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Chapter II. Infinitesimal deformations

In this Chapter we study several deformation problems from an ele-
mentary point of view. We will be especially concerned in first order de-
formations and obstructions and in giving them appropriate cohomological
interpretations.
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II.1. NONSINGULAR VARIETIES

Generalities on deformations

Let X be an algebraic scheme. A cartesian diagram of morphisms of schemes

X - X
n: \
Spec(k) — S

where X is flat over S is called a family of deformations of X parametrized by
S, or over S; when S = Spec(A4) with A in A* and s € S is the closed point we
have a local family of deformations (shortly a local deformation) of X over A. The
deformation n will be also denoted (S,n) or (A,n) when S = Spec(A). The local
deformation (A, n) is infinitesimal (resp. first order) if A € ob(A) (resp. A = k[e]).
Given another deformation

X - Y
£: \J
Spec(k) — S

of X over S, an isomorphism of n with £ is an S-isomorphism ¢ : X — )V inducing
the identity on X, i.e. such that the following diagram is commutative:

X
v ¢
X N y
¢ v
S

Observe that for every X and for every pointed scheme (S,s), with s € S a k-
rational point there always exists at least a family of deformation of X over S,
namely the product family:

X - X xS

\ 1
Spec(k) — S

A deformation of X over S is called trivial if it is isomorphic to the product family.
The scheme X is called rigid if every infinitesimal deformation of X over A is trivial
for every A in A.
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Given a deformation 7 of X over S as above and a morphism (S’,s") — (S, s)
of pointed schemes there is an induced a commutative diagram by base change

X — X xg95

I !
Spec(k) — S’

which is clearly a deformation of X over S’. This operation is functorial, in the
sense that it commutes with composition of morphisms and the identity morphism
does not change 1. Moreover it carries isomorphic deformations to isomorphic ones.

An infinitesimal deformation 7 of X is called locally trivial if every point z € X
has an affine open neighborhood U, C X such that Xy, is a trivial deformation of
Us.

(I1.1.1) EXAMPLES (i) The quadric Q C A3 with equation zy —t = 0 defines,
via the projection
A3 5 Al
(z,y,t) — t

a flat family Q — A! whose fibres are conics. This family is not trivial since the
fibre Q(0) is singular, hence not isomorphic to the fibres Q(t), t # 0, which are
nonsingular.

(ii) Consider a rational ruled surface F,,, m > 0. The structural morphism
7 : F,, — IP! defines a flat family whose fibres are all isomorphic to IP'; but 7 is
not a trivial family because F),, 2 Fy (see Example (A.1.10)(iii)).

(iii) Let 0 < n < m be two distinct nonnegative integers having the same parity
and let k = %(m—n). Consider two copies of A% x IP! given as Proj(k[t, 2, &, £1]) =:
W and Proj(k[t, 2, &, &1]) =: W' (here the rings are graded with respect to the
variables &; and ¢!). Letting £ = &1 /&o and &' = £ /& consider the open subsets

Spec(kl[t, z,&]) c W

Spec(k[t, 2, ¢']) c W'

and glue them together along the open subsets Spec(k|[t, z, 271, £]) and Spec(k[t, 2/, /71, ¢'])
according to the following rules:

[I1.1.1] 2 =271 ¢ =" +tF

This induces a gluing of W and W’ along Proj(k[t, z, 27, &, £&1]) and Proj(k[t, 2/, 2/ 1, &5, £1]);
call the resulting scheme W and f : W — A! = Spec(k[t]) the morphism induced

by the projections. Then f is a flat morphism because it is locally a projection;
moreover

W(0) & F,,
Let W° = f=1(A™\{0}) and f°: W° — A™\{0} the restriction of f.
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In k[t,t71, 2, £] define
_ ke —t

¢ 1€

and in k[t,t71, 2/, ¢']
Cl _ 5,
- tz’m_kfl + 2
It is straightforward to verify that the gluing [II.1.1] induces the relation
¢ =2"¢
This means that we have an isomorphism

W° = F, x (A"\{0})

compatible with the projections to A'\{0}. Therefore the family f° is trivial, in
particular all its fibres are isomorphic to F;,, but the family f is not trivial because

W(0) & F,.
* k% ok x k%
Infinitesimal deformations of nonsingular affine schemes

We will start by considering infinitesimal deformations of affine schemes. We
need the following

(II.1.2) LEMMA Let Z, be a closed subscheme of a scheme Z, defined by a
sheaf of nilpotent ideals N C Oz. If Zy is affine then Z is affine as well.

Proof
Let 7 > 2 be the smallest integer such that N” = (0). Since we have a chain of
inclusions

ZOV(N"HDV(NT3H>---DV(N) =2

it suffices to prove the assertion in the case r = 2. In this case N is a coherent
Oz,-module, and therefore

HY(Z,N)=H'(Zy,N) =0
Let Rg be the k-algebra such that Zy = Spec(Rp). We have the exact sequence:
0— H°(Z,N)— H%Z,0z) = Ry — 0
Put R = H%(Z,0z) and let Z' = Spec(R). We have a commutative diagram:

z b5 oz
N
A
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The sheaf homomorphism =10z — Oy is clearly injective and 6 is a homeomor-
phism. It will therefore suffice to prove that =10z — Oy is surjective.

Let z € Z and f € T'(U,Oz) for some affine open neighborhood U of z. Let
fo = flunz,- It is possible to find g, € Ry such that fy = %, Yo(z) # 0 and
Yo = 0 on Zy\U, because Zj is affine. Let 1 € R be such that vz, = o (it
exists by the surjectivity of R — Rg). Then 9(z) # 0 and ¢ = 0 on Z\U. There
exists n > 0 such that ¥"f =: g € R (it suffices to cover Z with affines). Then

f= wL" €070z g-e.d.

Let By be a k-algebra, and let Xq = Spec(Bp). Consider an infinitesimal
deformation of Xy parametrized by Spec(A), where A is in A. By definition this is
a cartesian diagram

Xo — X

\ \
Spec(k) — Spec(A)

where X is a scheme flat over Spec(A). By Lemma (I1.1.2) X is necessarily affine.
Therefore, equivalently, we can talk about an infinitesimal deformation of By over
A as a cartesian diagram of k-algebras:

B — BO
[11.1.2] 4 1
A — k

with A — B flat. Note that to give this diagram is the same as to give A — B
flat and a k-isomorphism B ® 4 k — By. We will sometimes abbreviate by calling
A — B the deformation.

Given another deformation A — B’ of By over A, an isomorphism of A — B
to A — B’ is a homomorphism ¢ : B — B’ of A-algebras inducing a commutative
diagram:

By
S N
B LN B’
N a
A

It follows from Lemma (A.2.3) that such a ¢ is an isomorphism.
An infinitesimal deformation of By over A is trivial if it is isomorphic to the
product deformation
BO Rk A — BO

T )
A - k

The k-algebra By is called rigid if Spec(By) is rigid.

(I1.1.3) THEOREM Every smooth k-algebra is rigid. In particular every affine
nonsingular algebraic variety is rigid.
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Proof
Suppose k — By is smooth, and suppose given a first order deformation of By:

B — By

n: tf )
kle] — k

Consider the commutative diagram:

B — BO

Tf T
kle] —  Bole]

where Byle] = By ® k[e]. Since f is smooth (because flat with smooth fibre) and
the right vertical morphism is a k[e]-extension, there exists a k[e]-homomorphism
¢ : B — Byle] making the diagram

B — BO
TN 1
kle] — Bole]

commutative. Therefore ¢ is an isomorphism of deformations and 7 is trivial.
Counsider more generally a deformation of By

B = BO
n:tf T
A — k

parametrized by A in A. To show that 7 is trivial we proceed by induction on
d = dimg (A). The case d = 2 has been already proved; assume d > 3 and let

0-k—>A—>A >0

be a small extension. Consider the commutative diagram:

B — B®sA =2ByegA

Tf T
A — B4

f is smooth, the upper right isomorphism is by the inductive hypothesis, and the
right vertical homomorphism is an A-extension. By the smoothness of f we deduce
the existence of an A-homomorphism B — By ®x A which is an isomorphism of
deformations. g-e.d.

(I1.1.4) EXAMPLE Let A € k and By = k[X,Y]/(Y? — X(X — 1)(X = ))).
If XA # 0 then By is a smooth k-algebra, being the coordinate ring of a nonsingular
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plane cubic curve. By Theorem (II.1.3) By is rigid. On the other hand the elemen-
tary theory of elliptic curves (see Hartshorne(1977)) shows that the following flat
family of affine curves

Speck[X,Y]/(Y?2 - X(X —1)(X — (A +1)))
1
Spec(k[t])

is not trivial around the origin ¢ = 0 so that it defines a non-trivial (non-infinitesimal)
deformation of By. This example shows that by studying infinitesimal deformations
we are loosing something.

(IL.1.5) LEMMA Let By be a k-algebra, and
e:0—>(e) > A—A—0
a small extension in A. There is a 1-1 correspondence

{ automorphisms of the trivial deformation By Qx A

inducing the identity on By @k A } ¢ Der(Bo, Bo)

where the identity corresponds to the zero derivation, and the composition of auto-
morphisms corresponds to the sum of derivations.

Proof
Every automorphism 6 : By ®x A — By ®x A must be A-linear and induce the
identity mod e. Therefore:
O(x) =z + edx

where d : By ®x A — By is a A-derivation (Lemma (1.1.1)). But
DerA(BO(X)k;l, By) = HomBo®kA(QBo®kA/A’ By) = Homp, (2B, /x, Bo) = Derx(Bo, Bo)

Clearly the identity corresponds to the zero derivation. If we compose two
automorphisms:

Bo®x A 25 By @k A -2 By @y A

where 0(x) = = + edz, o(x) = x + edz, we obtain:
o(0(x)) =0(x) + €6(0(x)) = = + edx + €(0x + €d(dx)) = = + €(dx + o)

g-e.d.
x kK x k%
First order deformations of nonsingular varieties

We will now apply (II.1.5) to deformations of any nonsingular algebraic variety.
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(I1.1.6) PROPOSITION Let X be a nonsingular algebraic variety. There is a
1-1 correspondence:

{ﬁrst; order deformations of X }

K , , — H'(X, Tx)
isomorphism

called the Kodaira-Spencer correspondence, where Tx = Hom(Q%, Ox) = Derx(Ox, Ox),
such that k(§) = 0 if and only if £ is the trivial deformation class.

Proof
Given a first order deformation

X — X
i

\
Spec(k) — Spec(k[e])

choose an affine open cover U = {U;};cr of X such that U;; :== U;NU; and Ui, ==
U;NU; NUy, are affine for every ¢, j, k € I. For each index ¢ we have an isomorphism
of deformations:

ei : Uz X Spec(k[e]) — X|U,-

by (I1.1.3). Then for each i,j € T
0;; := 07'0; : U;j x Spec(k[e]) — U;; x Spec(k[e])

is an automorphism of the trivial deformation U;; x Spec(k[e]). By Lemma (II.1.5)
6;; corresponds to a d;; € I'(U;;, Tx). Since on each Ujji, we have

[11.1.3] 05051055, = Lu,; xSpec(ile)
it follows that
dij +djx — dix, =0

i.e. {d;;} is a Chech 1-cocycle and therefore defines an element of H'(X,Tx). It is
easy to check that this element does not depend on the choice of the open cover U.
If we have another deformation

X — X!

