomorphism
in A∗. Then R is a formally smooth k-algebra if and only if S is a formally
smooth k-algebra.

(ii) Let F → G be a smooth morphism of functors of Artin rings. Then F is
smooth if and only if G is smooth.

Proof. It is an easy exercise. □

The following important result is well known:

T:smooth1 Theorem 1.1.11. Let R be a noetherian local k-algebra with residue field k.
The following conditions are equivalent:

(1) R is a regular local ring.

(2) R̂ ∼= k[[X1, . . . , Xd]], where d = dim(R).
(3) R is a formally smooth k-algebra.

For the proof see e.g. [Se], Thm. C4, p. 296.
More generally, we have the following:

T:smooth2 Theorem 1.1.12. A homomorphism f : S → R in A∗ is formally smooth if and

only if there is an isomorphism Ŝ[[X1, . . . , Xd]] ∼= R̂, where d = dim(R)− dim(S).

Proof. See [Se], Prop. C6, p. 297. □

Recall also the following classical:

T:cohen Theorem 1.1.13 (Cohen structure theorem). Let R be a complete local noe-
therian k-algebra with residue field k. Then R ∼= k[[X1, . . . , Xd]]/I, where d =
dim(R) and I ⊂ (X1, . . . , Xd)

2.

See [E], §7.4.
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1.2. Liftings and derivations
S:liftings

Consider the situation of diagram (1.2), where π is just a surjective homo-
morphism of rings. The homomorphism φ : R → A is called a lifting of φ as a
homomorphism of S-algebras. In the particular case S = k, a lifting of φ is simply
a φ : R→ A making the following diagram commutative:

E:ext1E:ext1 (1.3) R
φ //

φ
��

A

A

π

OO

Notation. If S → R is a ring homomorphism and M an R-module, we denote
by DerS(R,M) the R-module of S-derivations of R in M .

C:action1L:action1 Lemma 1.2.1. Assume that we are given a commutative diagram

R
φ // A

S

f

OO

// A

π

OO

where f is a ring homomorphism and π is a surjective homomorphism of rings with
kernel I such that I2 = (0). Then for any two liftings φ,ψ : R → A of φ the
map ψ − φ : R → I in an S-derivation; conversely, given any lifting φ of φ and
d ∈ DerS(R, I), the map ψ = φ+ d is a lifting of φ.
Therefore the set of liftings of φ, if not empty, is a torsor under DerS(R, I) (i.e.
DerS(R, I) acts simply and transitively on it).

Proof. In the statement the structure of R-module on I is the one given via
φ. Let φ,ψ : R → A be liftings of φ, and let d := ψ − φ. Then d : R → I ⊂ A,
since π · φ = π · ψ = φ. Moreover d is an S-linear map and:

d(xy) = ψ(xy)− φ(xy) = ψ(x)ψ(y)− φ(x)φ(y)
= ψ(x)ψ(y) + [ψ(x)φ(y)− ψ(x)φ(y)]− φ(x)φ(y)
= [ψ(x)ψ(y)− ψ(x)φ(y)] + [ψ(x)φ(y)− φ(x)φ(y)]
= ψ(x)d(y) + d(x)φ(y)

= φ(x)d(y) + d(x)φ(y)

Therefore d ∈ DerS(R, I). Conversely, given d ∈ DerS(R, I), the map

ψ := φ+ d : R→ A

is a lifting of φ, because I2 = 0; and ψ = φ if and only if d = 0. □

Consider a local k-algebra R in A∗, and a small extension

0→ kt→ A
π−→ A→ 0

Lemma 1.2.1 tells us that two homomorphisms φ,ψ : R→ A have the same image
in Hom(R,A) if and only if there exists d ∈ Derk(R,k) = tR (which is uniquely
determined) such that

ψ(r) = φ(r) + d(r)t for all r ∈ R
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This defines an action τ : tR × hR(A) → hR(A), given by τ(d, φ) = φ + d, which
preserves the non-empty fibres of

hR(A) −→ hR(A)

and makes them torsors. We can give an equivalent definition of τ using the functor
F = hR as follows. Let

b : k[ϵ]×k A −→ A, (x+ yϵ, a) 7→ a+ yt

Then

τ : F (k[ϵ])× F (A) D−1

−−−→ F (k[ϵ]×k A)
F (b)−−−→ F (A)

where D : F (k[ϵ] ×k A) → F (k[ϵ]) × F (A) is the natural bijection (see Example
1.1.2). For this reformulation of τ we only used the fact that F (k) contains only
one element and the bijectivity of D.
Warning: this functorial description does not prove that the action is free and
transitive on the fibres of F (A)→ F (A) (see §3.2).

1.3. Deformations of abstract schemes

Denote by ⋆ = Spec(k), and by T := Spec(k[ϵ]. Let X0 be an algebraic
k-scheme and ∆ a scheme. A deformation (or a family of deformations) of X0

parametrized by (or over) ∆ is a cartesian diagram:

E:infdef1E:infdef1 (1.4) X0

��

� � // X

f

��
⋆

0 // ∆

such that f is flat. The condition that (1.4) is cartesian means that it induces an
isomorphism X0

∼= ⋆ ×∆ X. If ∆ = Spec(A), where A is in A then the above
deformation will be called infinitesimal.
Assume that (1.4) is infinitesimal, i.e. that ∆ = Spec(A), where A is in A. An
isomorphism of (1.4) with another deformation of X0 over Spec(A):

E:infdef2E:infdef2 (1.5) X0

��

� � // Y

g

��
⋆ // Spec(A)

is an isomorphism ϕ : X → Y which makes the following diagram commutative:

E:infdef3E:infdef3 (1.6) X0
� � //
� _

��

Y

��
X //

ϕ

;;

Spec(A)

The notion of deformation is functorial. If A → B is a morphism in A then to a
deformation (1.4) one associates its pullback:

X0

��

// X ×Spec(A) Spec(B)

��
⋆ // Spec(B)
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which is a deformation of X0 over Spec(B). Isomorphic deformations over Spec(A)
are mapped to isomorphic deformations over Spec(B). Therefore we have a functor
of Artin rings

DefX0
: A −→ Sets

defined by:

DefX0
(A) = {isom. classes of deformations of X0 over Spec(A)}

The main goal of deformation theory is to study DefX0 , and other similar functors
of Artin rings. The hope is that it is of the form hR for some complete local
k-algebra (i.e. that it is prorepresentable).

