Terminology and notation

All rings will be commutative with 1. A ring homomorphism A — B is called
essentially of finite type (e.f.t.) if B is a localization of an A-algebra of finite type.
We will also say that B is e.f.t. over A.

We will always denote by k a fixed algebraically closed field. All schemes will
be assumed to be defined over k and locally noetherian and all sheaves will be quasi
coherent unless otherwise specified. If X and Y are schemes we will write X x Y
instead of X xi Y. If S is a scheme and s € S we denote by k(s) = Og ;/mg s the
residue field of S at s.

For all definitions not explicitly given we will refer to Hartshorne(1977).

Notation

As customary various categories will be denoted by indicating their objects
within round parentheses when it will be clear what the morphisms in the category
are. For instance (sets), (A-modules), etc. The class of objects of a category C will
be denoted ob(C).
We will consider the following categories of k-algebras:

A = the category of local artinian k-algebras with residue field k

A = the category of complete local noetherian k-algebras with residue field k

A* = the category of local noetherian k-algebras with residue field k
(k-algebras) = the category of noetherian k-algebras

Morphisms are unitary k-homomorphisms, which are local in A, A and A*. For a
given A in ob(A*) we will consider the following:

Apx = the category of local artinian A-algebras with residue field k
A% = the category of local noetherian A-algebras with residue field k

They are full subcategories of A and A* respectively. If A is in A then we will let

Ay = the category of complete local noetherian A-algebras with residue field k
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which is a full subcategory of A. Moreover we will set:
(schemes) = the category of schemes
(i.e. of locally noetherian k-schemes) and
(algschemes) = the category of algebraic schemes
For a given scheme Z we set

(schemes/Z) = the category of Z-schemes
(algschemes/Z) = the category of algebraic Z-schemes

h'(X, F) denotes dim[H*(X, F)] where F is a coherent sheaf on the complete scheme
X. When no confusion is possible we will sometimes write H*(F) and h*(F) instead
of H'(X,F) and h*(X, F) respectively.

[, X; denotes the disjoint union of the schemes X;.
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Introduction

La méthode générale consiste toujours a faire des constructions formelles,
ce qui consiste essentiellement a faire de la géométrie algébrique sur un
anneau artinien, et a en tirer des conclusions de nature “algébrique” en
utilisant les trois théoremes fondamentaux (Grothendieck(1959), p. 11).

Deformation theory is a formalization of the Kodaira, Nirenberg, Spencer, Ku-
ranishi (KNSK) approach to the study of small deformations of complex manifolds.
Its main ideas are clearly outlined in the series of Bourbaki seminar exposes by
Grothendieck which go under the name of “Fondements de la Géométrie Algébrique”
(FGA); in particular they are explained in detail in Grothendieck(1960a) (see es-
pecially page 17), while the technical foundations are lied in Grothendieck(1959).
The quotation at the top of this page gives a concise description of the method
employed.

The first step of this formalization consists in studying infinitesimal defor-
mations, and this is accomplished via the notion of “functor of Artin rings”; the
study of such functors leads to the construction of “formal deformations”. This
method enhances the analogies between the analytic and the algebraic cases, and
at the same time hides some delicate phenomena typical of the algebraic geomet-
rical world. These phenomena become visible when one tries to pass from formal
to algebraic deformations. The techniques of deformation theory have a variety of
applications which make them an extremely useful tool, especially in understanding
the local structure of schemes defined by geometrical conditions or by functorial
constructions.

In this introduction we shall explain in outline the logical structure of deforma-
tion theory; for this purpose we will start by outlining the KNSK theory of small
deformations of compact complex manifolds.

Given a compact complex manifold X, a family of deformations of X is a
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commutative diagram of holomorphic maps between complex manifolds

X Cc X
£: 1 lm
* i) B

with 7 proper and smooth (i.e. with everywhere surjective differential), B connected
and where x denotes the singleton space. We denote by X; the fibre 7=1(t), t € B.
It is a standard fact that, locally on B, X is differentiably a product so that = can
be viewed as a family of complex structures on the differentiable manifold X g;g-
The family & is locally trivial at t, if there is a neighborhood U C B of t, such that
we have 7~ 1(U) 22 X x U analytically.

Kodaira and Spencer started by defining, for every tangent vector % €T, B
the derivative of the family ™ along % as an element

00X, 1
— € H (X, T
5 (X, Tx)
thus giving a linear map
k:T;, B— H (X, Tx)

called the Kodaira-Spencer map of the family w. They showed that if 7 is locally
trivial at ¢, then ﬁ(%) = 0 for all % € T; B. Then they investigated the problem
of classifying all small deformations of X, by constructing a “complete family” of
deformations of X. A family £ as above is called complete if for every other family
of deformations of X:

X c Yy
n: { - ip
* = M

there is an open neighborhood V' C M and a commutative diagram

X
v ¢
p~ (V) — X
{ {
1% — B

inducing an isomorphism p~1(V) 22 V xp X. The family is called universal if it
is complete and moreover the morphism V — B is unique locally around m, for
each family n as above. Kodaira and Spencer proved that if « is surjective then the
family ¢ is complete. The following existence result was then proved:

THEOREM (Kodaira-Nirenberg-Spencer(1958)) If H2(X,Tx) = 0 then there
exists a complete family of deformations of X whose Kodaira-Spencer map is an
isomorphism. If moreover H%(X,Tx) = 0 then such complete family is universal.
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Later Kuranishi generalized this result by showing that a complete family of
deformations of X such that s is an isomorphism exists without assumptions on
H?(X,Tx) provided the base B is allowed to be an analytic space (Kuranishi(1964)).

We want to rephrase everything algebraically as far as possible. Let’s fix an
algebraically closed field k and consider an algebraic k-scheme X. A local deforma-
tion, or a local family of deformations of X is a cartesian diagram

X - X

£ 0
Spec(k) < S

where 7 is a flat morphism, S = Spec(A) where A is a local k-algebra with residue
field k, and X is identified with the fibre over the closed point. If X is nonsingular
and/or projective we will require 7 to be smooth and/or projective. We say that
€ is a deformation over Spec(A) or over A. If in particular A is an artinian local
k-algebra then we speak of an infinitesimal deformation.

The notion of local family has the fundamental property of being funtorial.
Given two infinitesimal deformations of X:

X — X X — Y%
£ L7 and  7n: | .
Spec(k) C Spec(A) Spec(k) C Spec(A)

parametrized by the same Spec(A), an isomorphism £ 2 7 is defined to be a mor-
phism f : X — Y of schemes over Spec(A) inducing the identity on the closed fibre,
i.e. such that the following diagram

Spec(A)
is commutative. Consider the category
A* = (noetherian local k-algebras with residue field k)
and its full subcategory
A = (artinian local k-algebras with residue field k)
One defines a covariant functor
Defx : A* — (sets)

by
Defx (A) = {local deformations of X over Spec(A)}/(isomorphism)
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This is the functor of local deformations of X; its restriction to A is the functor of
infinitesimal deformations of X. One may now ask whether Def x is representable,
namely if there is a noetherian local k-algebra O and a local deformation

X — X°

v: ip
Spec(k) C Spec(O)

which is universal, i.e. such that any other local deformation £ is obtained by pulling
back v under a unique Spec(A) — Spec(O).

The approach of Grothendieck to this problem was to formalize the method of
Kodaira and Spencer, which consists in a formal construction followed by a proof of
convergence. In the search for the universal deformation v the formal construction
corresponds to the construction of the sequence of its restrictions to the truncations
Spec(O/mpth):

X — P2 g
Up * 4 4 n>0
Spec(k) — Spec(O/mpth)

These are infinitesimal deformations of X because the rings O/ m?fl are in A. The
sequence 4 = {u, } can be considered as a formal approximation of v. It is a special
case of a formal deformation: more precisely, a formal deformation of X is given by
a complete local k-algebra R with residue field k and by a sequence of infinitesimal

deformations
X — X,

&n: | { n>0
Spec(k) — Spec(R/m%™)

such that &, — &,—1 under the truncation R/m?{r1 — R/m’,. In our case R = )
The goal of the formal step in deformation theory is the construction of % for a
given X, i.e. of a formal deformation having a suitable universal property which
is inherited from the corresponding property of v, and which we do not need to
specify now.