\ \
Spec(k) — Spec(k[e])

and ® : X — X’ is an isomorphism of deformations then for each ¢ € I there is
induced an automorphism:

'—1

) D 7. )
ai : Uy x Spec(k[e]) 25 Xy, “% Xy % Uy x Spec(ke])
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and therefore a corresponding a; € I'(U;, Tx ). We have 0ia; = @7, 0; and therefore
(0hos) " Bhos) = 07107 Dy 0, = 070,

thus
~19" . = 0.
Q; U;05 = Uy

equivalently:
d;j +a; —a; = dij

namely {d;;} and {d;;} are cohomologous, and therefore define the same element,
of H 1 (X ) Tx) .

Conversely, given § € H'(X,Tx) we can represent it by a Chech 1-cocycle
{di;} € Z*(U,Tx) with respect to some affine open cover Y. To each d;; we can
associate an automorphism 6;; of the trivial deformation U;; x Spec(k[e]) by Lemma
(IL.1.5). They satisfy the identities [II.1.3]. We can therefore use these automor-
phisms to patch the schemes U; x Spec(k[e]) by the well known procedure (see
Hartshorne(1977), p. 69). We obtain a Spec(k]e])-scheme X which is immediately
checked to define a first order deformation of X. The last assertion is easily proved.
g-e.d.

For every first order deformation ¢ the cohomology class k(¢) € HY (X, Tx) is
called the Kodaira-Spencer class of &.

(I1.1.7) REMARK In Lemma (II.1.5) we did not assume By to be nonsingular.
Therefore the proof of the above Theorem applies to locally trivial deformations of
an algebraic scheme and it shows that H' (X, Tx) classifies isomorphism classes of
first order locally trivial deformations of any algebraic scheme.

% % % * % *
Higher order deformations - Obstructions

Let X be a nonsingular algebraic variety. Consider a small extension
e:0—=(e) 2 A= A0

in A and let
X — X

£ \J
Spec(k) — Spec(A)

be an infinitesimal deformation of X. A lifting of € to A is a deformation

~ X — X

£ Lo
Spec(k) — Spec(A)

which induces £ by pullback. It is important to know whether, given § and e, a

lifting of € to A exists, and how many are there. The following Proposition addresses
this question.
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(IL.1.8) PROPOSITION Given A in A and an infinitesimal deformation £ of
X over A:
(i) To every small extension e of A there is associated an element o¢(e) € H? (X, Tx),

called the obstruction to lift & to A, which is 0 if and only if a lifting of € to A exists.
(ii) If o¢(€) = 0 then there is a natural transitive action of H*(X,Tx) on the set of

isomorphism classes of liftings of £ to A.

Proof
Let U = {U,}icr be an affine open cover of X such that U;; and Uj;i, are affine for
every 1,7,k € I. We have isomorphisms

07; : Uz X Spec(A) — X|Ui

and consequently 0;; := 0, lﬂj is an automorphism of the trivial deformation U;; X
Spec(A). Moreover

[II.1.8] OijOjk = 01,

on Ujji, % Spec(A). To give a hftlng € of £ to A it is necessary and sufficient to give

a collection of automorphisms {f;;} of the trivial deformations U;; x Spec(A) such
that

(a) 035051 = Ok
(b) 0;; restricts to 6;; on U;; x Spec(A)

To establish the existence of the collection {5”} let’s choose arbitrarily auto-
morphisms {f;;} satisfying the condition (b). Let
Oijr. = 0550107,
This is an automorphism of the trivial deformation U;;x x Spec(A). Since by [I1.1.8]
it restricts on Uj i X Spec(A) to the identity, by Lemma (I1.1.5) we can identify each
fi1, with a dyj, € T(Uyjk, Tx) and it is immediate to check that {d;x} € Z2(U, Tx).
Tf we choose different automorphisms {®;;} of the trivial deformations U;; x Spec(A)
satisfying the analogous of condition (b) then

[11.1.5] B = 05 + edyj
for some d;; € I'(U;;,Tx), by Lemma (II.1.5). For each 4, j, k the automorphism
i DDy
corresponds to the derivation
Sijk = digr + (dij + djr — dix,)

and therefore we see that the 2-cocycles {d;;x} and {;;x} are cohomologous. Their
cohomology class
o¢(e) € H*(X, Tx)
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depends only on £ and e and is 0 if and only if we can find a collection of automor-
phisms {®;;} such that d;; = 0 for all 7,5,k € I. In such a case {®;;} defines a
lifting € of &. This proves (i). .

Assume that o¢(e) = 0, i.e. that the lifting £ of £ exists. Then we can choose
the collection {f;;} of automorphisms satisfying conditions (a) and (b) as above, in

particular d;;; = 0, all 4, j, k. Any other choice of a lifting € of & to A corresponds to
a choice of automorphisms {®;;} satisfying [II.1.5] and the analogous of condition
(b). Therefore, for all i, j, k, we have

0= 5z'jk = dij + djk - dz’k

so that {d;;} € ZY(U,Tx) defines an element d € H'(X,Tx). As before one
checks that this element only depends on the isomorphism class of ¢; it follows in a
straightforward way that the correspondence (5 ,d) — & defines a transitive action
of HY(X,Tx) on the set of isomorphism classes of liftings of ¢ to A. This proves

(ii). g-e.d.

The correspondence e — og(e) defines a map
o¢ : Exi (A, k) — H*(X, Tx)

which can be easily seen to be k-linear. The deformation £ is called unobstructed
if o¢ is the zero map; otherwise £ is called obstructed. X is unobstructed if every
infinitesimal deformation of X is unobstructed; otherwise X is obstructed.

(II.1.9) COROLLARY A nonsingular variety X is unobstructed if

H*(X,Tx) =0

The proof is obvious.

(I1.1.10) COROLLARY A nonsingular variety X is rigid if and only if

H'(X,Tx)=0

Proof
The hypothesis implies, by Proposition (II.1.6), that all first order deformations of
X are trivial and, by Proposition (II.1.8), that every infinitesimal deformation of
X over any A in A has at most one lifting to any small extension of A. These two
facts together imply the conclusion. q-e.d.

(IT.1.11) EXAMPLES (i) If X is a projective nonsingular curve of genus g then
from the Riemann-Roch Theorem it follows that

0 ifg=0
(X, Tx) = {1 ifg=1
3g—3 ifg>2
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and H?(X,Tx) = 0. In particular projective nonsingular curves are unobstructed.

(ii) If X is a projective, irreducible and nonsingular surface X then
H*(X,Tx) = H°(X,Qx ® Kx)"

by Serre duality, and this rarely vanishes. For example a nonsingular surface of
degree > 5 in IP3 satisfies H?(X,Tx) # 0, but it is nevertheless unobstructed (see
example (II1.3.10)(iii)); therefore the sufficient condition of Corollary (I1.1.9) is not
necessary. In general a surface such that H?(X,Tx) # 0 can be obstructed, but ex-
plicit examples are not elementary (see Kas(1967), Burns-Wahl(1974), Horikawa,(1975)).
We will not give such examples here; in §I11.6 we will show how to construct exam-
ples of obstructed 3-folds.

(iii) The projective space IP™ is rigid for every n > 1. In fact it follows imme-
diately from the Euler sequence:

0— OPn — OPn(l)n+l — Tprn — 0

that H'(IP™, Tjp») = 0. Similarly one shows that finite products IP™ x - -- x IP™*
of projective spaces are rigid.

I N N
The Kodaira-Spencer map - Examples

Let

X - X

[17.1.6] £ 1f
Spec(k) - S

be a family of deformations of a nonsingular variety X. By pulling back this family
by morphisms Spec(kle]) — S with image s and applying the Kodaira-Spencer
correspondence (Proposition (I1.1.6)) we define a linear map

ke 1 Tss — HY (X, Tx)

also denoted Ky s or Kx,g s, which is called the Kodaira-Spencer map of the family
€.

(I1.1.12) EXAMPLES (i) Let m > 1 and let 7 : F,,, — IP' be the structural
morphism of the rational ruled surface F,,, (see (A.1.10)(iii)). Then x is not a trivial
family but has a trivial restriction around each closed point s € IP!, thus . s = 0.

(ii) Consider an unramified covering 7 : X — S of degree n > 2 where X and S
are projective nonsingular and irreducible algebraic curves. All fibres of m over the
closed points consist of n distinct points, hence they are all isomorphic. Moreover
each such fibre is rigid and unobstructed as an abstract variety. In particular the
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Kodaira-Spencer map is zero at each closed point s € S. On the other hand
7~ 1(U) is irreducible for each open subset U C S and therefore the restriction
7y : m H(U) — U is a nontrivial family; this follows also from the fact that 7 does
not have rational sections.

This example exhibits a phenomenon which is not detected by infinitesimal
considerations: we can have a flat projective family of deformations all of whose
geometric fibres are isomorphic but which is nevertheless non trivial over every
Zariski open subset of the base. Note that this is different from what happens with
the projections F,, — IP, m > 1 of example (i), which are non trivial but have
trivial restriction to a Zariski open neighborhood of every point of IP!.

(iii) Let 0 < m < m be integers having the same parity, and let k = %(m —
n). Consider the smooth proper morphism f : W — A! introduced in exam-
ple (II.1.1.1)(iii), whose fibres are W(0) = F,,, and W(t) = F, for t # 0. Re-
call that the family f is given as the gluing of two copies of A? x IP!, W =
Proj(k[t, z, &0, &1]) and W' = Proj(k[t, 2’, &, &1]), along Proj(k[t, z, 271, &, &1]) and
Proj(klt, 2', 21, &}, €1]) according to the rules:

ZI — Z_l, 5/ — Zm€+tzk

where & = &1/&y and &' = £ /&) are non-homogeneous coordinates on the corre-
sponding copies of IP!.

Let’s compute the local Kodaira-Spencer map k¢ ¢ of f at 0. The image liﬁo(%)
is the element of H'(F,,,TF, ) corresponding to the first order deformation of F,
obtained by gluing Wy := Proj(k[e, z, o, &1]) and W := Proj(kle, 2/, &, £1]) along
Proj(k[e, z, 271, o, &1]) and Proj(kle, 2/, 21, £, £}]) according to the rules

Z’ — Z_l, gl — Zm§+62k

By definition we have that /<;f70(%) is the element of H(U,Tr, ), where U =
{Wy, W{}, defined by the 1-cocycle corresponding to the vector field on Wy N W]

0
{Zka—g}

According to (A.1.10)(iii) this element is non zero; therefore xy ¢ is injective.
Similarly we can consider a smooth proper family F' : Y — A™~! defined as
follows. ) is the gluing of

Y = Proj(k[ty, . .., tm—1, % &0, £1])
and
Y, = PI‘Oj(k[t]_, ey tm—l; ZI; 667 61])

along PI‘Oj (k[th R tm—la Z, Z_17 §Oa 51]) and PI‘Oj(k[tl, ey tm—17 Zla Zl_l7 6(1)7 51]) ac-

cording to the rules:
m—1

7=z &=2"¢+ Z tjz’

=1
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The morphism F' is defined by the projections onto Spec(k[ty, ..., tm—1]); the fibre
of F over 0 is Y(0) & F,,. The computation we just did immediately implies that
the local Kodaira-Spencer map

krg: ToA™ ' — H' (Fr, Tr,)
is an isomorphism.