Note that DefX0
(Spec(A)) ̸= ∅ for all A because it contain at least the trivial

deformation

X0

��

// X0 × Spec(A)

��
⋆ // Spec(A)

Definition 1.3.1. X0 is rigid if DefX0
(A) contains only the trivial deformation

for every A in A.

Definition 1.3.2. DefX0(T ) is the tangent space of DefX0 , and is denoted by
tDefX0

. Its elements are called first order deformations of X0.

L:isodef Lemma 1.3.3. Suppose given deformations (1.4) and (1.5) of X0, and that
there is a morphism ϕ : X → Y making the diagram (1.6) commutative. Then
ϕ is an isomorphism.

Proof. The question is local, thus we may assume that X0 = Spec(R0); then
X = Spec(R) and Y = Spec(S) (see footnote 1). We have the following situation:

E:isodefE:isodef (1.7) S

��

φ // R

��
S ⊗A k R0 R⊗A k

We proceed by induction on dimk(A). If dimk(A) = 1 there is nothing to prove.
We consider t ∈ mA such that mAt = 0. Then we have a small extension

0→ kt −→ A −→ A′ → 0

which tensored by φ gives:

0 // kt⊗A R
i // R // A′ ⊗A R // 0

0 // kt⊗A S

φt

OO

j // S //

φ

OO

A′ ⊗A S

φ′

OO

// 0

By the inductive hypothesis φ′ is an isomorphism. By the A-flatness of R and S
the maps i and j are injective and φt is the isomorphism S ⊗A k ∼= R⊗A k coming
from diagram (1.7). Therefore φ is an isomorphism. □
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1.4. Nonsingular varieties

Let R0 be a noetherian k-algebra and X0 = Spec(R0) the corresponding affine
scheme. Note that X0 is not necessarily algebraic. An infinitesimal deformation of
X0 over Spec(A) is a cartesian diagram (1.4) such that X = Spec(R) is also affine.1

Therefore an infinitesimal deformation of X0 can be also described as a cartesian
diagram of rings:

R // R0

A //

OO

k

OO

i.e. a commutative diagram inducing an isomorphism R⊗Ak ∼= R0. Such a diagram
will be also called an infinitesimal deformation of R0. The functor DefX0

can be
identified with the functor DefR0

of infinitesimal deformations of R0.

P:rigidaffine Proposition 1.4.1. If X0 = Spec(R0) is formally smooth then it is rigid.

Proof. Let

X0

��

� � // X

f

��
⋆ // Spec(A)

be an infinitesimal deformation of X0. we have the following commutative diagram:

X0
� � //
� _

��

X0 ⊗ Spec(A)

��
X // Spec(A)

which is equivalent to the following one:

A⊗k R0
// R0

A //

g

OO

R

OO

g is formally smooth because k → R0 is. Since the surjective homomorphism
R→ R0 has a nilpotent kernel there exists h : A⊗k R0 → R making the diagram

A⊗k R0
//

h

$$

R0

A //

g

OO

R

OO

1Actually this last condition is automatic at least in the algebraic case, because if Z0 ⊂ Z

is an affine closed subscheme defined by a nilpotent ideal sheaf, then Z is affine as well. For the
proof see [Se], Lemma 1.2.3F:1
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commutative (see Remark 1.1.5). This corresponds to a morphism h♯ : X →
X0 ⊗ Spec(A) making

X0
� � //
� _

��

X0 ⊗ Spec(A)

��
X

h♯

99

// Spec(A)

commutative. But h♯ is an isomorphism, by Lemma 1.3.3. □

P:H1theta Proposition 1.4.2. Let X0 be a nonsingular algebraic variety. Then there is
a natural identification

tDefX0
= H1(X0, TX0

)

where TX0
is the tangent sheaf of X0.

Proof. Let

θ : X0

��

// X

��
⋆ // T

be a first order deformation of X0. Then θ is locally trivial. In fact, if U =
{Ui = Spec(Ri)} is an affine cover of X0, then, By Prop. 1.4.1, for all i there are
T -isomorphisms

θi : X|Ui
∼= Spec(Ri)× T = Spec(Ri ⊗k k[ϵ])

restricting to the identity on Ui, and X is given by gluing data

θij := θi · θ−1
j : (Ui ∩ Uj)× T −→ (Ui ∩ Uj)× T

such that θijθjk = θik on (Ui ∩Uj ∩Uk)×T for all i, j, k (see [H1], ex. 1.22 p. 69).
Since X0 is separated we may assume that Ui ∩ Uj = Spec(Rij) is affine for all i, j
([H1], Exercise II 4.3, p. 106). Then θij corresponds to an automorphism tij of
Rij [ϵ] := Rij ⊗k k[ϵ] inducing the identity on Rij :

0 // ϵRij // Rij [ϵ] // Rij

Rij [ϵ]

tij

OO <<

By Lemma 1.2.1 every tij is of the form tij = id + dij , where

dij ∈ Derk(Rij [ϵ], ϵRij) = Derk(Rij , Rij) = HomRij
(ΩRij

, Rij) = Γ(Ui ∩ Uj , TX0
)

The gluing conditions imply that {dij} ∈ Z1(U , TX0) is a 1-cocycle and therefore
defines an element t(θ) ∈ H1(X0, TX0

). Now patiently, but trivially, one checks
that 1) t(θ) does not depend on the choice of U , and 2) conversely, to every t ∈
H1(X0, TX0

) there is associated a first order deformation θ of X0 such that t(θ) =
t. □

Remark 1.4.3. The k-vector space structure on tDefX0
can be reconstructed

only using the properties of the functor, with an argument similar to the one used in
Example 1.1.2. In the nonsingular case just observe that elements of DefX0

(k[ϵ]×k

k[ϵ]) can be identified with pairs (θ1, θ2) ∈ H1(X0, TX0
)×H1(X0, TX0

).
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From the proposition it follows that if H1(X0, TX0
) is not finite dimensional

then DefX0 is not prorepresentable.
The previous proof shows that, for any X0, not necessarily nonsingular, there is an
identification between the set of first order locally trivial deformations of X0 and
H1(X0, TX0

), where TX0
= Hom(Ω1

X0
,OX0

).

Definition 1.4.4. Consider a family of deformations of X0 over a scheme ∆:

X0

��

� � // X

f

��
⋆

0 // ∆

and let θ : T → ∆ be a tangent vector to ∆ at 0. Pulling back the above deformation
we obtain a first order deformation of X0:

X0

��

� � // X ×∆ T

fθ

��
⋆ // T

Setting κf (θ) = fθ one obtains a linear map

κf : T0∆ −→ H1(X0, TX0)

called Kodaira-Spencer map of the given deformation.