Observe that in trying to perform the formal step we will at best succeed
in describing @ and not O. Since a formal deformation consists of infinitesimal
deformations, for the construction of & we will only need to work with the covariant
functor

Defx : A — (sets)

A covariant functor F : A — (sets) is called a functor of Artin rings. To every
complete local k-algebra R we can associate a functor of Artin rings hg by

hr(A) = Homa(R, A)

A functor of this form is called prorepresentable. By categorical general nonsense
one shows that a formal deformation é defines a morphism of functors ( a natu-
ral transformation) hgp — Defx and that this morphism is an isomorphism pre-
cisely when f is universal. Therefore we see that the search for 4 is a problem of
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prorepresentability of Defx. More generally, to every local deformation problem
there corresponds a functor of Artin rings F' analogous to Defx; the task of con-
structing a formal universal deformation for the given problem consists in showing
that F' is prorepresentable, producing the ring R prorepresenting F' and the formal
universal deformation defining the isomorphism hr — F'. This is the scheme of
approach to the formal part of every local deformation problem as it was outlined
by Grothendieck. What one needs is to find criteria for the prorepresentability
of a functor of Artin rings; we will also need to consider properties weaker than
prorepresentability satisfied by more general classes of functors coming from in-
teresting deformation theoretic problems. Necessary and sufficient conditions of
prorepresentability are given by Schlessinger’s Theorem.

After having solved the problem of existence of a formal universal deformation
(by means of necessary and sufficient conditions for its existence) one still has to
decide whether O and v exist and to find them. To pass from O to O is the analo-
gous of the convergence step in the Kodaira-Spencer theory, and it is a very difficult
problem which has no solution in general. The search for O is the algebraization
problem. Under reasonably general assumptions one shows that there exists a de-
formation v over an algebraic local ring (i.e. the henselization of a local k-algebra
essentially of finite type) which does not quite represent the functor Defx but at
least has a universal associated formal deformation. The further property of repre-
senting Defx is not in general satisfied by (O, v), being related with the existence
of nontrivial automorphisms of X. This part of the theory is largely due to the
work of M. Artin, and based on the notions of effectivity of a formal deformation
and of local finite presentation of a functor, already introduced by Grothendieck.
The main technical tool is Artin’ approximation theorem.
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Chapter I. Technical tools

In this preliminary Chapter we introduce some of the tools, mostly alge-
braic, which are necessary for the study of deformation theory. They consist
essentially in the infinitesimal techniques needed for analizing smooth and
etale morphisms. We will refer to Hartshorne(1977), Eisenbud(1995) and
to the Appendix for other basic notions used in the book.
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I.1. EXTENSIONS

Let A — R be a ring homomorphism. An A-ezxtension of R (or of R by I) is
an exact sequence

(R, ) 0-I—-R %S R—-0

where R’ is an A-algebra and ¢ is a homomorphism of A-algebras whose kernel T
is an ideal of R’ satisfying I> = (0). This condition implies that I has a structure
of R-module. (R’ ¢) is also called an extension of A-algebras.

If (R',¢) and (R",%) are A-extensions of R by I, an A-homomorphism ¢ :
R' — R" is called an isomorphism of extensions if the following diagram commutes:

0— I - R —- R —0

| 1€ I

0—- I - R" - R =0

Such a & is necessarily an isomorphism of A-algebras. More generally, given A-
extensions (R',¢) and (R",4) of R, not necessarily having the same kernel, a ho-
momorphism of A-algebras r : R' — R such that ¥r = ¢ is called a homomorphism
of extensions.

The following Lemma is immediate.

(I.1.1) LEMMA Let (R',¢) be an extension as above. Given an A-algebra B
and two A-homomorphisms f1, fo : B — R’ such that ¢f1 = ¢fs the induced map
fo— f1: B — I is an A-derivation. In particular, given two homomorphisms of
extensions

ri,72 0 (R, ) = (R",¢)
the induced map ro — r1 : R' — ker(v) is an A-derivation.

The A-extension (R', ¢) is called trivial if it has a section, that is if there exists
a homomorphism of A-algebras o : R — R’ such that ¢o = 1. We also say that
(R, @) splits, and we call o a splitting.

Given an R-module I, a trivial A-extension of R by I can be constructed
considering the A-algebra R®I whose underlying A-module is R @ I and with mul-
tiplication defined by:

(r,i)(s,g) = (rs,rj + si)

The first projection
p:ROI - R
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defines an A-extension of R by I which is trivial: a section ¢ is given by ¢(r) = (r,0).
The sections of p can be identified with the A-derivations d : R — I. Indeed,
if we have a section o : R — R®I with o(r) = (r,d(r)) then for all 7,7’ € R:

o(rr’) = (rr',d(rr")) = o(r)o(r') = (r,d(r))(r',d(r")) = (r',7d(r") + r'd(7))
and if a € A then:
o(ar) = (ar,d(ar)) = ao(r) = a(r,d(r)) = (ar, ad(r))

hence d : R — I is an A-derivation. Conversely every A-derivation d : R — [
defines a section o4 : R — R®I by a4(r) = (r,d(r)).

Every trivial A-extension (R’,¢) of R by I is isomorphic to (R®I,p). If o :
R — R’ is a section an isomorphism ¢ : RGI — R’ is given by:

§((r i) = o(r) +

and its inverse is
E7Hr") = (@(r'), 1" — o(r"))

An A-extension (P, f) of R will be called versal if for every other A-extension (R', )
of R there is a homomorphism of extensions r : (P, f) — (R’, ¢). If R = P/I where
P is a polynomial algebra over A then

0—I/I* - P/I* - R—0

is a versal A-extension of R.

(1.1.2) EXAMPLES

(i) Every A-extension of A is trivial because by definition it has a section.
Therefore it is of the form A®V for an A-module V. In particular, if ¢ is an
indeterminate the A-extension A[t]/(t%) of A is trivial, and is denoted Ale] (where
€ =t mod (t?) satisfies €2 = 0). The corresponding exact sequence is:

0— (e) > Ale] = A—0

Ale] is called the algebra of dual numbers over A.

(ii)  Assume that K is a field. If R is a local K-algebra with residue field K
a K-extension of R by K is called a small extension of R. Let

(R, f) 0= () =R R0

be a small K-extension; in other words ¢ € mp: is annihilated by mpg: so that (¢) is
a K-vector space of dimension one.
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(R', f) is trivial if and only if the surjective linear map induced by f:

Mg MR
fii—m = —%

is not bijective.
Indeed for the trivial K-extension

0— () > Rd(e) > R—0

we have € € mpg ) \ m hence the map f; is not injective because fi(e) = 0.

2
RD(e)’
Conversely, if f; is not injéc)tive choose a vector subspace V' C R’ such that R’ =
V @ (t). Since t € mp/ \m%, (because f; is not injective), V is a subring mapped
isomorphically onto R by f. The inverse of fy is a section of f, therefore (R’, f)
is trivial.

For example, it follows from this criterion that the extension of K-algebras

(") K] | K[t

0— (tn+1) - (tn+1) - (")

—0 n>2
is non trivial.
(iii) Let K be a field. The K-algebra
Kle,€'] == K[t,t']/(t, 1)
is a K-extension of Ke] by K in two different ways. The first
0— (¢) = Kle,e'] 25 K[e] = 0
is a trivial extension, isomorphic to p*((K[€'],p’)):

0— () —» KlxxK[] — Kl —0
| ! Ip

0= (¢) — K|e'] 2, K =0
The isomorphism is given by

Kle, €] —  Kle] xg K[€]
a+be+b'e — (a+bea+be)

The second way is by “sum”:
0> (e—¢) —Klee] K¢ -0

a+be+be — a+(b+b)e
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We leave it as an exercise to show that (K|[e, €'], +) is isomorphic to (K[, €'], pe).
x %k ok %k %k

The module Ex4(R,I)

Let A — R be a ring homomorphism. In this subsection we will show how to
give an R-module structure to the set of isomorphism classes of extensions of an
A-algebra R by a module I, closely following the analogous theory of extensions in
an abelian category as explained for example in Chapter III of MacLane(1967).