NOTES

1. A straightforward generalization of the proof of Lemma (II.1.5) gives
the following result:

(II.1.13) LEMMA Let By be a k-algebra,
e:0—>(e) > A—>A—0

a small extension in A, A — B a deformation of By and A — B= B ® iA
the induced deformation of By over A. Let o : B — B be an automorphism
of the deformation. If

Aut, (B) := {automorphisms 7:B = Bsuchthat T®; A= O'} #0

then there is a faithful and transitive action
Dery (Bo, Bo) x Aut,(B) = Aut, (B)

defined by
(d,7)—T+ed
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I1.2. INVERTIBLE SHEAVES

Deformations of invertible sheaves on a fixed variety

Let X be an algebraic variety and L an invertible sheaf on X. An infinitesimal
deformation of L over A, where A is in A, is an invertible sheaf £ on X x Spec(A)
such that L = L xxspec(k)- In case A = kle] we speak of a first order deformation
of L. Two deformations £ and £’ of L over A will be called isomorphic if there is
an isomorphism £ = £’ inducing the identity of their restrictions to the closed fibre
X x Spec(k).

Let

[11.2.1] e:0>ek A 450

be an extension of local artinian k-algebras, and let £ be a deformation of L over A.
A lifting of L to A is a deformation £ of L over A whose restriction to X x Spec(A)
is isomorphic to L.

(IL.2.1) PROPOSITION Let L be an invertible sheaf on an algebraic variety
X. Then
(i) there is a natural 1-1 correspondence:

{first order deformations of L}
isomorphism

< HY (X, Ox)

(ii) Given A in A and a deformation L of L over A there is a map
O : EXk(A,k) — HZ(X, OX)

such that for every extension [I1.2.1] we have o (e) = 0 if and only if L has a lifting
to A.

Proof
(i) Assume that L is given by a system of transition functions {f,s} with respect
to an open covering {U,} of X, fop € T'(Uy NUg, O%). Then a first order defor-
mation L. of L can be represented, in the same covering {U,} of X x Spec(kle]),
by transition functions:

faﬁ € P(Ua N Uﬂ? O;(xSpec(k[e]))
such that

[11.2.2] fopfay = far
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and which restrict to the f,g’s modulo e.
Since O% ,specl) = Ox +€Ox we can write

[11.2.3] fop = fap(1+ €anp)
for suitable ang € I'(Uy N Ug, Ox). Identity [I1.2.2] gives
[11.2.4] AaB + A8y = Gany

and therefore the system {asg} is a Chech 1-cocycle which defines an element of
H'Y(X,Ox). Conversely, given such a 1-cocycle we can define an invertible sheaf L.
by the transition functions [II.2.3]. If we modify [I1.2.4] by a coboundary

baﬂ = Qqp T ag — Gq
where a, € I'(Uy, Ox), the transition functions fa,g ar replaced by

faﬂ = fapll +€(anp + ag — ay)] =
= fap(1 + €aap)(1 + €ag)(1 — €aa) = fap(1 + eag)(1 + eaa) ™"

and the invertible sheaf L. is replaced by an invertible sheaf L. which obviously
defines an isomorphic deformation of L. It is clear that this correspondence is not
affected by refining the open covering {U,}.

(ii) Let [e] € Exk(A, k) be given by the extension [I1.2.1]. We have an exact
sequence of sheaves of k-algebras on X:

*

0—>eOx — OXxspec(A)

- O;(xSpec(A) —0

which induces an exact sequence of groups:

4

H(X x Spec(4), 0O ) = HY(X x Spec(4), Ok wspec(a)) — H?*(X,0x)

*
X xSpec(A)

The invertible sheaf £ defines an element [£] € H!(X x Spec(A), O% wespec( A)) which

can be lifted to A if and only if §([£]) = 0. Letting oz (e) = 6([£]) we define a map
o; having the required properties. g-e.d.

In case the Picard variety Pic(X) of X exists (e.g. when X is a projective
nonsingular variety) the Proposition computes its tangent space at [L].

x x x x % %
Deformations of pairs (X, L)

Let X be a nonsingular algebraic variety and let D : Ox — Q% be the canonical
derivation. We can define a homomorphism of sheaves of abelian groups

0% — Q%
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by the rule

Du
U — —
U

for all open sets U C X and u € I'(U, O%). We have an induced group homomor-
phism:

c: HY(X,0%) — H' (X, Q%)
To simplify the notation, given an invertible sheaf L on X we write ¢(L) instead of
c¢([L]). Since Q% is locally free we have an identification

HY(X,0%) = Exto, (Tx, Ox)
so that we can associate to ¢(L) an extension
[11.2.5] 0—+0x =& —Tx =0

called the Atiyah extension of L. The sheaf £, is locally free of rank dim(X) + 1
and
Pr, := gZ Rox L

is called the sheaf of first order principal parts of L.

Let U = {U,} be an affine open covering of X such that L is represented by a
system of transition functions {fag}, fap € I'(Uap, O%). Then c¢(L) is represented
by the Chech 1-cocycle

D f af

{ fa,@

The sheaf £y, is isomorphic to Oy, ® Tx|v, - A section (aq,dq) of Oy, ® Tx v,
and a section (ag,dg) of Oy, ® Tx |y, are identified on U,g if and only if do = dp

and ag — an = 7(1“]55;”.

Let A be in A. An infinitesimal deformation of the pair (X, L) over A consists
of a pair (§, L), where

e zHu,0%)

X — X

£ \J
Spec(k) — Spec(A)

is an infinitesimal deformation of X over A and L is invertible sheaf on X such
that L = L x. One can also say that £ is a deformation of L along §. In case
A = k[e] we speak of a first order deformation of (X, L). Two deformations (X, L)
and (X', L) of (X, L) over A will be called isomorphic if there is an isomorphism
of deformations f : X — X’ and an isomorphism £ — f*£' inducing the identity
of their restrictions to the closed fibre X.

(I1.2.2) PROPOSITION Let (X, L) be a pair consisting of a nonsingular al-
gebraic variety X and an invertible sheaf L on X. Then:
(i) there is a canonical 1-1 correspondence
{1-st order deformations of (X, L)}

isomorphism

< HY(X, &)
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(ii) The linear map
HY(X,&) - HY(X,Tx)

coming from the exact sequence [I1.2.2] corresponds to the map

{1-st order deformations of (X, L)} {1-st order deformations of X}
%
isomorphism isomorphism

obtained by associating to a first order deformation (£, L) the deformation €.
(iii) Given a first order deformation £ of X, there is a first order deformation of L
along ¢ if and only if

k(&) - c(L) =0

where the left hand side denotes cup product of cohomology classes (therefore it is
an element of H*(X,Ox)).

Proof
Let (&, L) be a first order deformation of (X, L), where

X — X
£ \J
Spec(k) — Spec(k[e])

Let U = {U,} be an affine open covering such that L is given by a system of
transition functions f,g € Z'(U, O%) and k(§) € H(X,Tx) is given by a Chech
1-cocycle {dop} € Z'(U,Tx). Let O4p = 1 + edap be the automorphism of Uyg X
Spec(k[e]) corresponding to dgg.

The invertible sheaf £ is given by a system of transition functions {F,g} €
ZY(U,0%) which reduces to {f,s} mod e. Therefore it can be represented on
Uap * Spec(k[e]) as

Fop = fap(1 + €aap) aap € I'(Uap, Ox)
and the cocycle condition translates into
Fopbap(Fpy) = Fay

equivalently:
Fop(Fay + €dapFy) = Fay

which means:
fap(1 + €aap)[fay(1 + €apy) + €dap(fpy(1 + €apy))] = fay(1 + €aay)

After dividing by f.- this identity translates into:

dapfoy _

[11.2.6] AaB + A8y — oy +
fen
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This condition can be interpreted in several ways. It means that the data {(aag, dag) }
define an element of Z(U, £L), and that conversely such an element defines a first
order deformation of (X, L). This proves (i) modulo verifying that this correspon-
dence is independent from the choice of the covering ¢4 and of the cocycles repre-
senting (X, L); we leave this to the reader. It also proves (ii) because the linear
map HY(X,€r) — HY(X,Tx) is induced by the projection

{(aap; dap)} — {dap}

Finally, observing that {%} € Z%(U,Ox) represents k(£) - ¢(L), the identity
[I1.2.6] expresses the condition that this 2-cocycle is a coboundary, and this proves
(iii). g.e.d.

If X is a curve then H?(X,Ox) = 0 so that every line bundle can be deformed
along any first order deformation of X. For surfaces this is not the case in general.
For example if X is a K3-surface then h?(X,0x) =1 and

HY(X,Tx) “8 B2(X,0x)

can be shown to be surjective for every nontrivial line bundle L. This means that L
deforms along a 19-dimensional subspace of H(X,Tx), because H*(X,Tx) = 20
(see example (II1.3.16)(ii)).

NOTES

1. The coboundary maps dx in the cohomology sequence of the Atiyah
extension [I1.2.5] are induced by cup product with ¢(L), since the extension
is defined by ¢(L). In particular (I1.2.2)(iii) just says that L deforms along
¢ if and only if k(€) € ker[d; : HY(X,Tx) — H?(X, Ox)], which is obvious
in view of (i) and (ii).

2. The content of Proposition (II.2.2) is outlined in the Appendix to
Chapter V of Zariski(1971) written by Mumford. See also Horikawa(1976b).

This result is related with the notion of deformation of a polarization (see
Popp(1977)).
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I1.3. CLOSED SUBSCHEMES

Infinitesimal deformations of a closed subscheme

Let Y and S be schemes with Y algebraic. A diagram of morphisms of schemes

X C YxS

m
S

where the vertical morphism is flat, and it is induced by the projection from ¥ x §,
is called a (flat) family of closed subschemes of Y parametrized by S. The family
is called trivial if X = X x S for some closed subscheme X C Y. If s € S is
a k-rational point then =« is called a family of deformations of X(s) in Y, where
X(s) C Y is the fibre of 7 over s.

If X CY is a closed embedding and A € ob(A), an infinitesimal deformation
of X in Y parametrized by S = Spec(A) (shortly, over A) is a family of closed
subschemes of Y parametrized by S such that X C Y is the fibre over the closed
point of S. If A = k[e] we speak of a first order deformation of X in Y.