P:rigidity Proposition 1.4.5. Let X0 be a nonsingular algebraic variety. Then X0 is
rigid if and only if H1(X0, TX0) = 0.

Proof. The “only if” implication is obvious. Conversely, let’s assume that
H1(X0, TX0) = 0. We will prove that DefX0(A) = {trivial deformation} by in-
duction on dimk(A). If dimk(A) = 1 there is nothing to prove. Assume that
dimk(A) = n ≥ 2. Let t ∈ mA such that mAt = 0. Then we have a small extension:

0→ kt −→ A −→ A′ → 0

with dimk(A
′) = n− 1. Let

X0

��

// X

��
⋆ // Spec(A)

be a deformation of X0 over Spec(A). By the induction hypothesis its pullback
to Spec(A′) is isomorphic to the trivial one. Therefore we have an isomorphism
X0×Spec(A′) ∼= X×Spec(A)Spec(A

′) := X ′. Composing with the inclusion X ′ ⊂ X
we find:

X0 × Spec(A′)� _

��

� � // X0 × Spec(A)

X
ϕ

66

and we need to find a dotted arrow ϕ. Since X0 is nonsingular ϕ exists locally. In
other words, we can choose an affine open cover U = {Ui := Spec(Ri)}i∈I of X0
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and isomorphisms ϕi : X|Ui
→ Ui × Spec(A), one for each i ∈ I. Let

θij := ϕi · ϕ−1
j : Uij × Spec(A)→ Uij × Spec(A)

Then, since each θij restricts to the identity on Uij × Spec(A′), it must be of the
form:

θij = 1 + tdij

where dij ∈ Γ(Uij , TX0). Moreover, since θij · θjk = θik, we have dij + djk = dik; in
other words

{dij} ∈ Z1(U ,Hom(Ω1
X , tOX0) = Z1(U , TX0)

If we can choose the isomorphisms ϕi so that θij is the identity for each i, j ∈ I
then they will patch together to give an isomorphism ϕ, as required. A different
choice of ϕi is of the form

ϕ̃i = (1 + tdi) · ϕ
where di ∈ Derk(Ri,kt) = Γ(Ui, TX0

); namely ϕ̃i is the composition of ϕi with an
arbitrary automorphism 1 + tdi of Ui × Spec(A) which restricts to the identity of
Ui × Spec(A′). Correspondingly the θij will be changed into

θ̃ij = ϕ̃i · ϕ̃−1
j = (1 + tdi) · ϕi · ϕ−1

j (1− tdj)
= (1 + tdi) · θij(1− tdj)
= (1 + tdi) · (1 + tdij)(1− tdj)
= 1 + t(dij + di − dj)

Since H1(X0, TX0) = 0 we can find di ∈ Γ(Ui, TX0) such that dij = dj − di for all
i, j. Using them the ϕ̃i’s will patch together to give ϕ as desired. □

Examples 1.4.6. (1) From the Euler sequence

0→ OPn −→ OPn(1)n+1 −→ TPn → 0

one computes that H1(Pn, TPn) = 0. Proposition 1.4.5 implies that Pn is
rigid.

(2) If C is a projective nonsingular curve of genus g then H1(C, TC) ∼=
H0(C,ω2

C)
∨. Hence, by Riemann-Roch:

dim(tDefC ) =


0 g = 0

1 g = 1

3g − 3 g ≥ 2

1.5. The local Hilbert functor

Let Y ⊂ X be a closed embedding of algebraic schemes. Given A in A, an
infinitesimal deformation of Y in X parametrized by (or over) Spec(A) is a closed

embedding Ỹ ⊂ X × Spec(A) such that

(i) Ỹ ∩X = Y , where here X = X × ⋆,
(ii) the composition Ỹ ⊂ X × Spec(A)→ Spec(A) is flat.

Given a deformation of Y in X over Spec(A) and a morphism π : A→ B in A one

has an induced deformation ỸB = Ỹ ×Spec(A) Spec(B) ⊂ X × Spec(B) of Y in X
over Spec(B). This defines a functor of Artin rings:

HY/X : A −→ Sets
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called the local Hilbert functor of X at Y or of Y in X. Clearly HY/X(A) ̸= ∅ for
all A because it contains at least the trivial deformation

Y × Spec(A) ⊂ X × Spec(A)

If HY/X(A) contains only the trivial deformation for all A in A we say that Y is
rigid in X.

P:H0N Proposition 1.5.1. Let Y ⊂ X be a closed embedding of algebraic schemes.
There is a natural identification

tHY/X
= H0(Y,NY/X)

where NY/X = Hom(IY/X ,OY ) is the normal sheaf of Y in X.

Proof. Case 1: Y is a Cartier divisor in X. Locally, we have an affine
open subset Spec(R) ⊂ X and f ∈ R, not a 0-divisor, such that Y = Spec(S),

where S = R/(f). A first order deformation Ỹ of Y in X is defined by an ideal

I ⊂ R[ϵ] = R⊗kk[ϵ] such that S̃ := R[ϵ]/I is k[ϵ]-flat and such that I⊗R[ϵ]R = (f).

Claim: Ỹ is a Cartier divisor in Spec(R)× T .
Choose an element g ∈ R such that F = f + ϵg ∈ I. Then F is not a 0-divisor in
R[ϵ], because f is not a 0-divisor in R. It follows that S′ := R[ϵ]/(F ) is k[ϵ]-flat
because tensoring the sequence

0 // R[ϵ]
F // R[ϵ] // S′ // 0

by k we obtain

0 // R
f // R // S // 0

and therefore Tor
k[ϵ]
1 (S′,k) = 0. The inclusion (F ) ⊂ I induces a surjective homo-

morphism S′ → S̃ and we have the commutative diagram with exact rows

0 // ϵS′

��

// S′

��

// S // 0

0 // ϵS̃ // S̃ // S // 0

Since ϵS′ = S = ϵS̃ the left vertical arrow is an isomorphism and therefore also

S′ → S̃ is an isomorphism. This proves that I = (f + ϵg) and the Claim.

Any other g′ ∈ R such that I = (f + ϵg′) must be of the form

f + ϵg′ = (f + ϵg)(1 + ϵh) = f + ϵ(g + hf)

for some h ∈ R. Therefore g is determined by f only modulo (f). If we replace f
by uf , u ∈ R, g is replaced by ug. In conclusion to the given first order deformation
of Y in X there is associated a homomorphism (f)→ S. Conversely, to an element
of Hom((f), S) one associates a first order deformation of Y in X by reversing the
above argument.