Let (R',¢) be an A-extension of R by I and f : S — R a homomorphism of
A-algebras. We can define an A-extension f*(R’,¢) of S by I, called the pullback
of (R', ) by f, in the following way:

f*(R, ) : 0—- I —- RxgS —- S =0
I ! Lf
(R, ) : 0—- I — R’ —- R =0

where R’ x g S denotes the fibered product defined in the usual way.

Let A : I — J be a homomorphism of R-modules. The pushout of (R',p)
by A is the A-extension \,(R’,¢) of R by J defined by the following commutative
diagram:

0o—- I % R % R -0
LA ! ||
0—- J — RI[;J —- R —0

where

' _ R'&J
: IYIJ ~ {(=a(i), AE)),i € I}

For every A-algebra R and for every R-module I denote by Ex (R, I) the set
of isomorphism classes of A-extensions of R by I. If (R’, ¢) is such an extension we
will denote by [R', ¢| € Exa (R, I) its class.

Using the operations of pullback and pushout it is possible to define a structure
of R-module on Exy4 (R, I).

If r € R and [R, ¢] € Exa(R,I) we define

(R, o] = [r (R, ¢)]
where r : I — I is the multiplication by r.

Given [R',¢],[R",9] € Exa(R,I), to define their sum we use the following
diagram:

0 0 0
N { {
Il I = T
N\ { 1

0 — I — R'xgR" — R — 0
| } N4

0 — I — R - R —= 0

{ N
0 0 0
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which defines an A-extension:
(R xr R",C): 0=I&I R xgR' 5 R—0
We define
(R, o] + [R", ¢] == [6,(R' xg R", ()]
where § : [ & I — I is the “sum homomorphism”: §(z ® j) =i + j.

(I.1.3) PROPOSITION Let A — R be a ring homomorphism and I an R-
module. With the operations defined above Ex4 (R, I) is an R-module whose zero
element is [R®I,p|. This construction defines a covariant functor:

( R-modules) — ( R-modules)
I — Exa(R, )
(f:I1—-J) +— (fe:Exa(R,I)— Exa(R,J))

Proof: Straightforward.

It is likewise straightforward to check that if f : R — S is a homomorphism
of A-algebras and I is an S-module, then the operation of pullback induces an
application:

f*:Exa(S,I) = Exa(R,I)

which is a homomorphism of S-modules.
We have the following useful result.

(I.1.4) PROPOSITION Let A be a ring, f : S — R a homomorphism of A-
algebras and let I be an R-module. Then there is an exact sequence of R-modules:

0 — Derg(R,I) — Ders(R,I) — Dera(S,I) ®s R 2>
— Exs(R,I) - Exa(R,I) L5 Ex4(S,I) ®s R

Proof
v is the obvious application sending an S-extension to itself considered as an A-
extension. An A-extension

0=-I—-R -2 R-0

is also an S-extension if and only if there exists f': S — R such that the triangle

R — R
Nt
S

commutes, and this is equivalent to saying that f*(R’, ¢) is trivial. This proves the
exactness in Ex4 (R, I).
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The homomorphism p is defined by letting p(d) = (R®I, p) where the structure
of S-algebra on R®I is given by the homomorphism

s (f(s),d(s))
Clearly vp = 0. On the other hand for

(R,p): 0 I — R X R =0
T
S

to define an element of ker(v) there must exist an isomorphism of A-algebras R’ —
R&I inducing the identity on I and on R. Hence the composition S — R’ — R®I
is of the form

s = (f(s),d(s))

for some d € Der 4(S, I): therefore the sequence is exact at Exg(R, I). To prove the
exactness at Der 4 (S, I) note that p(d) = 0 if and only if p : R&I — R has a section
as a homomorphism of S-algebras, if and only if there exists an A-derivation R — I
whose restriction to S is d: this proves the assertion. The exactness at Derg (R, I)
and Der 4 (R, I) is straightforward. g.e.d.

In the special case when we have a ring homomorphism A — R and we take
I = R the R-module Exy4 (R, R) is called the first cotangent module of R over A and
it is denoted Té/A. In case A =k we will write T}t instead of T}%/k.

NOTES

1. The functor Ex4(R,I) has been introduced for the first time in
Grothendieck(1968) in the form presented here. See also [EGA], Ch. Oy,
§18.
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I1.2. FORMAL SMOOTHNESS

The notion of “formal smoothness”, introduced in [EGA], Ch. IV §17, is of
crucial importance in deformation theory, and will therefore play a special role in
what follows. It is closely related to the notion of “nonsingularity”.

(I.2.1) DEFINITION A ring homomorphism f : R — B is called formally
smooth, and B is called a formally smooth R-algebra, if for every exact sequence:

[1.2.1] 0-T—-A-"5 A =0

where A and A’ are local artinian R-algebras, each R-algebra homomorphism B —
A’ has a lifting B — A; equivalently if the map:

[1.2.2] HOIIlR_alg(B, A) — HOIIlR_alg(B, AI)

is surjective.
f is called smooth if it is formally smooth and e.f.t..

It is easy to prove by induction that it suffices to check the above conditions
only for the exact sequences [I.2.1] such that I? = (0), i.e. for extensions of local
artinian R-algebras.

If we modify the previous definition asking that the map [I.2.2] is bijective
(instead of only being surjective) for all exact sequences [1.2.1], we obtain the notions
of formally etale and etale homomorphism.

(I.2.2) PROPOSITION
(i) If B is a ring and A C B is a multiplicative system, B — A~'B is formally
etale. In particular B is a formally etale B-algebra.
(ii) The composition of formally smooth (resp. formally etale) homomorphisms is
formally smooth (resp. formally etale).
(iii) If f : R — B is formally smooth (resp. formally etale) and C is an R-algebra,
then C — C ®pg B is formally smooth (resp. formally etale).
(iv) A finitely generated field extension K C L is smooth if and only if L is separable
over K.
(v) Let R Iy B %5 C be ring homomorphisms, and assume that f is formally
etale. Then gf is formally smooth (resp. formally etale) if and only if g is formally
smooth (resp. formally etale).

Proof
(i) Given an exact sequence [1.2.1] and a commutative diagram
B — A7'B
' L

A — A’
p
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we must find ¢ : A™1B — A which makes it commutative. For every s € A choose
as € A such that o(s)™! = p(a,). Since

p(¢'(s)as) = @(s)p(s)™h =14

we have
o'(s)as =14 + 15 is €1

for every s € A. Therefore

¢'(s)as(la —is) =14
Hence ¢'(s) € A is invertible. Now define ¢(r/s) = ¢ (r)¢’(s) L.

Noting that ¢ is uniquely determined by ¢’ we get the assertion.

(ii) and (iii) are straightforward.

(iv) Assume first that K C L is separable. By (ii) it suffices to consider the

cases L = K(X) and L = K[X]/(f(X)) where f is irreducible and f'(z) # 0. The
first case is left to the reader (see remark (1.2.3)(i)).
In the second case consider an extension A = A/I of local artinian K-algebras,
where I C A is an ideal with I? = (0). Let ¢ : K[X]/(f(X)) — A be a homomor-
phism, sending X + @. Choose arbitrarily o € A such that @ = o mod I. It will
suffice to find e € I such that

flote)=0

We have f(a+e) = f(a)+ f'(a)e. Since f'(«) is a unit mod I it is also a unit in
A, and therefore we can take e = — f(«a)/f'(«).