X is rigid in Y if every infinitesimal deformation of X in Y is trivial.

(II.3.1) THEOREM Let X C Y be a closed embedding of schemes. There is
a natural 1-1 correspondence

X : {ﬁrst order deformations of X in Y} — H(X, Nx/vy)

Proof
Let Z C Oy be the ideal sheaf of X. A first order deformation of X in Y, i.e. a flat
family:

X C Y x Spec(kle])
[11.3.1] \J
Spec(kle])

is defined by a sheaf Ox of flat k[e]-algebras, such that Ox ®yq k = Ox. The
closed embedding X C Y x Spec(k[e]) is determined by a sheaf of ideals Z, C
Oyle] == Oy ®xk kle] such that Oy = Oy[e]/Z.. The above data are obtained
by gluing together their restrictions to an affine open cover. On an affine open
set U = Spec(P) C Y, let X NU = Spec(B) where B = P/J for an ideal J =
(f1,---,fn) CP.
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Consider the exact sequence
0-R-5P¥V 5750

where R is the module of relations among f1,..., fy. Taking Homp(—, B) we
obtain the exact sequence:

0 — Homp(J/J2, B) — Homp(PY, B) *% Homp(R, B)

which identifies Hompg(J/J?, B) with ker(vV). An element of ker(vV) can be rep-
resented as an N-tuple h = (hq,...,hy) of elements of P which, interpreted as an
element of Homp(P¥, B) by scalar product (i.e. h(pi,...,pn) = Zj hjp; mod J)
must be zero on R. Hence

Zhjrj € J for every (r1,...,7n) € R
J

This means that there exist Arq,...,Ary € P such that
Z hjrj = — Z A’I"jfj
J J
or, equivalently, such that

(f +eh) *(r+eAr) =0

in P ®x kl[e]. Therefore from Corollary (A.2.10) it follows that f + eh gener-
ates an ideal in P ®y k[e] which defines a first order deformation of Spec(B) in
Spec(P) because every relation among fi,..., fy extends to a relation among
fi+e€hy, ..., fn+ehn. Using the same argument backwards one sees that every first
order deformation of Spec(B) in Spec(P) defines an element of Homp(.J/J?, B).
It follows that at the global level we have a canonical 1-1 correspondence be-
tween first order deformations of X in ¥ and H°(X, Nx,v). g.e.d.

(I1.3.2) EXAMPLES
(i) If X ¢ IP", r > 1, is the complete intersection of r — n hypersurfaces
fi,-o, fr—n of degrees d; < dy < ... < d,._, respectively, we have a presentation

[11.3.2] /\[eaJ | 5 @,0(—dj) - Ix =0

Taking Hom(—, Ox) we obtain an exact sequence:

: 2
0 — Nx = ©;0x(d;) — \[®;0x(d;)]
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where Nx = Nx,pr. Since each nonzero entry of the matrix defining f is one of
the f;’s, the map f is zero. Therefore

Nx = @;0x(d;)
Equivalently one can remark that [II.3.2] induces a surjective homomorphism
®;0x(—d;) = Ix /T

of locally free sheaves of the same rank, which must therefore be an isomorphism.
In particular if X is a hypersurface of degree d we have Nx = Ox(d) and therefore

BO(X, Nx) = (d;”) _1

confirming the fact that X can be deformed in IP" only inside the linear system of
hypersurfaces of degree d, which is a projective space of dimension (d':r) —1.
If X is a linear subspace, i.e. dy = +--=d,_, = 1, then Nx & Ox(1)®"" and
therefore
R°(X,Nx) = (r—n)(n+1)

as expected, since such linear subspaces X are parametrized by the grassmannian
G(n+ 1,7 + 1), which is nonsingular of dimension (r —n)(n + 1).

(ii) Let X be a Cartier divisor on a connected projective scheme Y. Consider
the exact sequence
0— Oy = Oy(X) = Nx)y =0

and the cohomology sequence:
[17.3.3] 0— H°(Oy) — H°(Oy (X)) 2 H°(Nx)y) — H'(Oy)

Classically the map x was called the characteristic map of the linear system |X|.
By definition Im(x) & H°(Oy (X))/H°(Oy) is naturally identified with the tangent,
space to the linear system |X|. We can verify that this is so by identifying Im(x)
as a subvector space of first order deformations of X in Y, as follows.

Assume that X is defined by a system of local equations {f;}, f; € T'(U;, Oy)
not 0-divisor, with respect to an affine cover {U;} of Y. We have f;; := f; fj_1 €
['(U;nU;, Oy ) for all i, j, and {f;;} is a Cech 1-cocycle which defines the line bundle
Oy (X). A first order deformation of X in Y is a Cartier divisor X C Y x Spec(k[e])
which is determined by a system {F; = f; + €g;}, g; € I'(U;, Oy), such that there
exist Fij = fij + €9i5 € F(Ui N Uj,O;xspec(k[e])) (hence 9ij € F(Ui N Uj,@y))
satisfying F; = F;; F; for all ¢, j. Therefore on U; NU; we have:

fi+€gi = (fij + €9i5)(f; + €g5)
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which is equivalent to the identity:
9i = [ij95 + 9i f;

This identity shows that the system {g; = g; mod Zx} defines a section of Nx,y,
as expected. We also see that {g;} € Im(x) if and only if g; = fi;g;, in which case
Fi; = fij, i.e. X deforms inside the linear system |X|, as asserted. From [I1.3.3] we
see that if H1(Oy) # (0) then there are first order deformations of X in Y which
are not linearly equivalent to X, i.e. which are not contained in the linear system
| X|.

Obstructions

Let X C Y be a closed embedding, A in A and let

X C Y x Spec(4)
£: )
Spec(A)

be a deformation of X in Y over A. Let
e:0sk—>A—-3A-0

be a small extension. A lifting of &€ to A is a deformation of X in Y over A:

X C Y x Spec(A4)
Lf

Spec(A)

£:
whose pullback to Spec(A) is &.
(I1.3.3) PROPOSITION Let X C Y be a regular closed embedding. and
X C Y x Spec(A4)
£: f
Spec(A)

where A is in A, an infinitesimal deformation of X inY. Then
(i) there is a natural map

o¢/y : Exi(A, k) = H' (X, Nx,y)
such that, for every extension

e:0—=ck A A0
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we have og )y (e) = 0 if and only if { has a lifting to A.
(ii) If o¢jy (e) = 0 the set of liftings of £ to Ais a principal homogeneous space
under a natural action of H°(X, Nx;y).

Proof
Since X is regularly embedded in Y we can find an affine open cover U = {U,; }icr
of Y such that X; := X N U; is a complete intersection in U; for each 7. Let
U; = Spec(F;), X; = Spec(P /ZL;) where Z; = (fi1,..., fin) with {fi1,..., fin} a
regular sequence in P;. We then have Xy, = Spec(P;4/Z;4) where

Tin= (Fir,...,Fin) CPiA:=P,®A

and f;, = Fjo mod myg, a =1,..., N. Choose arbitrarily f?’il, ... FzN € P,z such
that F;, = F;, mod e. By example (A.2.11) {F;1,...,F;n} and {le,..., zN}
are regular sequences in P;4 and in P, ; respectively; in particular, letting Z, ; =
(Fi1,...,En), i i

X; == Spec(P, 5/Z, ;) C U; x Spec(A)
is a lifting of &)y, C U; x Spec(A) to A. In order to find a lifting of X’ to A we must
be able to choose the Fj,’s in such a way that

[11.3.4] Xijvi, = Xjjv,, C Uij x Spec(A)

for each 4, j € I. Letting U;; = Spec(F;;) and viewing the f;o’s and f;o’s as elements
of P;; via the natural maps

we have 3

Fja — Fz'a = ehija

and h;; := (hg1,. .., hijn) € T'(Uij, Nx/y), because Nx,y is locally free of rank
N and is trivial on each U;. By construction {h;;} € Z*(U, Nx;y). The condition
[I1.3.4] means that we can choose the F;,’s so that h;; =0all4,j. A different choice
of the Fi,’s is of the form Fi, + €hiq and h; := (hi1, ..., hin) € I'(U;, Nx,y ). Since
we have

[11.3.5] (Fjo + €hja) — (Fia + €hia) = €(Rijo + hjo — hia)

we see that {h .} defines an element og,y (e) € H'(X, NX/Y) which is zero if and
only if the X;’s satisfy condition [I1.3.4] and define a lifting X of X to A.
(ii) If a lifting X exists then the X;’s satisfy condition [II.3.4] and h =0 all
i,j. Every other lifting X' is obtained by modifying the an s to Fyy, = Fiy + €hig
so that
Q = (Eij:h cea, BZ]N) = (Fjl — Fil; cey FjN — F’LN)
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which implies, by the identities [I1.3.5], that h; = h; on U;; so that they define a
section h € H°(X, Nxy). The correspondence

(X,h) — X

gives the action. g-e.d.

It is easy to show that the map og is k-linear. The element o¢/y (¢) € H*(X, Nx,v)

is called the obstruction to lift & to A; we call & obstructed if o¢/y (e) # 0 for some
e € Exx(A,k); otherwise it is unobstructed. X is said to be unobstructed in Y if
all its infinitesimal deformations in Y are unobstructed; otherwise X is said to be
obstructed in Y. Examples of obstructed closed subschemes are usually quite sub-
tle, especially if one is interested in nonsingular obstructed subvarieties. In order
to be able to describe such examples in a natural way it is necessary to know the
existence of the Hilbert scheme of a projective scheme. We will give an example in
SIV.6.

(I1.3.4) COROLLARY Let j: X CY be a regular closed embedding. Then
(i) X is rigid in Y if and only if H°(X,Nx/y) = 0.
(ii) If H'(X, Nx/y) = (0) then X is unobstructed in Y.

The proof is the same as for Corollaries (II.1.9) and (II.1.10).

(I1.3.5) EXAMPLES (i) Let C be a projective nonsingular curve contained
in a nonsingular surface S, and assume that C' is negatively embedded in S, i.e.
deg(Oc(C)) < 0. Then H°(C,Oc(C)) = 0 and therefore C is rigid in S.

This happens in particular when C' 2 IP! is an exceptional curve of the first
kind. Another example is when C has genus g > 2, S = C' x C and C is identified
to the diagonal A C S. In this case Ng g = T¢ which has degree 2 —2g < 0. Note
that H'(T¢) # (0) but C is unobstructed in S, being rigid in S. This example
shows that the sufficient condition of Corollary (I1.3.4) is not necessary.

(ii) Hypersurfaces in IP" are unobstructed. Infact, if X C IP" has degree d
then

h'(X,Nx/pr) = h'(X,0x(d)) =0

(iii) Let @ C IP? be a quadric cone with vertex v, and L C @ a line. Then we
have an inclusion

Npjg C Npyps = Or(1) @ Or(1)

whose cokernel is Or(2)(—v) (see Note 2). It follows that Ni,o = Or(1), in
particular it is locally trivial and H' (L, Ny o) = 0, despite the fact that L C Q is
not a regular embedding (Note 2) and L is obstructed in @ (see §II1.3).