This construction globalizes to the case of a Cartier divisor Y ⊂ X, not nec-
essarily affine, as follows. By the previous argument a first order deformation of

Y in X is a Cartier divisor Ỹ ⊂ X × T . Then there is an affine open cover
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U = {Ui} of X where Y is defined by a system {fi ∈ Γ(Ui,OX)}, such that

fij := fif
−1
j ∈ Γ(Uij ,O∗

X) for all i, j, and Ỹ is defined by a system

{Fi = fi + ϵgi ∈ Γ(Ui × T,OX×T )}

such that there are gij ∈ Γ(Uij ,OX) satisfying the identities:

fi + ϵgi = (fij + ϵgij)(fj + ϵgj)

Note that fij + ϵgij ∈ Γ(Uij × T,O∗
X×T ). The above identities can be written as:

gi = fijgj + gijfj

and dividing by fi:

gi
fi
− gj
fj

= gijf
−1
ij

Since gi
fi
∈ Γ(Ui,OX(Y )), the identities say that { gifi } patch together to give a

section of H0(Y,NY/X), because their difference is an element of Γ(Uij ,OX).
The system {Fi} defines the same section of NY/X as a system {F ′

i = fi + ϵg′i} if
and only if g′i = gi + hifi for some hi ∈ Γ(Ui,OX). But then:

fi + ϵg′i = (fi + ϵgi)(1 + ϵhi)

and, since 1 + ϵhi is invertible, {F ′
i} defines the same divisor Ỹ as {Fi}.

It remains to be checked that, conversely, every section of NY/X defines a first order
deformation of Y in X. This is an easy exercise.

Case 2: Y ⊂ X is not necessarily a Cartier divisor. Assume first X =
Spec(R) and Y = Spec(S), S = R/I. First order deformations of Y in X are in 1-1

correspondence with with ideals Ĩ ⊂ R[ϵ] such that there is a commutative exact
diagram:

Ĩ //

��

I

��
0 // ϵR

��

// R[ϵ] //

��

R

��

// 0

0 // ϵS

��

// S̃

��

// S

��

// 0

0 0 0

In fact by the local criterion of flatness ([Se], Thm. A5) S̃ is k[ϵ]-flat if and only

if ϵS̃ ∼= S. We can embed such diagram in the following one, whose rows are exact
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(but not the columns):

I

��
0 // ϵR

��

// R[ϵ] //

��

R // 0

0 // ϵS

��

// E

��

// R

��

// 0

0 // ϵS // S̃ // S // 0

Here the second row is the pushout of the first one induced by ϵR→ ϵS. From this
we get the following commutative diagram with exact rows and columns:

E:hilb1E:hilb1 (1.8) I

��

I

��s
��

0 // ϵS // E
φ

��

// R

��

// 0

0 // ϵS // S̃

��

// S

��

// 0

0 0

(it is easy to check that I ∼= ker(φ)). Suppose that s = s0 : I → E is the map corre-
sponding to the trivial deformation of Y in X. Then there is a 1-1 correspondence:

{s : I → E making (1.8) commute} ←→ Hom(I, S)

defined by s 7→ s− s0. This proves the proposition in the affine case.
The above discussion globalizes in a straightforward way and gives the propo-

sition in the general case as well. □

Given Y ⊂ X closed embedding, let Y ⊂ X0 × Spec(A) be an infinitesimal
deformation of Y in X parametrized by A in A. Then we have an associated
deformation of Y over Spec(A):

Y

��

� � // Y

��
⋆ // Spec(A)

Therefore we have a map:

Φ(A) : HY/X(A) −→ DefY (A)

Since this correspondence is clearly functorial, it defines a natural transformation
of functors:

Φ : HY/X −→ DefY

called forgetful, because it is defined by forgetting the embedding Y ⊂ X.
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Proposition 1.5.2. Let Y ⊂ X be a closed embedding of nonsingular varieties,
and consider the normal sequence:

0→ TY −→ TX|Y −→ NY/X → 0

Then the coboundary map

H0(Y,NY/X) −→ H1(Y, TY )

coincides with

Φ(k[ϵ]) : tHY/X
−→ tDefY

Proof. [Se], Prop. 3.2.9 p. 132. □

1.6. The local Picard functor

Let X be a scheme, and let Pic(X) := H1(X,O∗
X) be the Picard group of X,

consisting of the isomorphism classes of invertible sheaves on X. For each A in A
consider the trivial deformation of X over A:

X
ι //

��

XA = X × Spec(A)

��
∗ // Spec(A)

ι induces an isomorphism X ∼= XA ⊗Spec(A) Spec(k) = XA ⊗A k. Fix an invertible
sheaf L on X and denote by [L] ∈ Pic(X) its isomorphism class. A family of
deformations (or simply a deformation) of L over Spec(A) (over A for brevity) is
an invertible sheaf LA on XA such that ι∗LA = L. Given another deformation
L′
A of L over A, an isomorphism of deformations is an isomorphism of invertible

sheaves LA ∼= L′
A inducing the identity 1L : ι∗LA → ι∗L′

A.
Given A −→ B in A and a deformation LA of L over A, we have a cartesian
diagram:

XB
f //

��

XA

��
Spec(B) // Spec(A)

and LB := f∗LA is a deformation of L over B. Clearly LA ∼= L′
A implies LB ∼= L′

B .
Therefore we have a well defined functor of Artin rings

P[L] : A −→ sets, P[L](A) = {LA : deform.s of L over A}/isomorphism

called local Picard functor defined by L.

Proposition 1.6.1.

tP[L]
= H1(X,OX)

Proof. Suppose that L is given by a set of transitions functions {fij ∈ Γ(Uij ,O∗
X)}

with respect to an open covering U = {Ui}i∈I , such that fijfjk = fik on Uijk, and
let Lϵ be a deformation of L over T . Then Lϵ is defined by transition functions

{f̃ij ∈ Γ(Uij ,O∗
Xϵ

)} such that

E:cocycleE:cocycle (1.9) f̃ij f̃jk = f̃ik
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on Uijk. Since
O∗
Xϵ

= O∗
X + ϵOX

we can write:
f̃ij = fij(1 + Φij)

for suitable Φij ∈ Γ(Uij ,OX). The cocycle condition (2.2) gives:

Φij +Φij = Φik

Therefore the collection {Φij} defines an element z(Lϵ) ∈ H1(X,OX). It is easy to
check that z(Lϵ) depends only on the isomorphism class of Lϵ. Conversely, to any
z ∈ H1(X,OX) one can associate an isomorphism class of deformations of L over
T by just reversing the previous argument. □

Observe that tP[L]
does not depend on L, but only on X. The reason is because

the group structure on Pic(X) makes P[L] isomorphic to any other P[L′].