Assume conversely that K C L is smooth. Then L = F[X]/J where F is a
purely transcendental extension of K and J is a principal ideal. We have an exact
sequence of finite dimensional L-vector spaces:

where J/J? is 1-dimensional. By the first part of the proof F is smooth over K and
by (A.1.3)(ii) the left map is injective because, by the smoothness of L over K, the
surjection F[X]/J? — L splits. It follows that

dim(Qr k) = dim(Qpx) k ® L) —1 = trdeg g (F[X]) —1 = trdegy (F) = trdegg (L)

From (A.1.1)(iii) it follows that K C L is separable.
(v) “if” follows immediately from (ii); “only if” is left to the reader. g.e.d.

(I1.2.3) REMARKS.

(i) Any polynomial algebra R[Xq, X5 ...] is trivially a formally smooth R-
algebra. From (I.2.2)(i) it follows that a localization of a polynomial R-algebra is
also a formally smooth R-algebra.

More precisely, a localization P = S™'R[X;, X, ...] of a polynomial algebra
over a ring R satisfies the following condition, stronger than formal smoothness:



L. OETTIEST

For every extension of R-algebras:
0-I—-A—=A =0
where A and A’ are R-algebras and I? = 0 the map
Hompg_q14(P, A) = Homp_ a4 (P, A")

is surjective.

Every R-algebra B is a quotient of a formally smooth R-algebra, because it
is a quotient of a polynomial R-algebra. From (1.2.2)(i) it follows that every e.f.t.
R-algebra is a quotient of a smooth R-algebra.
This is trivial for polynomial rings, and in the general case it can be proved adapting
the proof of (I.2.2)(i) in an obvious way.

(i) if R is in A then every formal power series ring R[[X1, Xa, ...]] is a formally
smooth R-algebra, because local artinian R-algebras are complete.
More precisely a formal power series ring R[[X1, X, ...]] satisfies the following
condition, stronger than formal smoothness over R:
For every extension:
0>I—-A—A" =0

of complete local R-algebras the map
HomR_alg (P, A) — HomR_alg (P, AI)

is surjective.
The proof is straightforward and is left to the reader.

The following result characterizes an important class of formally smooth alge-
bras.

(I.2.4) THEOREM Let k be a field and let (B, m) be a noetherian local k-
algebra with residue field K. Suppose that K is finitely generated and separable
over k. Then the following are equivalent:

(i) B is regular.
(ii) B = K[[X1, ..., X4]], where d = dim(B).
(iii) B is a formally smooth k-algebra.

Proof
(i) < (ii) is standard (see Eisenbud(1995), prop. 10.16 and exercise 19.1).
(ii) = (iii). It follows directly from the definition that B is formally smooth over
k if and only if B is. Since B is formally smooth over K (remark (I.2.3)(ii)), and
since K is smooth over k by (I.2.2)(iv), the conclusion follows by transitivity.
(i) = (i). Let {z1,...,m4} be a system of generators of m. Then, since B/m?
is complete and K is separable over k, B/m? contains a coefficient field (Eisen-
bud(1995), theorem 7.8). Therefore there exists an isomorphism

vy : B/m? =2 K[Xy,...,X4)/M? M= (Xq,...,Xq)
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Let v: B — B/m? =% K[Xy,...,X4]/M?. By the formal smoothness of B and by
induction we can find a lifting of v:

Vp: B — K[Xq,..., Xg]/M™ !
for every n > 2. Consider the elements
0 (1), U (2a) € M/M™H!

Their classes generate M/M?, hence they generate M/M"™t! by Nakayama. Then
we have:

K[X1,...,X4]/M™" = v, (B)+(M/M™1) = v, (B)—i-Z (%) [ (B)+(M/M™ )] =

= 0 (B) + (MM = - = 0, (B) + (M/M™ )™ = v, (B)

nce v, is surjective. Since m r(v,) W ve:
hence s surjective. Since m™t! C ke e have

L(B/m™) > (K[Xq,..., X4 /M) = (d-; n)

and this implies that dim(B) > d. Since m is generated by d elements it follows
that B is regular. q-e.d.

For the reader’s convenience we include the proof of the following well known

(I.2.5) LEMMA (i) A surjective endomorphism f : A — A of a noetherian
ring is an isomorphism.
(ii) Let A be a complete noetherian local ring and ¢ : A — A an endomorphism
inducing an isomorphism v : A/m?% — A/m?. Then 1 is an isomorphism.

Proof
(i) We have an ascending chain of ideals

ker(f) C ker(f?) C ker(f?) C - --

Since A is noetherian we have ker(f") = ker(f"*!) = ker(f"*2) = --- for some
n, and it suffices to prove that ker(f™) = (0). After replacing f by f™ we may
assume ker(f) = ker(f2). Let a € ker(f); by assumption there exists b € A such
that @ = f(b). Then 0 = f(a) = f2(b) and therefore b € ker(f?) = ker(f), i.e.
a= f(b)=0.

(ii) Let gr(A) = A/m & m/m? & --- be the associated graded ring. Since
gr(A) is generated by m/m? over A/m the endomorphism gr(¢) : gr(A4) — gr(A)
induced by % is surjective. It follows that also % is surjective. Infact given a € A
the surjectivity of gr(¢) implies that there are ai,as,as, ..., b1, b2, bs,... € A such
that a; € m*~1, b; € m?, and

a = f(a1) + b1, by = f(a2) + b2, ba = f(az) + b3, ...
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We obtain a convergent power series a = a1 + a2 + ag + - - - such that
a—1(ar+as+-+ap) =b, €m""

On the limit we therefore get a = 9(a). The conclusion is now a consequence of (i).
g.e.d.

(I.2.6) PROPOSITION Let f : R — B be a local homomorphism of noetherian
local rings containing a field k isomorphic to their residue fields. Then the following
conditions are equivalent:

(i) f is formally smooth.
(ii) B is isomorphic to a formal power series ring over R.
(iii) The homomorphism f R — B induced by f is formally smooth.

Proof
(i) = (ii). Let m C B and n C R be the maximal ideals. Choose elements
T1,...,Tq € B inducing a k-basis of B/(m?+ f(#)), and let F = R[[X1,..., X4]],
Where X1,...,X4 are indeterminates. Denote by M C F' the maximal ideal.

The homomorphism )
B
Ly

u: F

_)
X,L' —

induces an isomorphism
uy : F/(M? + aF) — B/(m? + f(7))

By the formal smoothness of f the composition

v1: B— B — B/(m? + f(7)) N F/(M? 4+ iF)
can be lifted to an R-homomorphism
vg : B — F/MF
for each k > 2. Therefore the sequence {vg} defines an R-homomorphism
v:B—F

such that vu : F — F and uv : B — B induce isomorphisms (vu); : F/M? — F/M?

and (uv); : B/m? — B/m? respectively. From Lemma (1.2.5) it follows that u and

v are isomorphisms inverse of each other.

(ii) = (iii) is obvious.

(iii) = (i) is left to the reader. g.e.d.
(I.2.7) COROLLARY Let f: R — B be a local homomorphism of noetherian

local rings containing a field k isomorphic to their residue fields. Then the following

conditions are equivalent:
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(i) f is formally etale.
(ii) The homomorphism f : R — B induced by f is an isomorphism

Proof
left to the reader

(1.2.8) COROLLARY Let R be in A*. The inclusion f : R — R is formally
etale.

The proof is obvious.
x % ok ok % %

Next Theorem shows that when we have an e.f.t. ring homomorphism the
defining condition of Definition (I.2.1) can be replaced by the more general condition
(i) in the following statement.

(I.2.9) THEOREM Let f: R — B be an e.f.t. ring homomorphism. Then the
following conditions are equivalent:
(i) For every extension of R-algebras:

[1.2.3] 0>I—>A—A >0
the map
HomR_alg(B, A) — HomR_alg(B, AI)

is surjective.
(ii) If B = P/J, where P = S™'R[X,,...,X4], S C R[Xi,...,X4] is a multi-
plicative system and J C P is an ideal, the conormal sequence

0—>J/J2 i)Qp/R@PB—)QB/R—)O

is split exact. In particular J/J? and Qp /r are finitely generated projective B-
modules.