* * * * * ok

The characteristic map
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Let X C Y be a closed embedding of algebraic schemes, (S, s) a pointed scheme

and let
X c X C YxS

£ , Y7

Spec(k) — S
be a family of deformations of X in Y. By pulling back this family by morphisms
Spec(k[e]) — S with image s and applying Theorem (I1.3.1) we obtain a linear map

xe : TsS — H°(X, Nx/y)

called the characteristic map of the family £ at s. Forgetting the embedding X C
Y x S one obtains a family deformations of X as an abstract scheme and, if X is
nonsingular, one then has the Kodaira-Spencer map

ke : TsS — HY (X, Tx)

(I1.3.6) PROPOSITION Let X C Y be a closed embedding of nonsingular
algebraic varieties and let

X c X C YxS
§: | lm
Spec(k) = S

be a family of deformations of X in Y. Then we have a commutative diagram:

TS
v Xe N\ Ke

H(X, Nx/y) 9, HY(X,Tx)

where § is the coboundary map coming from the exact sequence

0—>Tx —)Ty|X—)NX/Y—)O

Proof
It suffices to prove the assertion for a first order deformation of X in Y. Therefore
we will assume that S = Spec(k[e]). Let x({) =h € H°(X,Nx/y). Let U = {U; =
Spec(P;)} be an affine open cover of Y, and X; = X NU; = Spec(P;/(fi1s---, fin))-
We have
X; == Xy, = Spec(P[e]/(fir + €hi, ..., fin + €hin))

Then (hi1,...,hin) = h; = hy, € I'(U;, Nx/y ). Since X; is affine and nonsingular
the abstract deformation X; of X; is trivial: thus there exist isomorphisms 6; :
X; x Spec(k[e]) — X; and k(&) € H'(X,Tx) is defined by the 1-cocycle {d;;} €
ZY (U, Tx) corresponding to the system of automorphisms

0;; = 0; 0, : Xi; x Spec(k[e]) — X;; x Spec(k[e])
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where X,;; = X NU;;. Let’s compute §(h). The isomorphism 6; is given by an
isomorphism of k[e]-algebras

ti: Pile]/(fi1 + €hir, ..., fin + €hin) — Pile]l/(firs-- -, fin)

which is induced by a k[e]-automorphism
T;: P [6] — PZ[E]

of the form T;(p + eq) = p + e(q + d;(p)) where d; € Dery(P;, P;) = I'(U;, Ty)
is such that d;(hia) = —fia- We have {d;} € C°(U,Ty) and §(h) is defined by
{(d;j —d;)|x,}. Since (d; — d;)|x, = d;; we conclude that 6(h) = x(§). g.e.d.

A similar analysis can be made for the obstruction maps, as follows.

(I1.3.7) PROPOSITION Let X C Y be a closed embedding of nonsingular
algebraic varieties and

X C Y x Spec(A4)

£: L f
Spec(A)

where A is in A, an infinitesimal deformation of X in'Y. Then we have a commu-
tative diagram

EXk (A, k)
 0g)y N\ 0¢

SN

Hl(XvNX/Y) Hz(XaTX)

where 6, is the coboundary map defined by the exact sequence

0—>Tx —)Ty|X—)NX/Y—)O

The proof is similar to that of Proposition (I1.3.6) and will be omitted.
x % ok k% %
Deformations of morphisms with fixed domain and target

Let f: X — Y be a morphism of algebraic schemes. An infinitesimal defor-
mation of f (with fized domain and target) over A in A is a diagram

F

X xS — Y xS§
hN vd
S
where S = Spec(A), the morphisms to S are the projections, and f coincides

with the restriction of F' to the fibres over the closed point. If A = k[e] we have
correspondingly a first order deformation of f.
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Infinitesimal deformations of f can be interpreted as deformations of the graph
of f so that the methods introduced in this section apply. Precisely:

(I1.3.8) PROPOSITION Let f: X — Y be a morphism of algebraic schemes,
with X reduced and projective and Y nonsingular and quasiprojective. Then
(i) there is a natural 1-1 correspondence

{ﬁrst order deformations off} — HY(X, f*Ty)

(ii) for every infinitesimal deformation
F: XxS—-YxS
of f over S = Spec(A) there is a map
or : Exi(A4, k) — HY(X, f*Ty)
such that, for a given extension
e:0k—-A—-5A-0

we have or(e) = 0 if and only if F' has a lifting to A. op(e) is called the obstruction
to lift F' to A.

Proof
Let 7:T'C X x Y be the graph of f. We have natural 1-1 correspondences

{ﬁrst order deformations of f} > {ﬁrst order deformations of I' in X x Y} < H°(T, Np JXXY)

Since the projection p: X x Y — X is smooth and the composition pj : I' — X is
an isomorphism, from Proposition (A.3.7) it follows that j is a regular embedding.
Therefore applying Proposition (A.3.2) we obtain the exact sequence:

0—Ir/TE — j*Qkyy — O =0
On the other hand we have the exact sequence:
0= f*Qy = 7" Qxy — (04)" Q% =0
obtained by restricting to I' the sequence
0—q¢*Qy — Qky = 0" Q% =0

where ¢ : X XY — Y is the second projection). Since (pj Ol ~ Ql, comparin
X r g
the two sequences we deduce that f*Q%, ~7Tr /I% Therefore

H°(T, Nr/xxy) = Hom(Zp /1%, Or) = Hom(f*Qy, Or) = H*(X, f*Ty)
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and (i) follows.
Similarly H'(I', Nr/xxy) = H'(X, f*Ty) and (ii) follows from Proposition
(IL.3.3). g.e.d.

(I1.3.9) COROLLARY If X is a nonsingular projective scheme, then the space
of first order deformations of the identity X — X is H*(X, Tx).

The proof is immediate. One can give in an obvious way the notion of rigid
morphism. We leave to the reader the task of proving that, under the hypothesis
of Proposition (I1.3.7), H°(X, f*Ty) = 0 implies that f is rigid.

(I.3.10) EXAMPLES (i) Let f : X — Y be a nonconstant morphism of
projective nonsingular connected curves, with g(Y) > 2. Then deg(Ty) < 0 and
therefore h°(X, f*Ty) = 0. Thus f is rigid.

(ii) Let X be a projective irreducible and nonsingular curve, f : X — IP" be
a morphism and let L = f*Opr(1), deg(L) = n. Then f is defined by a g, i.e.
a linear series of degree n and dimension 7 on X. From the Euler sequence pulled
back to X we have:

X(f*Tpr) = (r+ 1)x(L) — x(Ox) = p(g,r,n) + r(r + 2)

where
p(g,m,n):=g—(r+1)(g—n+r)
is the Brill-Noether number and

r(r+2) = h°(Tpr) = dim[PGL(r + 1)]

Assume that 7 + 1 = h%(L), i.e. that f is defined by the complete linear series |L|,
and consider the exact sequence

H'(Ox) — HY(L)"" = H(f*Tp-) =0

obtained from the Euler sequence. It dualizes as:
0= HY(f*Tpr)Y — H(L) ® H(wx L) "% HO(wy)

where po(L) is the natural multiplication map in cohomology, called the Petri map.
Therefore we see that f is unobstructed if po(L) is injective. A necessary condition
for this to be true is that

(r+1)(g—n+7r)=dim[H°(L) ® H'(wxL™H] < h’(wx) =g

i.e. that p(g,r,n) > 0.

This necessary condition is not sufficient. The simplest example is given by a
nonsingular complete intersection X = Q NS C IP? of a quadric cone @ and of a
cubic surface S. Then X is a canonical curve of genus 4 and the projection from
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the vertex of the cone defines a complete g3 |L| such that wx L™ & L. In this case
p(4,1,3) = 0 but dim[ker(uo(L))] = 1.

NOTES

1. Prove the following Proposition:
If Y is a projective scheme and C' C Y is a projective integral l.c.i. curve,
the normal sheaf N¢/y is torsion free. If C' is nonsingular then Ng,y is
locally free.

2. Consider a nonsingular curve C C IP? and a (possibly singular)
surface S C IP3 of degree n containing C. Prove that there is an exact
sequence of locally free sheaves on C"

[I1.3.6] 0—a~'® Ko(—n+4) = Ng/ps — Oc(n) = [O¢/a](n) — 0

where a C O¢ is the ideal sheaf generated by the restriction to C of the

partial derivatives
oF oF

0Xy T 0X3
where ' = 0 is an equation of S.
(Hint: Im('gb) =0¢c ® Im(TP3|S — NS/P3))-
In case S is nonsingular we obtain the sequence:

[11.3.7] 0— Keo(—n+4) = No — Og(n) = 0

Deduce from [I1.3.6] that if a # O¢ (i.e. if C' N Sing(S) # () then C is not
regularly embedded in S (yet the normal sheaf Ng /g is locally free).

3. Consider a nonsingular curve C' C IP? and a point p € IP3\C. Prove
that there is an exact sequence

0— Oc(l) — NC/PS — wc(3) —0
which is obtained as a special case of [I1.3.6] by taking as S the cone pro-
jecting C' from p. Deduce that

r(C, Neyps) < R (C,0c(1))

4. Let X C IP" be a nonsingular irreducible projective curve embedded
by a non special linear series. Show that H' (X, Nx/pr) = (0) and therefore
X is unobstructed in IP".

5. Let X C IP" be a nonsingular irreducible projective curve and let
L=0x(1)=0Opr(1)@0x. Show that if the Petri map po(L) (see example
(I1.3.10)(ii)) is injective then H'(X, Nx/pr) = (0) and X is unobstructed
in IP". Deduce that canonical curves of genus g > 3 are unobstructed in
P91,

6. Let X C IP" be a projective irreducible nonsingular curve of degree
d and genus g. Prove that

x(Nx;pr) :=h°(X,Nx,pr) — h'(X,Nx,pr) = (r+ 1)d+ (r — 3)(1 — g)
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I1.4. AFFINE SCHEMES (I)

Let By be a k-algebra, and let Xy = Spec(By). We continue the study of
inifinitesimal deformations of X, equivalently of By, started in section II.1 in the
nonsingular case.

(IL.4.1) PROPOSITION There is a natural 1-1 correspondence

{ﬁrst order deformations of Xo}
~ Tg,

isomorphism

where the class of trivial deformations corresponds to 0 € T éo.

Proof
A first order deformation of By consists of a flat k[e|-algebra B, plus a k-isomorphism
B ®x[) k = By. This set of data determines a k-extension:

0 = By 2+ B = By, = 0
[11.4.1] I
eB
obtained after tensoring the exact sequence

0— () > kle) =k —0

by ®x[qB- Isomorphic deformations give rise to isomorphic extensions. Conversely,
given a k-extension [I1.4.1], B has a structure of k[e|-algebra given by

e j(1)

B is ke]-flat by Lemma (A.2.8). g.e.d.