Proposition 1.6.2. Let D be an effective Cartier divisor on X. Then we have
a natural transformation:

ψ : HD/X −→ POX(D)

associating to a deformation DA ⊂ XA over A of D the class [OXA
(DA)]. Then

the differential of ψ:

dψ : H0(D,OD(D)) −→ H1(X,OX)

is the coboundary map coming from the exact sequence:

0→ OX −→ OX(D) −→ OD(D)→ 0

Proof. Exercise. □



CHAPTER 2

Obstructions

2.1. What is an obstruction

Recall from §1.1 that a k-algebra R is formally smooth if and only if for every
small extension π : A → A the natural map hR(A) → hR(A) is surjective. More
generally, a functor of Artin rings F is smooth if and only if

E:surjsmE:surjsm (2.1) F (A)→ F (A)

is surjective for every π. A similar definition can be give for a homomorphism of
k-algebras f : S → R and for a natural transformation f : F → G of functors of
Artin rings; namely f is smooth if and only if the natural map

F (A) −→ F (A)×G(A) G(A)

is surjective for all π as above.
If the functor F : A → sets is given, we need a systematic procedure to

investigate the failure of the surjectivity of (2.1) as π varies. The procedure consists
in associating to F a vector space v(F ) in such a way that to every small extension
π : A → A and to every ξ ∈ F (A) there corresponds an element of ξv(π) ∈ v(F )
which vanishes if and only ξ is in the image of (2.1). The element ξv(π) will be
called the obstruction to lift ξ over A. We start by illustrating this idea in two
specific examples.

2.2. Obstructions to deformations of nonsingular varieties

Suppose given a nonsingular algebraic variety X0 and a surjection π : A → A
in A. We want to find conditions for a deformation of X0 over Spec(A):

ξ :
X0 −→ X
↓ ↓
⋆ −→ Spec(A)

to be in the image of the map

DefX0
(π) : DefX0

(A) −→ DefX0
(A)

i.e. to be the restriction of a deformation over Spec(A). In other words, we want
to know if there exists a deformation

ξ :
X0 −→ X
↓ ↓
⋆ −→ Spec(A)

23
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such that

X0

��

// X

��

∼= // X ×Spec(A) Spec(A)

vv
⋆ // Spec(A)

By Lemma 1.1.1 we can reduce to consider the case where ker(π) = (t), with
dim(t) = 1.
Let U = {Ui} be an affine open cover of X0. Then

Ui

��

� � // X |Ui

��
⋆ // Spec(A)

is a deformation of the nonsingular affine Ui, therefore it is trivial, for each i.
Choose isomorphisms

ϕi : X |Ui
−→ Ui × Spec(A)

for each i. Then for each i, j they induce an automorphism on the double intersec-
tion Uij := Ui ∩ Uj :

Uij × Spec(A)

''

ϕj ·ϕ−1
i // Uij × Spec(A)

ww
Spec(A)

which reduces to the identity on Uij×⋆. The automorphisms θji := ϕj ·ϕ−1
i satisfy

the conditions

E:cocycleE:cocycle (2.2) θkj · θji = θki

when restricted to Uijk×Spec(A), where we denote Uijk = Ui∩Uj∩Uk. Conversely,
X is determined by the data {θji}.
Similarly the familyX −→ Spec(A) exists if and only if there are Spec(A)-automorphisms

Uij × Spec(A)

''

θji // Uij × Spec(A)

ww
Spec(A)

such that

(a) θkj · θji = θki on Uijk × Spec(A),

(b) they coincide with the θji’s when restricted to Uij × Spec(A).

Automorphisms θji satisfying condition (b) exist. Consider in fact the diagram:

Uij × Spec(A) //

++

Spec(A)

Uij × Spec(A)
?�

OO

θji // Uij × Spec(A) �
� // Uij × Spec(A)

OO
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The dotted arrow exists by the smoothness of Uij and we can choose it as a θji.
Condition (a) is also satisfied by the θji’s if and only if the automorphisms

δijk := θ−1
ki · θkj · θji

are the identity of Uijk×Spec(A) for all i, j, k. Their restrictions to Uijk×Spec(A)
are the identity, because of (2.2). Then, by Lemma 1.2.1, we have δijk = id+ dijk,
with dijk ∈ Γ(Uijk,ΘX0

). By construction the system {dijk} is a 2-cocycle with

coefficients in TX0
. A different choice of the θji’s is of the form θ̃ji = θji · δji, where

δji corresponds to a dji ∈ Γ(Uij , TX0
). Then

θ̃−1
ki · θ̃kj · θ̃ji =: δ̃ijk = id + dijk + dji + dkj − dki

In other words {dijk} and {d̃ijk} define the same element o(ξ, π) ∈ H2(X0, TX0).

Claim: o(ξ, π) = 0 if and only if X exists.
In fact X exists if and only if we can choose the θji’s so that (a) is satisfied.

Clearly o(ξ, π) = 0 if (a) is satisfied. Conversely, if o(ξ, π) = 0 then we can choose
{dji} ∈ C1(U , TX0) such that

dijk = dji + dkj − dki

and we can take θ̃ji = θji · δ−1
ji . Then

θ̃−1
ki · θ̃kj · θ̃ji = id + dijk − (dji + dkj − dki) = id

This proves the Claim. We have proved the following

P:H2T Proposition 2.2.1. Given a nonsingular variety X0, a small extension

0 −→ kt // A
π // A −→ 0

and a deformation ξ of X0 over Spec(A), there is an element o(ξ, π) ∈ H2(X0, TX0)
associated to these data which vanishes if and only if ξ is the restriction of a defor-
mation ξ of X0 over Spec(A).

