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Chapter III. Formal deformation theory

In this Chapter we develop the theory of “functors of Artin rings”. The
main result of this theory is a Theorem of Schlessinger giving necessary and
sufficient conditions for a functor of Artin rings to have a semiuniversal
or a universal formal element. We then apply the functorial machinery to
the construction of formal semiuniversal, or universal, deformations, which
is the final goal of formal deformation theory, and we explain the relation
between formal and algebraic deformations. In the last part of the Chapter
we study deformations of morphisms.
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II1.1. FUNCTORS OF ARTIN RINGS
A functor of Artin rings is a covariant functor

F : Ay —> (sets)
where A € ob(A). Let A be in ob(A). An element ¢ € F(A) will be called an
infinitesimal deformation of §y € F(k) if £ — &y under the map F'(A) — F(k); if
A = kle] then ¢ is called a first order deformation of &.
Examples of functors of Artin rings are obtained by fixing an R in Ay and
letting:
hr/a(A) = Hom 4, (R, A) for every A in Ax

Such a functor is clearly nothing but the restriction to A, of a representable functor
on A,. A functor of Artin rings isomorphic to hg/p for some R in Ay is called
prorepresentable. In case A = k we write hr instead of hp/y.

Every representable functor hr/s, R in Ay, is a (trivial) example of prorepre-
sentable functor.

Typically a prorepresentable functor of Artin rings arises as follows. One con-
siders a scheme X and the restriction

®: A — (sets)

®(A) = Hom(Spec(4), X)
of the representable functor
Hom(—, X) : (schemes)® — (sets)
Then, for a fixed k-rational point z € X, one considers the subfunctor
F: A— (sets)
of ® defined as follows:
F(A) = Hom(Spec(A), X), = { morphisms Spec(4) — X whose image is z}
Then F' = hg, where R = O Xz, 50 F' is prorepresentable. In §III.3 we will consider

some functors of Artin rings defined by deformation problems.
A prorepresentable functor F' = hg/ has the following properties:
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Hy) F(k) consists of one element (the canonical quotient R — R/m = k)
Let
AI A//

[111.1.1] . V%
A

be a diagram in Ap and consider the natural map
(070 F(Al XA A”) — F(Al) XF(A) F(A”)
induced by the commutative diagram:

F(A"x4 A") — F(A")

) !
F(A" —  F(A)

Then

Hy) (left exactness) For every diagram [III.1.1] « is bijective (straightforward to
check).

Hy) F(k[e]) has a structure of finite dimensional k-vector space.
Infact
F(kle]) = Homp_q14(R, k[e]) = Derp (R, k) = tg/a

is the relative tangent space of R over A (here the A-algebra structure of k[e| is
given by the composition A — k — k[e], see (A.1.9)(vi)).

A property weaker than Hj) satisfied by a prorepresentable functor F is the
following:

H.) «is bijective if A =k and A" = k[e].

It is interesting to observe that if F' is prorepresentable the structure of k-
vector space on F'(k[e]) can be reconstructed in a purely functorial way only using
properties Hy) and H.), and without using the prorepresentability explicitly.

Indeed it is an easy exercise to check that the homomorphism:

+: k[e] xx k[e] — k[e]
(a+be,a+be) — a+(b+b)e
induces the operation of sum on F(k[e]) as the composition

F(k[e]) x F(k[e]) = F(kle] xi k[e]) "% F(k[e])

where the first map is the inverse of . Associativity is checked using H.).
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The zero is the image of F'(k) — F'(k[e]). The multiplication by a scalar ¢ € k
is induced in F'(k[e]) by the morphism

kle] — kle]
a+be — a+ (cb)e

We can therefore state the following

(III.1.1) LEMMA-DEFINITION If F is a functor of Artin rings having prop-
erties Hy) and H.) then the set F(k[e]) has a structure of k-vector space in a
functorial way. This vector space is called the tangent space to the functor F', and
denoted tp. If ' = hp/ thentp =1tpg/a-

If f: F — G is a morphism of functors of Artin rings then the induced map
tr — tg is called the differential of f and it is denoted df. It is straightforward to
check that if F' and G satisfy Hp) and H.) then df is k-linear.

Every functor of Artin rings F' can be extended to a functor

A

F: Ay — (sets)
by letting, for every R in Ap:
[ BT n+1
F(R) = lim (R /i)
and for every ¢ : R — S:
F(p): F(R) = F(S)

to be the map induced by the maps F'(R/m%) — F(S/m%), n > 1.
An element @& € F(R) is called a formal element of F. By definition @ can

be represented as a system of elements {u, € F(R/m/y"")},>0 such that for every

n > 1 the map
F(R/my™) — F(R/mf)

induced by the projection R/m’yt" — R/m7, sends
[[11.1.2] Un — U1

4 is also called a formal deformation of ug. If f : FF — G is a morphism of functors

of Artin rings then it can be extended in an obvious way to a morphism of functors
f:F—d.