(iii) B is a smooth R-algebra.

(iv) (Jacobian criterion of smoothness) If P and J are as in (ii) the map

s@BK
(J/J?) @5 K(p) ®nK() Qp/r ®p K(p) where K (p) = B,/mp,

is injective for every prime ideal p C B.
Proof
(i) = (ii). The hypothesis implies that the extension:
0—J/J> = P/J> - B—0

splits. Therefore the conormal sequence is split exact by (A.1.3)(iii) and it follows
that J/J? and Qp /r are finitely generated projective because {1p,p ®p B is free of
finite rank.
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(ii) = (i). Consider an exact sequence [[.2.3] and a homomorphism of R-algebras
f': B — A’. By Remark (1.2.3)(ii) there exists an R-homomorphism g : P — A
making the following diagram commute:

P —- B
lyg Lf
A — A

Since g(J) C I, we see that g factors through P/J?, so that we have a commutative
diagram:

P/J? — B
13 Lf
A — A

The hypothesis implies, via (A.1.3)(iii), that there is h : B — P/.J? a splitting of
P/J? — B. The composition f = gh: B — A gives a lifting of f’.

(i) = (iii) is obvious.

(iii) = (iv). We may assume B and P local with residue field K. To prove that

0 ®p K is injective, it suffices to show that for every K-vector space V the map
induced by 9:

HOIHK(QP/R ®p K, V) — HOIHK((J/J2) ®B K, V)

| |
Derg(P,V) Homp(J/J2,V)

is surjective. Consider a homomorphism g : J/J? — V, and the associated pushout
diagram (see §I.1 for the definition):

A 0 —- J/J? - P/J2 - B — 0

lg i I
g«(A): 0 - V —» @ —- B — 0

We can write mg =V @m/, where m’ C @ is an ideal, because V' is annihilated by
mg. Therefore the previous diagram can be embedded in the following:

P
U
A: 0 —» J/J*> - P/J> - B — 0
lg } I
g(A): 0 - V. - Q@ —= B — 0
I 4 Lo
n: 0o - VvV = Q/m —- K — 0

where 7 is an extension of local artinian R-algebras. From the smoothness of B we
deduce the existence of v : B — @ /m/ lifting the projection v : B — K. Denoting by
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r: P — B the natural map, and by w : P — P/J? — Q — Q/m/ the composition,
consider the homomorphism:

d=w—-vr:P—>V

It is easy to show that this is an R-derivation, which induces g.

(iv) = (ii). From Nakayama’s Lemma it follows that ker(6)® B, = (0) and Qp,r®p
By, is free for all prime ideals p C B. Therefore ker(d) = (0), Qp/g is projective, o
has a splitting and J/J? is projective. g-e.d.

From now on we will freely replace the defining property for smooth homomor-
phisms given in Definition (I.2.1) by condition (i) of the Theorem. Here is a first
example.

(I1.2.10) PROPOSITION Let K be a ring, P a smooth K -algebra and B = P/J
for an ideal J C P. If B is a smooth K-algebra the conormal sequence

0— J/J?> > Qp/x ®p B — Qp/x — 0

is split exact.

Proof
Since B is smooth the K-algebra extension

0—J/J* = P/J* - B—=0

splits. The conclusion is therefore a consequence of (A.1.3)(iii). g.e.d.

(I.2.11) COROLLARY Let P be a smooth k-algebra and B = P/J for an
ideal J C P. Assume that B is reduced. Then in the conormal sequence

[1.2.1] J/J? 25 Qp e ®p B — Qg — 0

ker(d) is a torsion B-module.

Proof
Since B is reduced there is a dense open subset U C Spec(B) such that B, is a
regular local ring for all p € U. From Theorem (I.2.4) it follows that B, is a smooth
k-algebra for all such p and, by Propositions (1.2.10) and (A.1.1)(ii) , the conormal
sequence [I.2.1] localized at p is split exact. It follows that ker(d), = (0) for all
p € U and the conclusion follows. g-e.d.

The next result explains the relation between smoothness and the relative
cotangent sequence.

(1.2.12) THEOREM Let K -5 R —% B be ring homomorphisms, with g
smooth. Then the relative cotangent sequence:

O—)QR/K(X)RB i)QB/K —)QB/R—)O
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is split exact.

Proof
By Theorem (A.1.2) it suffices to prove that « is a split injection; this is equivalent
to showing that, for any B-module M, the induced map:

v
HomB(QB/K,M) 2 HOIIlB(QR/K QR B,M)

I I
Derg (B, M) Derg (R, M)

D' — D'g

is split surjective. Let D : R — M be a K-derivation and consider the commutative
diagram:

B % B

Ty T

R - B&M
where y(r) = (g(r), D(r)), r € R. By the smoothness of g we can find a homomor-
phism of R-algebras ¢ : B — B&M making the diagram

B 2 B

tg N 1

R — BoM
Y

commutative. The homomorphism 1 is necessarily of the form:

1 (b) = (b, D' (b))

and D' : B — M is a K-derivation such that D = D’g. This proves the surjectivity
of a¥. Now take M = Qp/x ®gr B and D =dp/xk ® g : R = Qp/x ®r B and let

Oél : QB/K — QR/K ®R B

be the B-linear map corresponding to D' : B — Qp/x ®r B. Then o/a = 1)7 and
this proves that « is split injective. g-e.d.

(1.2.13) COROLLARY Let K 25 R % B be ring homomorphisms, with g
etale. Then
Qr/xk ®r B=Qp/k

is an isomorphism and

Qp/r = (0)

Proof
By the relative cotangent sequence the two assertions are equivalent. We will prove
the first. Keeping the notations of the proof of (I1.2.12), the hypothesis that g is
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etale implies that the derivation D’ is unique and consequently « is an isomorphism.
g.e.d.

The following result follows easily from what we have seen so far.

(I.2.14) THEOREM Let k be an algebraically closed field, and let B be an
integral k-algebra of finite type and of dimension d. Then the following are equiv-
alent:

(i) B, is smooth over k for each prime ideal p € Spec(B).
(ii) B is a regular ring.

(iii) Qp/y, is projective of rank d.

(iv) B is smooth over k.

Proof
(ii) < (iii) is Corollary (A.1.6).
(i) < (ii) follows from (1.2.4).
(iii) < (iv) follows from (1.2.9). g.e.d.

* * * E S * Xk
Etale neighborhoods

Let S be a scheme and s € S a point. An etale neighborhood of s is an etale
morphism of pointed schemes f : (T,t) — (S,s) such that the following diagram

comiutes:
T

t LS

Spec(k(s)) = S

The definition implies that k(s) = k(t), i.e. f induces a trivial extension of the
residue fields at s and ¢; therefore Og , = Or, by (1.2.7). Affine neighborhoods of
s are particular etale neighborhoods.

Given two etale neighborhoods (7', t) and (U, u) of s € S a morphism (T,t) —
(U, u) is given by a commutative diagram of pointed schemes:

(T,t) — (U, u)

pY v
(S, 5)

(I1.2.15) LEMMA Let f : X — Y be an etale morphism and g : Y — X a
section of f. Then g is etale.

Proof
Use (1.2.2)(v). g.e.d.

(I.2.16) PROPOSITION Let S be a scheme. The etale neighborhoods of a
given s € S form a filtered system of pointed schemes.
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Proof
Given two etale neighborhoods (5’, s’) and (S”,s”), they are dominated by a third,
namely:
S’ X g SN
1 1
S’ - S

Now let f1, fa: (S”,s"”) — (S’,s’) be two morphisms between etale neighborhoods.
Then there exists a third etale neighborhood (5", s""") and a morphism (5", s"") —
(S”,s") which equalizes them. Infact consider the diagram:

S xs§ Ty
$pr” }
S - S

We can shrink S’ and S” so that S’ is affine and S” is connected. Then the graphs
I’y and I'; of f; and f5 are closed, because S’ is affine, and open, because images of
sections of the etale morphism pr”', which are etale. Therefore they are connected
components of S” xg S’. But (s”,s") € 'y NT'y and therefore I'; = T'y. It follows
that fi = foon S =T1 =T',. g.e.d.