2.3. Obstructions to deformations of a closed subscheme

In this section we consider a closed subscheme Y of a scheme X and we consider
a problem analogous to the one discussed in the previous section for nonsingular
varieties. Namely we consider a small extension

0 // kt // Ã
π // A // 0

and a deformation Y ⊂ X × Spec(A) of Y in X over Spec(A). We want to find

the obstruction to the existence of a closed subscheme Ỹ ⊂ X × Spec(Ã) such that

Y = Ỹ ∩ (X × Spec(A)).
We assume that X = Spec(R) and Y = Spec(S) = Spec(R/I) are affine. The given
deformation consists of an exact sequence:

0→ I −→ R⊗A −→ S → 0
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We want to find the obstruction to the existence of Ĩ ⊂ R⊗Ã such that the following
diagram is commutative:

Ĩ

��

// I

ι

��
0 // tR //

σ

��

R⊗ Ã //

��

R⊗A

��
0 // tS // S̃ // S

Let

0 // tR //

σ

��

R⊗ Ã //

��

R⊗A

0 // tS // E // R⊗A // 0

be the pushout diagram determined by σ. Then S̃ exists if and only if there is
lifting ι̃ : I → E of ι:

ξ : 0 // tS // F

��

// I //

ι

��

ι̃

}}

0

0 // tS // E

��

// R⊗A

��

// 0

0 // tS // S̃ // S // 0

In fact the cokernel of ι̃ will be an S̃ satisfying the requirements. In the above
diagram the first row is the pullback of the second with respect to ι. It is clear that
the existence of ι̃ is equivalent to the splitting of ξ, which is an element o(Y , π) of

Ext1
S
(I, S) ∼= Ext1S(I, S)

∼= Ext1S(I/I
2, S)

The argument just given extends in a straightforward way to a general, not neces-
sarily affine, closed embedding of schemes. We have thus proved the following

Proposition 2.3.1. Let Y be a closed subscheme of X with ideal sheaf I ⊂ OX ,

and let π : Ã→ A be a small extension. To every deformation Y ⊂ X×Spec(A) of
Y in X over Spec(A), there is associated an element o(Y , π) ∈ Ext1OY

(I/I2,OY )
which vanishes if and only if there is a deformation Ỹ ⊂ X × Spec(Ã) such that

Y = Ỹ ∩ (X × Spec(A)).

Note that if Y is a local complete intersection in X then

Ext1OY
(I/I2,OY ) = H1(Y,NY/X)

2.4. Obstruction theory of a local ring

We now proceed further, trying to get a better control of obstructions. We
start from the case of prorepresentable functors. Assume that we have a noetherian
complete local k-algebra (R,mR) with residue field k. By Cohen’s Theorem 1.1.13
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we can write it as a quotient R = P/J , where P is a formally smooth k-algebra,
and J ⊂ m2

P . This means in particular that tP ∼= tR. The k-vector space

o(R) := (J/mPJ)
∨

is called the obstruction space of R. Since dim(o(R)) equals the minimal number
of generators of J , the following inequalities hold:

E:ineqdimE:ineqdim (2.3) dim(tR) ≥ dim(R) ≥ dim(tR)− dim(o(R))

Consider a diagram

E:basicobstr1E:basicobstr1 (2.4) R

φ

��
0 // kt // A

π // A // 0

consisting of a small extension π and a (φ : R → A) ∈ hR(A). It can be included
in the following one:

0 // J //

��

P
q //

ϕ

��

R

φ

��

// 0

0 // kt // A
π // A // 0

where ϕ is a lifting of φ ·q. Since π is small, the left vertical map defines an element
o(φ, π) ∈ Hom(J/mPJ,kt) ∼= o(R). Observe that o(φ, π) is independent of the

choice of ϕ. In fact any other choice is of the form ϕ̃ = ϕ+ d, where d : P → kt is a

derivation; since J ⊂ m2
P , it follows that d(J) ⊂ mA(t) = 0 and therefore ϕ|J = ϕ̃|J .

We call o(φ, π) the obstruction to lift φ to A. The following are true:

(1) o(φ, π) = 0 if and only if there is a lifting φ : R → A of φ such that
ϕ = φq. In particular, (J/mPJ)

∨ = 0 if and only if R is formally smooth.
(2) For every (φ : R→ A) ∈ hR(A) the map

Exk(A,k) −→ o(R), π 7→ o(φ, π)

is k-linear. This is easy to check.

(3) To every homomorphism f : S → R in Â there is associated a linear map:

o(f) : o(R) −→ o(S)

called the obstruction map of f . For every diagram (2.4) we have:

E:basicobstr2E:basicobstr2 (2.5) o(f)(o(φ, π)) = o(φ · f, π)

If S = Q/J , with Q formally smooth and J ⊂ m2
Q, The map o(f) is the

dual of the map J/mQJ → I/mP I induced by f . The identity (2.5) is
obvious by construction.

L:obstr1 Lemma 2.4.1. Let R be in Â. For every n ≥ 0 consider the canonical surjection
pn : R→ Rn := R/mn+1

R , and the induced map:

Exk(Rn,k) −→ o(R), π 7→ o(pn, π)

Then for all n >> 0 this map is surjective.



28 2. OBSTRUCTIONS

Proof. We may assume that R is not formally smooth, otherwise the lemma
is trivially true. Suppose that R = P/J , where P is a formally smooth k-algebra
and J ⊂ m2

P . Let {g1, . . . , gk} be a minimal set of generators of J , and let n≫ 0 so

that no gj belongs to mn+1
P . Then Rn is in A and we will prove that every element

of o(R) is of the form o(pn, π) where π : A → Rn is a small extension. Consider
the following diagram with exact rows:

0 // J //� _

��

P // R //

pn

��

0

ζn : 0 // (J,mn+1
P ) // P // Rn // 0

The hypothesis on n implies that the left vertical map induces an injection

J

mPJ
⊂

(J,mn+1
P )

(mPJ,m
n+2
P )

and therefore a surjection o(Rn)→ o(R). Choose any λ ∈ o(R) and let Λ ∈ o(Rn)
be such that

λ : J
mP J

// (J,mn+1
P )

(mP J,m
n+2
P )

Λ // k

From the diagram:

0 // J //� _

��

P // R //

pn

��

0

ζn : 0 // (J,mn+1
P )

Λ

��

// P //

��

Rn // 0

Λ∗ζn : 0 // k // L
π // Rn // 0

where Λ∗ζn is the pushout of ζn via Λ, we see that λ = o(pn, π). □

The following elementary proposition is extremely useful in DT:

L:smoothbyobstr Proposition 2.4.2. The following conditions are equivalent for a homomor-

phism f : S → R in Â:
(i) f is formally smooth.
(ii) df : tR → tS is surjective and o(f) : o(R)→ o(S) is injective.