We will give some indications for the practical computation of Téo when By is
e.f.t..
Let By = P/J, where P is a smooth k-algebra of the form
P=A"k[Xy,..., X4

for some multiplicative system A C k[X7,...,Xy4], and J C P is an ideal.
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Consider the exact sequence
\%
0— HOIII(QBO/k, Bo) — HOIH(QP/k ® Bo, B()) 6—) HOHl(J/Jz, B()) — Téo — 0

The module
Hom(Qp/k ® Bo, B()) = Derk(P, B[))

consists of all derivations D of the form

_ Op
D) =2 bigy,
J=1
for given b; € By, and
_ 4 af
8" (D)(f) = D(f) =D biar fed
j=1 I

Assume that J = (f1,..., fn) and let
0=R -5 P" L]0
be the corresponding presentation. We have the exact sequence:
0 s Hom(J/J2, Bo) = Hom(BY, Bo) -~ Hom(R, Bo)
where jV identifies Hom(J/J?, Bg) with the submodule of Hom(Bg, By) consisting
of those homomorphisms which are 0 on R. Identifying Hom(Bj, By) = B{, thereby

viewing its elements as column vectors, we see that the condition for

U5
€ By

B
Il

an

to be in Hom(J/J?, By) is that ‘g - r = 0 for each r € R (where we are viewing R
as consisting of column vectors as well). jV associates to a homomorphism

@ : J/J2_ — By ~
Ybifi = Yobio(fy)
the column vector

W(fl)

©(fn)
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0
0y .

Therefore Im(0¥) C Bf is generated by the column vectors corresponding to 6V (5 el

8V (%), i.e. by the classes mod J of:

of1 0f1
0Xq 0Xg4
; R
Ofn 9fn
X1 X,

., fn) is generated by a regular sequence then ¥ = 0, equivalently ;¥

If J = (fl; ..
is an isomorphism, and it follows that
B’n
1 ~ 0
Tp, & o —9m
X, X4
Ofn ... O
X, 09X 4
In particular, if By = P/(f) then
Bo = [ 8f afy of of
(BXl’“"a—Xd) (f’axl""va—xd)

It follows from this description that the hypersurface V'(f) is rigid if and only if it
is nonsingular. In particular a singular hypersurface is not rigid. A similar remark

holds for complete intersections.

(IL.4.2) Let P be the local ring of a nonsingular algebraic surface X at a k-
rational point p, m = (x,y) its maximal ideal, and By = P/(f) the local ring of a
curve C C X at p. Let’s compute T in some cases. We assume char(k) = 0 here.

a) Node (ordinary double point) - By definition By 2 k[[X,Y]]/(X2 + Y?).
Then f = x2 + y2+ higher order terms, and

b) Ordinary cusp - In this case By = k[[X,Y]]/(X2+Y3). Then f = 22 +y2+

higher order terms, and
By

¢) Tacnode - We have in this case By = k[[X, Y]]/(Y (Y + X2)) and

BO ~ k3

1 ~ o~

Tl o
Bo ™ (22 + 2y, zy)
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Conversely we have the following result:

(I1.4.3) PROPOSITION Let P be the local ring of a nonsingular algebraic
surface X at a k-rational point p, m = (z,y) its maximal ideal, and By = P/(f)
the local ring of a curve C C X at p; let t = dikaéO. Then
(a) t = 0 if and only if By is regular (a DVR).

(b) t =1 if and only if By is the local ring of a node.
(c) t = 2 if and only if By is the local ring of an ordinary cusp.

Proof
The ’if” implication follows from the above computations. We have

f € m} immediately implies ¢ > 4; then f € m% and, after suitable choice of
generators of mp we may suppose f = y? + 2™+ higher order terms, n > 2 or
f =y(y+z™)+ higher order terms, n > 2. Now the conclusion follows easily. ¢.e.d.

(I1.4.4) The affine cone over IP' x IP? - Let
P = k[XOa Xla X2, )-/03 Yla )-/2]

J = (X1Y2 — XoY7, XoYy — XoYs, XoY: — X1Y))

Then By = P/J is the coordinate ring of the affine cone over the Segre embedding
IP' x IP? C IP5. We have the following presentation:

0 P22 P35 750

where
Xo Yo
A == X 1 Y1
Xs Y,

A direct computation shows that Hom(J/J?, By) is generated by the following col-
umn vectors:

Y; Y, 0 X1 Xq 0
—YE) 0 Y2 _XO 0 X2
0 =Y, -V 0 -Xo - X3

Since these vectors are, up to permutation,

0
5\/(6—)(0)’ 6V (

0
00X,

0
0X2

0 0 0
Y Ve ¥ Ve ¥

), 0%(

we see that T5 = 0. This implies that By is rigid (see Corollary (I.5.4)).

More generally one can prove that the coordinate ring of the affine cone over
the Segre embedding IP™ x IP™ C IPMHDmAD=1 4o rigid whenever n + m > 3.
This has been computed for the first time in Grauert-Kerner(1964) in the case
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n = m > 2; the general case is in Schlessinger(1973). We will give the proof in
Corollary (11.5.11) below.

(1145) Let P = k[Xl,X2,X3](£), J = (X2X3,X1X3,X1X2). Then BO = P/J
is the local ring at the origin of the union of the coordinate axes in A3. We have
the presentation

P3 A, p3 5750
where
X, X, 0
A= —Xo 0 X5
0 —-X3 —X3

and the columns of A generate R.
Hom(J/J?, By) is generated by the following column vectors mod J:

Xy X3 O 0 0 0
0 0 X; Xz O 0
0 0 0 0 X3 Xy

and Im(8Y) is generated by the column vectors mod .J:

0 Xs3 Xy
X3 0 X;
X, X; O

It follows at once that
Tp, = Hom(J/J?, By)/Im(8") = k*

because there are 3 generators of Hom(J/J?, By) which are linearly independent

modulo the generators of Im(§Y), and all other elements of Hom(J/J?, By) are in
Im(6Y).

In a similar vein one can consider, for any d > 3
By = k[Xla SRR) Xd](z)/‘]

where X
J = ( ey X1X2 . XZ . Xd, .. -)i:l,...,d

Then B is the local ring at the origin of the union of the coordinate axes in A<
One computes easily, along the same lines of the case d = 3, that

T£1; o kd(d—2)

0

NOTES
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1. The main references for this and the following Section are Sch-
lessinger(1964), Lichtenbaum-Schlessinger(1967), Artin(1976).

2. (Sheets(1977)) Let B be an e.f.t. local k-algebra, I C B an ideal
generated by a regular sequence. Prove that if B/I is rigid then B is rigid
as well.

3. Let P be the local ring of a nonsingular algebraic variety V of
dimension n > 2 at a k-rational point p and let By = P/(f) be the local
ring of a hypersurface X C V at p. We say that p is a node for X if By =
K[ X1,...,2za]]/ (X2 + -+ + X2), equivalently if we can choose generators
T1,...,%, of the maximal ideal mp so that f =Y 22+ higher order terms.
Prove that if p is a node for X then Th = k.

s
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I1.5. AFFINE SCHEMES (II)

The second cotangent module and obstructions

Assume that By = P/J for a smooth k-algebra P, and an ideal J C P. Con-
sider a presentation:

n: 0osR-SF 2750
where F' is a finitely generated free P-module. Let A : /\2 F — F be defined by:
Az Ay) = (Jx)y — (Jy)z

and R =TIm()). Obviously R*” C R and R C JF.

If J = (f1,...,fn) then F = P™ and R is the module of relations among
fi,--+, fn R¥ is called the module of trivial (or Koszul) relations; it is generated
by the relations of the form

O, -ooy —fir ooy Fir ey 0)
[ J

Note that R/R* = Hi(Ke(f1,...,fn)), the first homology module of the Koszul
complex associated to fi,..., fn.

(I1.5.1) LEMMA The P-module R/R'" is annihilated by J and therefore it is
a Bg-module in a natural way.

Proof
Let z € R, a € J. Let y € F be such that j(y) = a. Then

az = j(y)z = j(y)z — j(x)y = Ay Az) € R"

g.e.d.

Since R C JF the presentation 7 induces an exact sequence of By-modules:

[11.5.1] R/R" 55 F@p By 2 J/J? = 0
We define Téo by the induced exact sequence:

0 — Homp, (J/J?, By) — Homp, (F ®p By, By) — Homp, (R/R", By) = T3, — 0
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Obviously Tf;o is a Bg-module of finite type. It is called the second cotangent module
Of B().

(I1.5.2) LEMMA For every e.f.t. k-algebra By the By-module Téo is indepen-
dent of the presentation 7).

Proof
Assume that F' =2 P™ and that j : P* — J is defined by the system of generators
fi,--., fnof J. Let
0—-S—-P"—>J—=0

be another presentation of J, defined by the system of generators gi,...,gmn. We
may assume that m > n and that g, = fx, k =1,...,n. Let

gk:Zbksfs k:n-l—l,,m

for some bgs € P. Denote by a : P™* — P™ the map
a(at,...,an) = (a1,...,04,0,...,0)
and by g : P™ — P" the map
ﬁ(ala ceey am) = (al + Z b13a87 BRI 79} + Z bnsas)
s=n-+1 s=n-+1

Evidently a(R) C S and a(R!) C S''. It is easy to verify that 8(S) C R and
B(St) C R¥". Tt follows that o and 8 induce homomorphisms

4* : Hom(R/R'", By) — Hom(S/S*, By)
o* : Hom(S/S'", By) — Hom(R/R'", By)

whence homomorphisms

B : Hom(R/R!", By) /Hom(P™, By) — Hom(S/S'", By)/Hom(P™, By)
& : Hom(S/S*", By)/Hom(P™, By) — Hom(R/R'", By)/Hom(P", By)

Since
a*8* = identity of Hom(R/R'" By)

it follows that
&f = identity of Hom(R/R!", By)/Hom(P™, By)
We now prove that

[11.5.2] Bé = identity of Hom(S/S'", By)/Hom(P™, By)
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Let g € Hom(S/S*", By) be induced by the homomorphism G : S — By. Then, if
(a1,...,am,) €S and (a@1,...,a,) € S/S' is its class, we have:

(B*a*)(9) (@1, .-, 0m) = Gla(B(a1,...,0,))) =
G(ay + Z;n:n_l_l bisas,...,an + ZT:TH—I bpsas,0,...,0) =
G(a1y. vy am) + G 1 016y vy D e by =gty e v vy =) = (%)

Now note that

( Z blsp87 sy Z bnsp37 —Pn+1;5---, _pm) €S

s=n+1 s=n-+1
for every (p1,...,pm) € P™. Therefore letting

T(ph .. apm) = G( Z blspsa LI Z bnsp87 —Pn+15---, _pm)
s=n-+1 s=n-+1

we define a homomorphism 7 : P™ — By. It follows that

(x) =g(ay, ..., am) + 7(a1,...,0n)

Hence
(8*a*)(9) — g € Im[Hom(P™, By) — Hom(S/S"", By)]

or equivalently [II.5.2] holds. g.e.d.