(I.2.17) DEFINITION Given a scheme S and a point s € S we define the local
ring of S in s in the etale topology to be

OS’S = lim OSI’SI
= (5',8")

where the limit is taken for (S’ s') varying through all the etale neighborhoods of s.
The ring (53,5 is also called the henselization of Og 5. (Note that (55,5 is a local ring,
because it is a limit of a filtering system of local rings and local homomorphisms).
A local ring A is called henselian if for the closed point s of S = Spec(A) one
has
/1 = @S,s = OS,S =A

The henselization of an e.f.t. local k-algebra is called an algebraic local ring.

Therefore the local ring in the etale topology of a point of an algebraic scheme
is an algebraic local ring.

For a given scheme S and point s € S there is a canonical homomorphism
Oss — (7)5, s which is flat and induces an isomorphism of the completions

OS,S = OS,S
because every Og s — Og/ o does. Moreover

OS,S - OS,S C OS,S
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because Og ; — @S,s is faithfully flat and Og , is separated for the m-adic topology.
In particular we see that Og 3 = Og s if Og s = Og s, i.e. a local k-algebra in A is
henselian.

(1.2.18) THEOREM (Nagata) If A is a noetherian local ring then A is noethe-
rian.

Proof N
We have A C A C A and A = A. Moreover

A =1lim A’
_).

with A’ local algebras etale over A and inducing trivial residue field extension. To
prove that A is noetherian it suffices to prove that every ascending chain of finitely
generated ideals of A

a;,Cay, C---Ca, C

stabilizes. The chain {a,, A} stabilizes because A is noetherian. Therefore it suffices
to prove that if a,b C A are finitely generated ideals such that aA = bA then a = b.
Since a and b are finitely generated one can find A’ O A as above and finitely
generated ideals a’,b' C A’ such that a = a’A, b=0b'A. It follows that o’ A = b A.
But since A’ is noetherian it follows that ¢’ = b’ and therefore a = b. g.e.d.

The following Proposition gives a geometrical characterization of the henseliza-
tion.

(I1.2.19) PROPOSITION Let A be a local ring, S = Spec(A), s € S the closed
point. A is henselian if and only if every morphism f : Z — S such that there is a
point z € Z with f(z) = s, k(s) = k(z) and f etale in z, admits a section.

Proof
Assume the condition satisfied. If A — A’ is an etale homomorphism inducing an
isomorphism of the residue fields then the induced morphism f : Spec(4’) — S
admits a section, which defines an isomorphism A’ = A; therefore A is henselian.
Conversely assume A henselian and let f : Z — S be a morphism satisfying the
stated conditions. Then f induces an isomorphism A = Oz , because A is henselian.
The section is the composition

S = Spec(A) = Spec(0z,,) C Z
g.e.d.

NOTES

1. Let f: X — Y be a smooth morphism of algebraic schemes. Prove
that the relative cotangent sequence

0= Q% = f*Qy — Qx )y =0
and the relative tangent sequence
0 — Tx/y — Hom(f*Qy,0x) = Tx — 0
are both exact (hint: use (1.2.12)).
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I.3. OBSTRUCTIONS

In this Section we investigate the notion of formal smoothness in the cate-
gory A* using the language of extensions. The results we prove are crucial for the
understanding of obstructions in deformation theory. Our treatment is an expan-
sion of Schlessinger(1973); for a more systematic treatment we refer to Fantechi-
Manetti(1998).

Let A € ob(A*) and p : A — R be in ob(A}). The relative obstruction space
of R/A is
o(R/A) :== Exp(R, k)

If A = k then o(R/k) is called the (absolute) obstruction space of R and simply
denoted by o(R). We say that R is unobstructed (resp. obstructed) over A if
o(R/A) = (0) (resp. if o(R/A) # (0)); R is said to be unobstructed (resp. obstructed)
if o(R) = (0) (resp. if o(R) # (0)). Given a homomorphism f : R — S in A} we
denote by

o(f/A) : o(S/A) — o(R/A)

the linear map induced by pullback:

o(f/A)([n]) = [f*n] € Exa(R, k)

for all [n] € Ex,(S,k). Since this definition is functorial we have a contravariant
functor:
o(—/A) : Ay — (vector spaces/k)

When A =k we write o(f) instead of o(f/k). If p is such that o(y) is injective one
simetimes says that R is less obstructed than A. By applying Proposition (I.1.4) we
obtain an exact sequence for each f: R — S in A}:

[1.3.1] 0= tg/p — ts/n — tra — o(S/R) = o(S/A) “LLY o(R/A)
In case A =k and f = u we obtain the exact sequence:

1.3.2] 0= tr/n — tr — ta — o(R/A) — o(R) 24 o(A)

which relates the absolute and the relative obstruction spaces.
The next result gives a description of o(R/A) and an interpretation of formal
smoothness of a A-algebra (R, m) in Aj}.
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(I.3.1) PROPOSITION = Assume that A is in A.
(i) Let (R, m) be in A} and let x : R — R be the natural homomorphism of R into

its m-adic completion R. Then the induced map:
o(x/A) : o(R/A) — o(R/A)

is an isomorphism.
(ii) For every (R,m) in A} let d = dimy(tg/a) and let

R=A[X1,...,X3)/J

with J C (X)2, be a presentation of the m-adic completion R. Then there is a
natural isomorphism:

o(R/A) = (J/(X)J)"

In particular R is unobstructed over A if and only if it is a formally smooth A-
algebra.

Proof
(i) Let
n:0-k—->S5—>R—0

be an extension; denote by m’ the maximal ideal of S.

Claim: S is complete.

Let {f,} C S be a Cauchy sequence; then the image sequence {f,} in R
is Cauchy, hence it converges to a limit which we may assume to be zero, after
possibly subtracting a constant sequence from {f,}. We have f, € me™ | with
lim,, [e(n)] = co. For every n we may find g,, € m’*™ lying above f,,. The sequence
{gn} in S is Cauchy and converges to zero, and {f, — g, } is a Cauchy sequence in
k. Since k is complete as an S-module, because it is annihilated by the maximal
ideal, {f. — gn} converges to a limit f € k. This is also the limit of {f,} because

fn_f:(fn_gn_f)+gn

Therefore S is complete.

If x*(n/A) is trivial the section induces a homomorphism g : R — S which
factors through R because S is complete. Hence 7 is trivial. This proves that
o(x/A) is injective.

Given a A-extension of R:

(S,9): 0k—>S—>R—0

the map ¢ : ,SA: — R is surjective and ker(¢) = k = k. therefore [3, ¢] € Exy (R, k)
and o(x/A)([S, ¢]) =[S, ¢]: this means that o(x/A) is also surjective.
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(ii) R is a formally smooth A-algebra if and only if R is a power series ring over
A, i.e. if and only if J = (0). Therefore the last assertion follows from the fact that
J/(X)J = (0) if and only if J = (0), by Nakayama’s Lemma.

In order to prove the first assertion we may assume that R is in flA, since
o(R/A) = o(R/A) by the first part of the Proposition. Hence R = A[[X]]/J with
J C (X)%. The extension of R:

®: 00— J/(X)J = A[X]]/(X)J =R —0
induces by pushouts a homomorphism:
a: (J/(X)J)Y — Exa(Rk) =o(R)
d —  [d,®]

Letting M be the maximal ideal of A[[X]]/(X)J we have J/(X)J C M2. If d €
(J/(X)J)V is such that [d.®] = 0 then we have:

D 0— J/(X)J — A[X]]/X)J — R —0
Ld Lh [
dD : 0— k — A - R —0

with d,® trivial. From the example (I.1.1)(ii) it follows that the generator e of k
in A is contained in m4\m?%. Since h(J/(X)J) C m% we deduce that d = 0. It
follows that « is injective.