Proof. (i) ⇒ (ii). The surjectivity of df is in Corollary 1.1.7. Let λ ∈
ker(o(f)). by Lemma 2.4.1 there exist small extension π : A → A and φ : R → A
such that λ = o(φ, π). Since λ ∈ ker(o(f)) there is a commutative diagram:

E:formsmdiagramE:formsmdiagram (2.6) R
φ // A

S

f

OO

// A

π

OO

From the formal smoothness of f it follows that φ, as a homomorphism of S-
algebras, has a lifting φ : R→ A. In particular φ is a lifting of φ as a homomorphism
of k-algebra, thus λ = o(φ, π) = 0.
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(ii) ⇒ (i). Suppose given a commutative diagram (2.6), with π a small exten-
sion. Then o(φ, π) ∈ ker(o(f)) = (0). Therefore there exists a lifting φ : R→ A of
φ as a homomorphism of k-algebras. In other words in the diagram

R
φ //

φ
��

A

S

f

OO

ψ
// A

π

OO

we have φ = π · φ, but not necessarily ψ = φ · f . But δ := ψ − φ · f : S → k is a
k-derivation. By the surjectivity of df there is a k-derivation δ̃ : R → k such that
δ = δ̃ · f . Therefore

ψ = φ · f + δ̃ · f = (φ+ δ̃) · f
Replacing φ by φ̃ := φ+ δ̃ we obtain a commutative diagram:

R
φ //

φ̃ ��

A

S

f

OO

ψ
// A

π

OO

proving that f is formally smooth. □

In practise it is difficult to compute o(R) or its dimension. What one can do
is to introduce a weaker notion of obstruction space, which turns out to be often
computable.

D:obsthring Definition 2.4.3. Let R be in Â. An obstruction theory for R is a k-vector
space v(R) satisfying the following conditions. For every (φ : R → A) ∈ hR(A)
there is a k-linear map:

Exk(A,k) −→ v(R)

whose kernel consists of the extensions π : A→ A such that φ has a lifting φ : R→
A. The space v(R) is called an obstruction space of R.

The usefulness of this notion is due to the following

P:inclobstr Proposition 2.4.4. Let R in Â and let v(R) be an obstruction space for R.
Then there is a natural linear inclusion v : o(R) ⊂ v(R).

Proof. Let n ≥ 0 be the smallest integer such that the map

γn : Exk(Rn,k) −→ o(R), π 7→ o(pn, π)

is surjective (see Lemma 2.4.1). Then we have linear maps:

Exk(Rn,k)

γn %%

// v(R)

o(R)

Since both maps have the same kernel and γn is surjective, there is induced a linear
inclusion o(R)→ v(R). □
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Corollary 2.4.5. Let R be in Â and let v(R) be an obstruction space for R.
Then:

E:ineqdim2E:ineqdim2 (2.7) dim(tR) ≥ dim(R) ≥ dim(tR)− dim(v(R))

Proof. Since o(R) ⊂ v(R), (2.7) follows directly from (2.3). □

2.5. Obstruction theory for functors of Artin rings

In this section all functors of Artin rings satisfy the conditions H0 and Hϵ (see
§3.2). Therefore they have a tangent space.

Definition 2.5.1. Let F be a functor of Artin rings. An obstruction theory
for F is a k-vector space v(F ) such that, for every A in A and ξ ∈ F (A) there is
a k-linear map

ξv : Exk(A,k) −→ v(F )

whose kernel consists of the extensions π : A→ A such that

ξ ∈ Im[F (A) −→ F (A)]

The map ξv is called obstruction map of ξ, and v(F ) an obstruction space for F .

Clearly this definition generalizes Definition 2.4.3.

P:obstrfunctor Proposition 2.5.2. (i) F has (0) as an obstruction space if and only if
it is smooth.

(ii) Let f : F −→ G be a smooth morphism of functors of Artin rings. If v(G)
is an obstruction space for G then it is also an obstruction space for F .

Proof. (i) is obvious.
(ii) Consider A in A and ξ ∈ F (A), and let

F (f)(ξ)v : Exk(A,k) −→ v(G)

be the obstruction map of F (f)(ξ) ∈ G(A). If (π : A → A) ∈ ker(F (f)(ξ)v) then
there is η ∈ G(A) such that η 7→ F (f)(ξ). From the smoothness of f it follows that

F (A) −→ F (A)×G(A) G(A)

is surjective. Therefore there exists ξ ∈ F (A) which maps to (ξ, η). Therefore
ξ 7→ ξ under the map F (A)→ F (A).
Conversely, suppose that, for a given ξ ∈ F (A), the extension π : A → A is such
that ξ ∈ Im[F (A)→ F (A)]. Then, since by functoriality we have the commutative
diagram

F (A) //

��

F (A)

��
G(A) // G(A)

it follows that
F (f)(ξ) 7→ F (f)(ξ)

therefore F (f)(ξ) ∈ ker(F (f)(ξ)v). Therefore (F (f)(ξ)v) is an obstruction map for
ξ, and v(G) is an obstruction space for F . □



CHAPTER 3

Formal deformation theory

3.1. Formal elements of a functor of Artin rings
S:functartinS:tgspacefunctor

We are now ready to proceed with the program outlined in the Introduction,
namely the local study of a given classM of geometric objects. This will be done by
studying functors of Artin rings more closely, with the purpose of understanding
whether such a functor F is prorepresentable, i.e. if it is isomorphic to one of

the form hR, where R is a complete local k-algebra in Â, or has some weaker
property. In order to understand what this means precisely we start by considering
a morphism of functors (a natural transformation) Φ : hR → F , with F such that
F (k) consists of only one element.
For each n ≥ 0 the canonical homomorphism pn : R → R/mn+1

R =: Rn is an
element of hR(Rn), thus it defines an element ξn := Φ(pn) ∈ F (Rn). The sequence
{ξn} is compatible, in the sense that ξn 7→ ξn−1 under the map F (Rn)→ F (Rn−1)

induced by Rn → Rn−1. Therefore {ξn} can be identified with an element ξ̂ of

F̂ (R) := lim←−F (Rn). Conversely, given û = {un} ∈ F̂ (R) we can define a morphism

of functors Φ : hR → F as follows. Let A in A and (α : R→ A) ∈ hR(A). Then, if
n≫ 0 we have a factorization α : R→ Rn

αn−−→ A, and we define

Φ(α) = F (αn)(un)

Clearly this definition, which is a variant of Yoneda Lemma, does not depend on
n. In fact, letting pn+1,n : Rn+1 → Rn:

F (αn+1)(un+1) = F (αn · pn+1,n)(un+1) = F (αn) [(F (pn+1,n)(un+1)] = F (αn)(un)

for all n ≫ 0. Therefore we have an identification between F̂ (R) and the set of
morphisms from hR to F . A pair (R, û) consisting of a complete local k-algebra R

in Â and an element û ∈ F̂ (R) is called a formal element of F over R. Therefore the
above argument shows that there is a 1-1 correspondence between formal elements
of F over R and morphisms of functors hR → F .