From the definition it easily follows that T,_%O localizes. Namely, for every
multiplicative subset A C P we have:

12 _ 2
A TB() - TA_lBO

It follows that for any scheme X we can define in an obvious way the second cotan-
gent sheaf which we will denote by T%. It satisfies

2 _ m2
TX,.'E - TOX,Z

(IL.5.3) PROPOSITION Assume that By = P/J for a smooth k-algebra P.
Then for every A in A and for every deformation & of By over A there is a k-linear
map

& Exi(A k) — Téo

whose kernel consists of the extensions

n:0—-k—A—A—0
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such that & has a lifting over A.
Moreover if £,(n) = 0 then there is a natural transitive action of Tg_on the set of

isomorphism classes of liftings of & over A.

Proof
Let A be an object of A and let

B — BO
& 1 1
A — k

be an infinitesimal deformation of By over A.
We must associate to & a k-linear map

& : Exk(A, k) = T3,

satisfying the conditions of the statement. Let By = P/J for a smooth k-algebra
P and an ideal J = (fi,..., fn) C P. We have an exact sequence:

0R—- P 5750
Then, by the smoothness of P we have
B=(P®xA)/(Fy,..., F,)

where f; = F; (mod mya), j = 1,...,n. The flatness of B over A implies that for
every r = (r1,...,7,) € R there exist Ry,...,R, € P ®x A such that r; = R;
(mod. ma), j=1,...,n,and >, R;F; = 0.

Let [v] € Exk (A4, k) be represented by an extension

v 0—ek—A-25 450

Choose Fy,...,Fy,R1,...,R, € P® A liftings of Fy,...,F,, Ry,..., R, respec-
tively; then

> RjFjcker[P@A— P®yAl=cP=P

J

It is easy to check that a different choice of R1,...,R, or of Fy,..., F, modifies
Zj R;F; by an element of J or by one of the form Zj gjrj, where g; € P, respec-
tively. Therefore sending

[11.5.3] r— ZRJ‘FJ'
J

defines an element of

coker[Hom (B, By) — Hom(R, By)]
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Moreover, since if r = r;; = ©,...,fj,---,—fi,--.,0) we can take

(Ry,...,R,) =(0,...,F;,...,—F;...,0)

and we get > R;F; = 0, it follows that [I1.5.3] is zero on Hom(R*", By). Therefore
the n-tuple of liftings (E ) = (Fl, e, f?’n) defines an element &, (y) of

coker[Hom(B§, By) — Hom(R/R", By)] = T3,

Let’s prove that the map v — &,(7y) is k-linear.
Let [(] € Exk(A, k) be another element defined by the extension:

C: 0—-ek—-A A0

and let (F') = (Fy,...,F}), F] € Pk A’ be the corresponding lifting, which defines
§0(¢). Then &(7) + & (¢) is defined by

T ZRij +ZR;~FJ{
J J

where RY,...,Rl, € P ®x A’ are liftings of Ry,..., R,. Consider the diagram:

0> kak — Axs4 A — A —0

Lo lo [
y+¢: 0— k — C - A =0

Then &, (v + ¢) is defined by
r— Z ‘I/j(bj
J

where Uq,..., U, ®y,..., P, € PRk C are liftings of R1,..., Ry, Fi,...,F,.
Since . .
P ®x (A XAAI) = (P®kA) X A (P@kAl)

letting p : P ®x (fl x4 A") = P ®x C be the homomorphism induced by o, we may
assume that ~ }
O; = p(Fj, Fj); U = p(Rj, R))

> v =
= Zp(Rja R)p(Fy, Fj) = p[Z(RJw RY)(F;, F})] =

= p(Y_RF;, Y R, Fj) =60 R;Fy, ) R} F)) =
j j j J

Then:
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=Y RjFj+) R}, F
J 7

This proves that &, (7+¢) = & (7) +&({). A similar argument shows that &,(\y) =
My(7), A € k.

Now assume that [y] € Exx(A, k) is such that there exists an infinitesimal
deformation

~ B — BO
£ 1 1
A — k

such that

DefBO (A) — DefBO (A)
& = 3
It follows that there exist liftings ﬁ‘j € P®x A of the Fj’s such that every r € R
has a lifting R € (P ®x A)N such that >_; RjF; = 0. This means that & (y) = 0.
Conversely, assume that &,(y) = 0, and let F,..., F, € P ®y A be arbitrary

liftings of F, ..., Fy,. Then there exists (hi,...,h,) € P™ such that for every choice
of a lifting R € (P ®x A)™ of a relation r € R we have:

ZRJ'FJ' = —lejhj = —Zthj
J J

J

This means that the ideal (13’1 +ehi, ..., ﬁ’n—i—ehn) C P&y A defines a flat deformation
of By over A lifting the deformation B = (P ®x A)/(F1,. .., Fy).

Any other choice of a lifting of the deformation £ over A is of the form
(F1+€(h1+k1)a"',ﬁ1n+e(hn +kn))

where k = (k1,...,k,) € Bf satisfy ). r;k; = 0 for every relation r € R. Therefore
k € Hom(J/J?, By). It is straightforward to verify that if £ € Im(6") then F+eh
and F + e(h + k) define isomorphic liftings of £ over A. This means that we have
an action of Téo on the set of liftings of £ over A. By construction it follows that
this action is transitive. g-e.d.

(IL.5.4) COROLLARY (i) If By is an e.f.t. local complete intersection k-
algebra then it is unobstructed. In particular hypersurface singularities are unob-
structed.

(ii) IfTéO = 0 then By is rigid.

Proof
(i) If J is generated by a regular sequence then R = R and therefore T3 = (0).
(ii) Left to the reader. g.e.d.
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(IL.5.5) PROPOSITION With the same notations as in Proposition [11.5.3] we
have:
(i) If the locus where By is a l.c.i. is dense in Spec(By) (e.g. By is reduced) then

T, = Extp, (J/J?, Bo)

(ii) Under the additional hypothesis that Spec(By) is reduced and has depth at least
2 along the locus where it is not a l.c.i. (e.g. Spec(By) is normal of dimension > 2)

there is an isomorphism
T]230 = EXt2(QBo/ka BO)

Proof
(i) From the exact sequence [I1.5.1] we deduce the following commutative diagram
with exact rows and columns:

Hom(ker(z), By)

T
0 — Hom(J/J?, By) = Hom(F ®p By, By) -~— Hom(R/R!", By) —~ T3 —0
I | U U

0 — Hom(J/J?,By) » Hom(F ®p By, By) — Hom(Im(z), By) — Extp (J/J% By) =0

Since the exact sequence 7 localizes we see that ker(z) is supported on the lo-
cus where By is not a l.c.i.; in particular ker(z) is torsion. Therefore we have
Hom(ker(z), Bp) = (0) and the conclusion follows.

(ii) Consider the conormal sequence

J/J2 L)Qp/k(gBO—)QBO/k—)O

Since Spec(Byp) is reduced ker(d) is supported in the locus where Spec(Bg) C
Spec(P) is not a regular embedding (Proposition (A.3.2)), and this locus coin-
cides with the locus where Spec(Bp) is not a lc.i. (Proposition (A.3.7)). From
the assumption about the depth of Spec(By) it follows that Hom(ker(d), By) =
Ext! (ker(d), By) = (0). Using this fact and recalling that Exti(QP/k@)Bo, By) = (0),
1 > 0, we obtain:

Ext?(Qp, /x, Bo) = Ext' (Im(6), Bo) = Ext'(.J/J?, By)

g.e.d.

(IL.5.6) EXAMPLE (Schlessinger(1964)) An obstructed affine curve - Let s be
an indeterminate and let By = k[s7, s8, 5%, s1%] C k[s] be the coordinate ring of the
affine rational curve C C A* = Spec(k[z,y, z, w]) having parametric equations:

r=s", y=s% z2=35" w=s'"

Write P = k[z,y, z, w] and
By = P/I
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for an ideal I C P. One can check, using for example a computer algebra package,
that I is generated by the six 2 X 2 minors of the following matrix:

r Yy z w?
y z w z°

i.e. by the following polynomials:

fi=9" -z fo=aw—yz  f3=2—yuw;

4 2. 3 3
’

fa=at —wly; fs=2%y —2w? fo=w’ - 2%

This ideal is prime of height 3. Consider a presentation:

0O—-—R—->F—-1—-0

where F' = P% with generators say ei,...,eq, so that e; — f;. To describe R
one can use the beginning of the free resolution of I given by the Eagon-Northcott
complex (see Eisenbud(1995)). One obtains a set of generators for R given by the
rows of the following matrix:

Ry: =z Y z 0 0 O
Ry : w? 0 0 v —x 0
Rs: O 0 w? 0 =z y
Ri: 0 —w?2 0 z 0 =z
Rs: w z y 0 0 0
Reg: z3 0 0 2 —y O
R;: 0 0 2 0 w oz
Rg: 0 —23 0 w 0 y

Here each row gives the coefficients a; of the linear combination ), a;e; € R. We
then have an exact sequence

0R—F—=1I/I*>=0

where F' = F/IF and R = R/(IF NR). Reducing mod I the above relations one
gets the following set of generators of R as elements of F':

ry: s s8 s 0 0 0
re: 200 0 s —s7 0
rg: 0 0 s 0 s S8
ra: 0 —s2 0 s 0 4
[11.5.3] rg: s0  §° £ 0 0 0
re: st 0 0 s9 —s® 0
7. 0 0 s 0 s10 &9
rg: 0 —s?1 0 10 0 58
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Since By is reduced we have
T3, = Extp (I/1%, By) = Hom(R, By)/Hom(F, By)

Representing an element h € Hom(R, By) as the 8-tuple (h(r1),...,h(rg)) € B

we see that the submodule Hom(F, By) is generated by the columns of [II.5.3].
Therefore to prove that By is obstructed it will suffice to produce a first order
deformation ¢ € Defp, (k[¢]) whose obstruction to lift to k[t]/(¢3) is represented by
an h : R — By not in the submodule generated by the columns of [IL.5.3]. We
define £ by the ideal

(fl +Af1a-"7f6+Af6) C k[e,x,y,z,w]

where
Af = (Af1,. .., Afe) = (0,0,0, 2w, w?, —2%)

this defines a deformation because R;-Af € I for all j =1,...,8. More precisely:

(Rl ) Afa .- '7R8 ) Af) = (07 —ng, _f57f4 - wf3a07wf37f6a _f5)

Therefore we see that the obstruction to lift £ to second order is defined by the
homomorphism h : R — By represented by

(0’ 07 _t207 tlg, 07 0’ _t21’ _t20)
Now it is immediate to check that this vector is not in Hom(F, By) and therefore
the deformation & cannot be lifted: thus By is obstructed.
x % ok ok %k %
Comparison with deformations of the nonsingular locus

Under certain conditions it is possible to compare the deformations of an affine
scheme with the deformations of the open subscheme of its nonsingular points. We
will need a preliminary Lemma.