Conversely, given a A-extension (A, ¢) of R by k it is possible to find a lifting:

Al[X]]

\
p: A

Ay}

¢
— R

because A is complete (see proof of (I.3.1) and (I.2.3)(ii)). From the fact that
ker(¢) = k it follows that ker(¢) D (X)J and therefore we have a commutative
diagram:

@ : 0— J/(X)J — AX]/(X)J — R —0
1d
k

\J
(A, ) : 0— — A - R —0

in which d is the map induced by ¢. It follows that (A4,¢) = d,®; hence « is
surjective. g.e.d.

(I.3.2) COROLLARY For every R in A* the following are true:
(1) dimy [o(R)] < 00

(’L’L) dimk(tR) 2 dlm(R) Z dimk(tR) - dlmk[O(R)]
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(where dim(R) means Krull dimension of R). In (ii) the first equality holds if
and only if R is formally smooth; the second equality holds if and only if R =
k[[X1,...,X4]]/J, with J C (X)? and J generated by a regular sequence.

Proof
We may assume that R is in A; hence R = R = k[[ X1, ..., X4]]/J, with J C (X)?
and o(R) = (J/(X)J)V. Then (i) and (ii) follow from the fact that dimy[J/(X)J]
is the number of elements of a minimal set of generators of J. g-e.d.

(L.3.3) REMARKS
The only formally smooth k-algebra in A is k itself. By (1.3.1)(ii) this means that
o(k) = (0) and that o(A) # (0) for every A # k in A. The following are some
special cases.

If A =Xk®V, a trivial extension of k by a vector space V of dimension d, then
AKXy, ..., Xg)/(X)?, and o(4) = [(X)?/(X)*]".
If A =k[X]/(X)* then o(A) = [(X)*/(X)k*+1]V. In particular, if A = k[t]/(t"),
n > 2, then o(A) = [(¢")/(t"*!)]Y is 1-dimensional; from the proof of (1.3.1)(ii) it
follows immediately that o(A) is generated by the class of the extension:

0 — (#")/(t"*") — K[t]/ (") — K[t]/(t") — 0

We will need the following

(1.3.4) LEMMA
(i) Let i : A — R be a homomorphism in A*. Given a small extensionn: B — A in
A and a homomorphism ¢ : R — A, the condition ¢*(n) € ker(o(p)) is equivalent
to the existence of a commutative diagram:

A <& R
[1.3.3] T Th
7]

Moreover ¢*(n) = 0 if and only if there exists ¢’ : R — B such that the resulting
diagram

A <& R
[1.3.4] tTn e Tw
©

is commutative.
(ii) For every A in A and i : A — R in A} there exists A in Ax and a homomorphism
p: R — A such that o(p/A) : o(A/A) — o(R/A) is surjective.

Proof
(1) is left to the reader.
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(ii) We will show something more precise, namely that if p, : R — R/m™*! is
the natural map, then

o(pn/A) : o((R/m"™ 1) /A) = o(R/A)

is surjective for all n > 0. X
Since o(p,,/A) factors through o(R/A), which is isomorphic to o(R/A), we may
assume that R is in Aj. Let’s write:

k= A[[X]]/J
where J = (g1,...,9s) C (X)?. Let n > 0 be such that g; ¢ (X)"*? for all

j=1,...,s. Then we have:
R A[X]]
mrtt o (J, (X))

and therefore

o (R/m™1)/A) = |
The map o(p,/A) is the transpose of

o (J, (X))
)T [(@)J, (xw)]

(J, (X)) }V
((X)J, (X)"+2)

induced by the inclusion J C (J, (X)™*!). From the hypothesis on n it follows that
if y € JN((X)J, (X)"*2) then v € (X)J; this means that 1, is injective, i.e. that
o(pn/A) is surjective. g.e.d.

The following Theorem gives a characterization of formally smooth homomor-
phisms in A*.

(I.3.5) THEOREM Let p: A — R be a homomorphism in A*. The following
conditions are equivalent:
(i) For every commutative diagram [I.3.3] with n a small extension in A* there exists
¢’ : R — B such that diagram [1.3.4] is commutative.
(ii)  p is formally smooth.
(iii)  dp :tp — ta is surjective and o(p) is injective.
(iv) o(R/A) = (0)

Proof
(1) = (47) is trivial.

(74) = (43) Let v € ta be given as a k-algebra homomorphism A — k[e|.
The formal smoothness of p implies the existence of a homomorphism w : R — k[e]
which makes the following diagram commutative:

k «+ R

T v 7
kle] <« A
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and this means that du(w) = v. Therefore dp is surjective.

Consider a commutative diagram of k-algebra homomorphisms [1.3.3] with 7 a
small extension in A. Then o(p)([n]) € ker(o(p)). By the formal smoothness of u
there exists ¢’ : R — B making [I.3.4] commutative: this implies that o(¢)([n]) = 0.
Since, by Lemma (I.3.4), ¢ and 1 can be chosen so that o(y)([n]) is an arbitrary
element of ker(o(u)), we deduce that o(u) is injective.

(7i1) < (iv) follows from the exact sequence [I.3.2].

(791) = (7). Consider a diagram [1.3.3] with n a small extension in A4*. Then

o(p)([n]) € ker(o(p))

By assumption o(¢)([n]) = 0, and therefore there exists ¢ : R — B such that
ne = . It follows that ¢ — gu : R — ker(n) = k is a k-derivation. By assumption
there exists a k-derivation v : R — k such that ¢ — gu = du(v) = vp.

Then ¢’ := ¢ +v : R — B is a k-homomorphism which obviously satisfies
ny’ = p. Moreover

= (p+v)p=opptop=9
and therefore ¢’ makes [[.3.4] commutative. g.e.d.

In the special case A = k we obtain that a k-algebra R in A* is unobstructed if
and only if R is formally smooth, a result already proven in (I.3.1). More generally
the Theorem says that p is formally smooth if and only if du is surjective and R is
less obstructed than A. The following Corollary is immediate.

(I.3.6) COROLLARY
(i) Let u : A — R be a homomorphism in A* such that du is surjective and R is
formally smooth. Then A and p are formally smooth.
(ii)) A homomorphim u : A — R in A* is formally etale if and only if dy is an iso-
morphism and o(u) is injective. This happens in particular if dy is an isomorphism
and R is formally smooth.
(iii) If R € ob(A*) then the natural homomorphism R — R is formally etale.

In practise it is seldom possible to compute the obstruction map o(u) explicitly
for a given 4 : A — R in A*. But for the purpose of studying the formal smoothness
of p all that counts is to have informations about ker[o(x)]. This can be achieved
somehow indirectly by means of the following simple result, which turns out to be
very effective in practise.

(I.3.7) PROPOSITION Let pp: A — R be a morphism in A*. Assume that
there exists a k-vector space v(R/A) such that for every homomorphism ¢ : R — A
in A} with A in A there is a k-linear map

vy Exp(A, k) — v(R/A)

satisfying
ker(ip,) = ker[o(ip/ )]
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where
Exa (4, k) R v(R/A)

N o(p/A)

Exa(R,X) = o(R/A)

Then there is a natural k-linear inclusion

o(R/A) Cv(R/A)

Proof
Choosing ¢ such that o(¢/A) surjects onto o(R/A) (Proposition (I.3.4)) we obtain
an inclusion o(R/A) C v(R/A) as asserted. g.e.d.

In practise this Proposition will be applied as follows. Given ¢, to give an
element of Exj (4, k) is the same as to give a commutative diagram [1.3.3]. Assume
that to each such diagram one associates in a linear way an element of v(R/A) which
vanishes if and only if there is an extension ¢’ : R — B making [I.3.4] commutative.
Then the Proposition applies.

Taking A = k we get the following absolute version of the Proposition, where
for the last assertion we apply (I1.3.2)(ii).