Definition 3.1.1. In the above situation, if (R, û) corresponds to an isomor-
phism Φû : hR ∼= F , i.e. F is prorepresented by R, we call û a universal formal
element of F . We call û versal if Φû is smooth. If û is versal and moreover it
induces a bijection tR → tF then we call û a semiuniversal element of F ; in this
case we say that F has a proprepresentable hull.

The following implications hold:
û universal ⇒ û semiuniversal ⇒ û versal

and none of the inverse implications holds. In fact there is a subtle difference be-
tween a prorepresentable functor of Artin rings F and one having a prorepresentable
hull. This point will be addressed in the next section.

31
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P:functversusring Proposition 3.1.2. Suppose that the functor of Artin rings F has a versal
formal element (R, û). Then F is smooth if and only if R is formally smooth.

Proof. It follows from Lemma 1.1.10. □

3.2. Schlessinger’s conditions
S:schlessinger

A prorepresentable functor F ∼= hR has the following properties:

H0) F (k) consists of one element (the canonical quotient R→ R/mR = k).

Let

E:leftexactdiagE:leftexactdiag (3.1) A′

  

A′′

~~
A

be a diagram in A and consider the natural map:

α : F (A′ ×A A′′) −→ F (A′)×F (A) F (A
′′)

Then:

Hℓ (left exactness) For every diagram (3.1) α is bijective (straightforward to
check).

Hf ) F (k[ϵ]) has a structure of finite dimensional k-vector space.

It can be proved that, conversely, if a functor of Artin rings has propertiesH0), Hℓ), Hf )
then F is prorepresentable. Unfortunately condition Hℓ is in general difficult to
check. One needs sufficient conditions for prorepresentability, or for having a
prorepresentable hull, which are easy to check. This issue is addressed by Sch-
lessinger’s theorem.

Theorem 3.2.1 (Schlessinger). Let F be a functor of Artin rings satisfying
H0). Then

(i) F has a semiuniversal element if and only if it satisfies the following
conditions:
H) If A′′ → A is a small extension then α is surjective.
Hϵ) If A = k and A′′ = k[ϵ] then α is bijective.
Hf ) dim(tF ) <∞.

(ii) F is prorepresentable if and only if it also satisfies the following additional
condition:
H) The natural map

F (A′ ×A A′) −→ F (A′)×F (A) F (A
′)

is bijective for every small extension A′ → A.

We will not give the full proof (we refer to [H2] or [Se] for it). We will rather
discuss the meaning of condition H).

Assume that the conditions H,Hϵ, Hf are satisfied by the functor F . Then, by
part (i) of the previous theorem, F has a semiuniversal element. What is needed
for F to be prorepresentable is the property: for every small extension π : A → A
the non-empty fibres of F (π) are torsors under the action of tF . We have discussed
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this point in §1.2, and we saw that such action can be defined for every functor F
satisfying H0 and Hϵ as the composition:

τ : tF × F (A)
α−1

−−→ F (k[ϵ]×k A)
F (b)−−−→ F (A)

where

b : k[ϵ]×k A −→ A, (x+ yϵ, a) 7→ a+ yt

The map

γ : k[ϵ]×k A→ A×A A, (x+ yϵ, a) 7→ (a+ yt, a)

is an isomorphism. Consider the composition:

β : tF × F (A)
α−1

−−→ F (k[ϵ]×k A)
F (γ)−−−→ F (A×A A)

α−→ F (A)×F (A) F (A)

It acts as (θ, f) 7→ (τ(θ, f), f), and this shows that τ preserves the fibres of F (π).
By H, the map α is surjective: this guarantees that the action τ is transitive on
the fibres of F (π). If we want it to be also faithful we need the bijectivity of α,
namely we need condition H. This explains the meaning of H.

P:rigidfunctor Proposition 3.2.2. Assume that F has a semiuniversal deformation, and that
tF = (0). Then F is the constant functor F (A) = {one element}. In particular F
is prorepresentable.

Proof. From the previous discussion we know that tF acts transitively on the
fibres of F (π) for every small extension π. Since tF = (0) all such fibres consist of
one element. Therefore F = hk is prorepresentable. □

Proposition 1.4.5 is a special case of 3.2.2.

3.3. Automorphisms and prorepresentability

Let X be an algebraic scheme. Then it is easy to check that DefX satisfies
H0, H,Hϵ. If X is projective or affine with isolated singularities then it also satisfies
Hf , hence DefX has a semiuniversal deformation. For prorepresentability we need
the further condition H. In the affine case this condition is not always satisfied (see
[Se], Example 2.6.8(i), p. 95). In the projective case we have the following:

P:h0tX Proposition 3.3.1. Let X be a projective nonsingular scheme such that H0(X,TX) =
0. Then DefX is prorepresentable.

Corollary 3.3.2. Let C be a projective nonsingular curve. Then DefC is
prorepresentable.

Proof. If C has genus g ≥ 2 then H0(C, TC) = 0 and we apply Prop. 3.3.1.
If g = 0 then H1(C, TC) = 0 and C is rigid, by Prop. 3.2.2, so DefC is prorepre-
sentable. For g = 1 see [Se], Prop. 2.6.5, p. 93). □

3.4. Consequences of obstruction theory

Proposition 3.4.1. Suppose that F has a formal versal element (R, û) and
has a finite dimensional obstruction space v(F ). Then:

dim(tR) ≥ dim(R) ≥ dim(tR)− dim(v(F ))

Proof. It follows from (2.7) and Proposition 2.5.2: □
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Definition 3.4.2. Let f : F → G be a morphism of functors of Artin rings
having semiuniversal formal elements and obstruction spaces v(F ) and v(G), re-
spectively. An obstruction map for f is a linear map o(f) : v(F )→ v(G) such that,
for every A in A and each ξ ∈ F (A) the following diagram commutes:

Exk(A,k)

%%zz
v(F )

o(f) // v(G)

Proposition 3.4.3. Let f : F → G be a morphism of functors of Artin rings
having semiuniversal formal elements and finite dimensional obstruction spaces
v(F ) and v(G) respectively. Suppose that there is an obstruction map o(f) : v(F )→
v(G). Consider the following conditions:

(i) df is surjective.
(ii) o(f) is injective.

If (i) and (ii) hold then f is smooth. If (ii) holds, but not necessarily (i), and G is
smooth then F is smooth.

Proof. From Prop. 3.1.2, the assertions hold if and only if they hold for the
corresponding prorepresentable functors. Then one can apply Prop. 2.4.2 and 2.4.4.
(See [Se], Prop. 2.3.6, p. 59). □
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