I1.5(7) LEMMA Let X be an affine scheme, Z C X a closed subscheme and
G a coherent sheaf on X. Let G¥ = Hom(G,Ox). If depthz(Ox) > 2 then
depthz(G") > 2 and therefore

H'(X,GY)~ H(X\Z,GY)
Proof

Consider a presentation
0-R—>F—->G—0

where F' is a free Ox-module. Then we obtain an exact sequence

[11.5.4] 0-GY—-F' -Q—0
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where @ C RY. Since FV is free we have depthz(FY) = depth,(Ox) > 2 and
therefore HY(FV) = 0 = HL(FV) (Grothendieck(1967), Theorem 3.8, p. 44); it
follows that H2(GV) = 0. Similarly one proves that HY(RY) = 0, and therefore
HY%(Q) = 0. From the sequence of local cohomology associated to [II.5.4] we obtain
HL(GY) = 0 and therefore depthyz (GV) > 2 by (Grothendieck(1967), Theorem 3.8,
p. 44). The last assertion follows from the exact sequence

0— H(X,GY) = H°(X\Z,G"Y) = Hx(GY)

(see Hartshorne(1977), p. 212). g.e.d.

Consider an affine scheme X = Spec(B) where B = P/.J for a smooth k-algebra
P. Let Z = Sing(X) be the singular locus of X and U = X\ Z.

Let Y = Spec(P) and consider the exact sequence
[11.5.5] 0—Tx = Tyjx > Nx = Tx —0

where Nx = Nx/y. Since T 'L is supported on Z, by restricting to U we get the
exact sequence:

[1156] 0—-Ty —)Ty|U—)Nx|U —0

(IL.5.8) PROPOSITION (i) If depthz(Ox) > 2 (e.g. X is normal of dimension
> 2) we have an exact sequence

0T — H'(UTy) — H (U, Tyw)
(ii) If depthz(Ox) > 3 then
T = H' (U, Ty)

Proof
(i) We have the local cohomology exact sequences (see Hartshorne(1977), p. 212):

0 — H°(X,Nx) — H°(U,Nxjy) = Hz(Nx)

0— H°(X,Ty|x) = H°(U, Ty\y) — Hz(Ty|x)

If depthz (Ox) > 2 then from Lemma, (I1.5.7) we deduce that depthz (Nx) > 2 and
depthz(Ty|x) > 2. Therefore we have H, (Nx) = 0 = H;(Ty|x) (Grothendieck(1967),
Theorem 3.8, p. 44) and

H°(X,Nx) = H°(U, Nxv), H(X, Ty|x) & H°(U, Tyv)

Comparing the exact cohomology sequences of [I1.5.5] and [I1.5.6] we get an exact
and commutative diagram:

HY(X,Ty;x) — H°(X,Nx) — T  — 0
| N
HO(Ua TY|U) - HO(U7 NX|U) — Hl(Uv TU) - Hl(Ua TY|U)
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which proves (i).
If depthz (Ox) > 3 then X is normal and Hy(Ty|x) = 0 = Hz(Ty|x) because
Ty|x is locally free; from the local cohomology exact sequence we get
H'(U,Typ) = H'(X,Ty|x) =0
because X is affine. Using (i) we deduce (ii). g.e.d.
The above Proposition can be applied to prove the rigidity of a large class of

cones over projective varieties. We will need the following well known Lemmas,
which we include for the reader’s convenience.

(I1.5.9) LEMMA Let W C IP" be a projective nonsingular variety, CW the
affine cone over W, v € CW the vertex, U = CW\{v} and p : U — W the
projection. If G is a coherent sheaf on CW such that G|y = p*F for some coherent
F # (0) on W, then the following conditions are equivalent:

(i) depth,(G) > d for some d > 2
(ii) H*(CW,G) = ®,eczH°(W, F(v)) and H¥(W,F(v)) =0 for all 1 < k < d — 2
andv € Z

Proof
We will use the equivalence
depth,(G) >d < HEFG)=0, k<d
(Grothendieck(1967), Theorem 3.8, p. 44). We have an exact local cohomology
sequence:
0 — Hy)(G) — H°(CW,G) — H°(U,Gy) = H,;(G) = 0

and isomorphisms:

H"Y(U,G\y) 2 HY(G) k> 2
Since G|y = p*F with F # (0) we have depth,(G) > 1, thus H)(G) = 0.
On the other hand, since p,G|y = p«p*F = @,z F(v), we have HO(U,G|U) =
@,z HO (W, F(v)). Now the conclusion follows. g.e.d.

(I1.5.10) LEMMA Let 0 = [0,...,0,1] € IP™' V = IP"*'\{0} and let 7 :
V' — IP" be the projection. Then

TV/PT = 71'*0(1)

Proof
It is an immediate consequence of the commutative exact diagram
0 0
T T
0— TV/PT‘ — Ty — ™ Tpr —0
| 1 i

0— Oy(l) — Oyp() 2 — Op()r*t —0

T T
@ @
T T
0 0
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where the vertical sequences are restrictions of Euler sequences. g-e.d.

(II.5.11) COROLLARY Let W C IP" be a projective nonsingular variety of
dimension > 2. Assume that
(i) H°(IP",O(v)) — H°(W, Ow (v)) surjective for all v € Z (W is projectively
normal)
(ii) HY(W,Ow (v)) =0 for allv € Z.
(iii) H* (W, Tw (v)) =0 for allv € Z.
Then the affine cone CW over W is rigid.

Proof
CW has dimension > 3 and hypothesis (i) implies that it is normal (Hartshorne(1977),
p. 126). Hypothesis (i) and (ii) imply that depth,(Ocw) > 3, by Lemma [I1.5.9].
Therefore by (I1.5.8)(ii) it suffices to show that H' (U, Ty) = 0 where U = CW\{v}.
Let p: U — W be the projection. We have

Hl(Ua OU) = @I/EZ-Hl(Wa OW(V)) =0
[11.5.7]
HYU,p*Tw) = ®vezH* (W, Ty (v)) =0

by conditions (ii) and (iii). The relative tangent sequence of p takes the following
form:

[11.5.8] 00y -Ty = p*Tw — 0

Infact it follows from Lemma (I1.5.10) and from Proposition (A.1.1)(i) that we have
T w)yw = ™ Ow/(1) and therefore, since U = 7L (W)\W, we have Tyyw =
p*Ow (1) and this is clearly equal to Oy. The conclusion follows from [I1.5.7] and
from the cohomology sequence of [IL.5.8]. g.e.d.

(IL.5.12) COROLLARY (i) The affine cone over IP™ x IP™ in its Segre em-
bedding is rigid for every n, m such that n +m > 3
(ii) The affine cone over any Veronese embedding of IP™, n > 2, is rigid.
(iii) If W C IP" is a projective nonsingular variety of dimension > 2, such that
h*(W,0w) = 0 = h' (W, Tw) then the affine cone over the m-th Veronese embed-
ding W™ of W is rigid for every m > 0.

Proof
(i) and (ii) are easy computations. (iii) follows from Serre’s vanishing Theorem
(Hartshorne(1977), Th. II1.5.2). g.e.d.

The affine cone over the quadric IP! x IP! C IP3 is not rigid because it is a
hypersurface; it does not satisfy both conditions (ii) and (iii) of Corollary (I1.5.11).
The affine cone over a rational normal curve I, C IP", r > 2, is not rigid either
(for r = 2 it is a singular quadric surface in A3; for r > 3 see Mumford(1973),
Pinkham(1974), Pinkham(1974b)).

* * * * * ok



Lejorimations 0] oCneines of

Quotient singularities

The analysis of the previous subsection can be applied to the study of defor-
mations of a class of affine singular schemes obtained as quotients of nonsingular
ones by the action of a finite group.

Let Y = Spec(P) be an affine nonsingular algebraic variety on which a finite
group G acts. Let X = Y/G be the quotient scheme, ¢ : Y — X the projection.
Assume that the action is free outside a G-invariant closed subscheme W C Y. Set
V=Y\W.

(IL.5.13) PROPOSITION Assume that depthy (Oy) > 2. Then
Tx = (Q*TY)G

where G acts on Ty = Dery (P, P)~ by D + D9 := gDg™! for all D € Dery (P, P)
and g € G.

Proof
Consider the exact sequence of coherent sheaves on Y:

0= Ty)x =Ty = ¢"Tx = Ty/x

Q%// x 18 supported on W since q is etale outside W; then we have Ty,x = 0.

Similarly T}1, /X is supported on W so that from the above exact sequence restricted
to V we deduce an isomorphism

HY(V,Ty) = H(V,q*Tx)
Then by Lemma (I1.5.7) we deduce that
H(Y,Ty) = H°(Y,q*Tx)

Note that, letting A = P¢ the ring of invariant elements, we have X = Spec(A)
and the above isomorphism is equivalent to an isomorphism

Dery (P, P) = Derg (A, P)
Therefore it will suffice to show that
Dery (A4, A) 2 Dery (A, P)¢

So let D € Dery (A, P) be such that D = gDg~! for all g € G. Then for every a € A

we have
D(a) = g(D(g™'a)) = g(D(a))

so D(a) € A and therefore Dery (A, P)¢ C Dery (A, A). Conversely if D € Dery (A, A)
then it defines a k-derivation of A in P which is clearly G-invariant and we also
have Dery (A, A) C Derg (A4, P)°. g-e.d.
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(IL.5.14) COROLLARY Let n be the order of G. Under the same assumptions
of (I1.5.13) if char(k) does not divide n then Tx is a direct summand of g, Ty .

Proof
Define a homomorphism ¢, Ty — Tx = (Q*Ty)G by
D+ Y Df
n
geG
This defines the splitting. g.e.d.

(I.5.15) THEOREM In the above situation, if the action is free outside a
G-invariant closed subscheme W of codimension > 3, and char(k) does not divide
the order of G then X =Y/G is rigid.

Proof
Let Z = q(W) where q : Y — X is the projection, V = Y\W, U = X\Z = V/G.
We have depth,Ox > 2 because X is normal, being the quotient of a nonsingular
variety by a finite group (for this elementary fact see e.g. Serre(1959), p. 58).
Therefore

[11.5.9] Ty C HY (U, Ty) = HY(U, (¢:.Ty)®)

where the inclusion follows from (II.5.8)(i) and the isomorphism is Proposition
(IL.5.13). We also have an exact sequence

HY (Y, Ty) — H'(V,Ty) — Hj(Ty)

|
Hl(U7 Q*TY)

where the left vector space is 0 because Y is affine and the right one is 0 because
of the depth assumption on W. It follows that H'(U,¢Ty) = 0 and therefore
HY(U, (¢sTy)%) = 0 as well because it is a direct summand of it by Corollary
(IL.5.14). The conclusion now follows from [IL.5.9]. g-e.d.

In the Theorem the hypothesis on the codimension of W cannot be removed.
Infact all rational two-dimensional singularities are quotient singularities and they
are hypersurfaces (see Badescu(2001)).