(I.3.8) COROLLARY Let R be in A*. Assume that there exists a k-vector
space v(R) such that for every morphism ¢ : R — A in A* with A in A there is a
k-linear map

¥y :0(A) > v(R)

satisfying
ker(p,) = ker[o(¢)]

Then there is a natural k-linear inclusion
o(R) C v(R)
If v(R) is finite dimensional then

dimy (tg) > dim(R) > dim (tz) — dimg[v(R)]

A k-vector space v(R) satisfying the conditions of (I.3.8) will sometimes be
called an obstruction space for R.
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I.4. EXTENSIONS OF SCHEMES

Let X — S be a morphism of schemes. An extension of X/S is a closed
immersion X C X', where X’ is an S-scheme, defined by a sheaf of ideals Z C Ox:
such that 72 = 0. It follows that Z is, in a natural way, a sheaf of Ox-modules,
which coincides with the conormal sheaf of X C X’. To give an extension X C X'
of X/S is equivalent to giving an exact sequence on X:

E: 0T —0x 5 0x =0

where 7 is an Ox-module, ¢ is a homomorphism of Og-algebras and Z2 = 0 in Ox:;
we call & an extension of X/S by I or with kernel Z. Two such extensions Ox:
and Oxn are called isomorphic if there is an Og-homomorphism a : Ox: — Oxn
inducing the identity on both Z and Ox. It follows that o must necessarily be an
S-isomorphism.

We denote by Ex(X/S,Z) the set of isomorphism classes of extensions of X/S
with kernel Z. In case Spec(B) — Spec(A) is a morphism of affine schemes and
T = M we have an obvious identification:

Exa(B,M) =Ex(X/S,T)

If S = Spec(A) is affine we will sometimes write Ex 4 (X, Z) instead of Ex(X/Spec(A),Z).

Exactly as in the affine case one proves that Ex(X/S,Z) is a I'(X, Ox)-module with
identity element the class of the extension:

07— 0x®T - Ox —0
where Ox @7 is defined as in the affine case (see section 1.1). The correspondence
7 — Ex(X/S,T)

defines a covariant functor from Ox-modules to I'(X, Ox)-modules.

In deformation theory the case Z = Ox is the most important one, being
related to first order deformations. If more generally 7 is a locally free sheaf we get
the notions of ribbon, carpet etc. (see Bayer-Eisenbud(1995)).

(I.4.1) PROPOSITION Let A — B be an e.f.t. ring homomorphism and let
B = P/J where P is a smooth A-algebra. Then for every B-module M we have an
exact sequence:

[1.4.1] Der (P, M) — Homp(J/J?*, M) — Exa(B, M) — 0
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If A — B is a smooth homomorphism then Ex (B, M) = 0 for every B-module M.

Proof
We have a natural surjective homomorphism

HOIIlB(J/J2,M) — EXA(B,M)
A = A« ()

where
n:0—J/J* = P/J*> = B—0

The surjectivity follows from the fact that 7 is versal. The extension A.(n) is trivial
if and only if we have a commutative diagram

0— J/J> — P/J> — B —=0

D) 4 |
0— M - BeM — B —=0

if and only if A extends to an A-derivation D : P/J? — M, equivalently to an
A-derivation D : P — M. The last assertion is immediate (see Theorem (I.2.9)).
g.e.d.

(I.4.2) COROLLARY If A — B is an e.f.t. ring homomorphism and M is a
finitely generated B-module then Ex4(B, M) is a finitely generated B-module. In
particular T /A is a finitely generated B-module and we have an exact sequence:

[1.4.2] Homp(Qp/a ®p B, B) = Homp(J/J? B) = T4 — 0

if B = P/J for a smooth A-algebra P and an ideal J C P.

Proof
It is a direct consequence of the exact sequence [I.4.2]. g.e.d.

Using the fact that the exact sequence [1.4.2] localizes, it is immediate to check
that the cotangent module localizes. More specifically it is straightforward to show
that given a morphism of finite type of schemes f : X — S one can define a quasi-
coherent sheaf T} /s on X with the following properties. If U = Spec(A) is an affine

open subset of S and V = Spec(B) is an affine open subset of f~1(U), then
T(V,Txs) =Thya

It follows from the properties of the cotangent modules that T}( /s is coherent if
X — S is of finite type. T}{ /s is called the first cotangent sheaf of X/S. We will
write Ty if S = Spec(k).

Tx is supported on the singular locus of X. More generally T}( /s is supported
on the locus where X is not smooth over S. If we have a closed embedding X C Y
with Y nonsingular, then we have an exact sequence of coherent sheaves on X:

1.4.3 0_>TX_>TYX_>NXY_>T1_>O
[ | / X
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which globalizes the exact sequence [1.4.2].
For every scheme S and morphism of S-schemes f: X — Y we have an exact
sequence of sheaves

[1.44] 00— Tx/y = Txss = Hom(f*Q5/5,0x) = Tx)y = Txys = [ Tyys

which globalizes the exact sequence of Proposition (I.1.4). When S = Spec(k) and
f is a closed embedding of algebraic schemes, with ¥ nonsingular, we obtain [1.4.3]
as a special case of [I.4.4] (note that Tx,y = 0 and Nx/y = T}(/Y in this case, as

it follows from [I.4.2] and (I.1.4)). The following is a basic result:

(I.4.3) THEOREM Let S be an algebraic scheme, X a reduced algebraic
S-scheme and T a coherent locally free sheaf on X. Then there is a canonical
identification

Ex(X/S,T) = Exto, (0,5, T)

which to the isomorphism class of an extension of X/S:
8:0—)I—>OXI—>OX—>O

associates the isomorphism class of the relative conormal sequence of X C X':
ce: 0TS (Qx1/5)1x = Qx/s =0

(which is exact also on the left).

Proof

Suppose given an extension £. Since Z is locally free in order to show that cg is
exact on the left it suffices to prove that ker(d) is torsion, equivalently that cg is
exact near every general closed point z of any irreducible component of X. Since
X is reduced it is nonsingular at x: it follows from (I.4.1) that there is an affine
open neighborhood U of z such that £y is trivial. From Theorem (A.1.3) we
deduce that the relative conormal sequence of £yy is split exact; since it coincides
with the restriction of cx/ to U we see that |¢y is injective; this shows that ker(d) is
torsion and cg is exact. Since clearly isomorphic extensions have isomorphic relative
cotangent sequences we have a well defined map

c_ : Ex(X/S,T) — Exto, (s, T)

Let now
n:0T— A5 Q%g—0

define an element of Extg (Q%/g,T). Letting d : Ox — Q% /¢ be the canonical
derivation, consider the sheaf of Og algebras O = A Xat Ox: over an open subset

U C X we have I'(U, O) = {(a, f) : p(a) = d(f)} and the multiplication rule is

(a, f)(d, f)) = (fa' + f'a, ff')
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Then we have an exact commutative diagram

00— Z7 —- O — 0Ox =0

I Ld }d

0—>I—>A—>Q}(/S—>O

where one immediately checks that the projection d is an Qg-derivation and there-
fore it must factor as
0—> Q%’)/Os ®O OX _>A

and we have an exact commutative diagram

00— I — @ - Ox =0
I 4 1d
[1.4.5] I = Qo,® O0x — Qg —0
I 4 |
0—» I — A - Q%5 —0

which implies Qg, Jos @O Ox = A. Therefore, letting e, be the extension given by
the firt row of [.4.5], we see that c., = 1. Similarly one shows that e., = £ for any
(€] € Ex(X/S,T). Therefore ¢_ and e_ are inverse of each other and the conclusion
follows. g.e.d.

(I.4.4) COROLLARY Let X — S be a morphism of finite type of algebraic
schemes with X reduced. Then there is a canonical isomorphism of coherent sheaves
on X:

T)lqs = Ext%ox (Q}X/Sﬂ Ox)

Proof
Just apply the previous Theorem using the fact that both members localize. q.e.d.

NOTES

1. A closer analysis of the proof of Theorem (I.4.3) shows that, without
assuming X reduced, we only have inclusions

Extp (%5, T) C Ex(X/S,T)

and
Exto, (/s Ox) C Tx/s

2. The topics of this section originate from Grothendieck(1968). The
proof of Theorem (I.4.3) has been taken from Gonzales(2004).