~ (IIL1.2) LEMMA Let R be in Ap. There is a 1-1 correspondence between
F(R) and the set of morphisms of functors

[111.1.3] hrn — F
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Proof
To a formal element @& € F(R) there is associated a morphism of functors [II1.1.3]
in the following way. Each u, € F(R/m%"") defines a morphism of functors
h(r/mn+1)/n — F. The compatibility conditions [III.1.2] imply that the following
diagram commutes:
hr/mmyn - = R(rjmrt1)/A

N

F

for every n. Since for each A in Ay
h(Rjmn) /A (A) = h(r/mntr)/a(A)
is a bijection for all n > 0 we may define
hr/a(A) — F(A)

as
nli_)I{.lo[h(R/m"+1)/A(A) — F(A)]

Conversely each morphism [I11.1.3] defines a formal element @ € F'(R), where u, €
F(R/m’5t") is the image of the canonical projection R — R/m’y"! via the map

heya(R/my™) = F(R/mEH)

g.e.d.

(I11.1.3) DEFINITION If R is in Ay and @ € F(R), we call (R, ) a formal

couple for F'. The differential tp;p — tF of the morphism hg,n — F defined by i
is called the characteristic map of @ (or of the formal couple (R, 4)) and is denoted
dii.
If (R, u) is such that the induced morphism [II1.1.3] is an isomorphism, then F is
prorepresentable, and we also say that F' is prorepresented by the formal couple
(R, ). In this case 4 is called a universal formal element for F', and (R, ) is a
universal formal couple.

An ordinary couple (R, u) with R in Ap defines a special case of formal couple,
in which (R, u,) = (Rnt1,Unt+1) for all n > 0. A universal formal couple seldom
exists; we will therefore need to introduce some weaker properties of a formal couple.
They are based on the following definition.

(III.1.4) DEFINITION Let f : F — G be a morphism of functors of Artin
rings. f is called smooth if for every surjection p: B — A in Ap the natural map:

[I11.1.4] F(B) — F(A) xg4) G(B)
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induced by the diagram:
F(B) — G(B)
\J 1
F(A) — G(A)

is surjective. The functor F' is called smooth if the morphism from F' to the constant
functor

G(A) = {one element} all A € ob(Ap)

is smooth; equivalently, if
F(p): F(B) —» F(A)

is surjective for every surjection p: B — A in Ap.

Note that, since every surjection in Ap factors as a finite sequence of small ex-
tensions (i.e. surjections with one-dimensional kernel), for f (or F') to be smooth it
is necessary and sufficient that the defining condition is satisfied for small extensions
in Aj.

Next Proposition states some properties of the notion of smoothness of a mor-
phism of functors of Artin rings.

(II.1.5) PROPOSITION
(i) Let f: R— S be a homomorphism in Ap. Then f is formally smooth if and
only if the morphism of functors hy : hg/px — hg/ induced by f is smooth.
(ii) If f: F — G is smooth then f is surjective, i.e. F(B) — G(B) is surjective
for every B in Ap. In particular the differential df : tp — tq is surjective.
(iii) If f : F — G is smooth, then F' is smooth if and only if G is smooth.
(iv) Iff:F — G is smooth then the induced morphism of functors f F—Gis
surjective, i.e. F(R) — G(R) is surjective for every R in Aj.
(v) IfF — G and G — H are smooth morphisms of functors then the composition
F — H is smooth.
(vij If F — G and H — G are morphisms of functors and F — G is smooth,
then F xg H — H is smooth.

Proof
(i) Let B — A be a surjection in A, and let

A « S
t T f
B < R

be a commutative diagram of homomorphisms of A-algebras. The formal smooth-
ness of f is equivalent to the existence, for each such diagram, of a morphism S — B
such that the resulting diagram

S
Tf
R

-
TNT
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is commutative. This is another way to express the condition that the map

hs/a(B) — hs/a(A) Xhy,x(a) hr/a(B)

is surjective, i.e. that Ay is smooth.
(ii) follows immediately from the definition.
(iii) Let u: B — A be a surjection in A, and consider the diagram:

F(B) — F(A)xgu G(B) — G(B
!

F(A) = G

Q=

(1)

Suppose G is smooth and let & € F(A). By the smoothness of G there exists
n € G(B) such that G(u)(n) = f(A)(€). By the smoothness of f there is ( € F(B)
which is mapped to (£,1) € F(A) xga) G(B). It follows that F(x)(¢) = { and F
is smooth.

The converse is proved similarly using the surjectivity of f(A).

(iv) Let 9 = {v,} € G(R). Since f is smooth the map

F(R/mpy) — F(k) xgu) G(R/my) = G(R/mp)

is surjective. Therefore there exists wy € F(R/m3%) such that f(R/m%)(w1) = vs.
Let’s assume that for some n > 1 there exist w; € F(R/m'S"), i = 1,...,n such
that:

F(R/mg ) (wi) = v;

and w; — w;_1 under F(R/m%") — F(R/m%,).
The surjectivity of the map:

F(R/mE) — F(R/mf) XG(rjmn) G(R/mE"™)

implies that there exists w11 € F(R/m5T") whose image is (wp, vn+1)- By induc-
tion we conclude that there exists & € F'(R) whose image under f is 4.
The proofs of (v) and (vi) are straightforward. g.e.d.

We now introduce the notions of “versality” and “semiuniversality”, which are
slightly weaker than universality.

(II1.1.6) DEFINITION Let F be a functor of Artin rings. A formal element
@ € F(R), for some R in Ay, is called versal if the morphism hgr/n — F defined
by 4 is smooth;  is called semiuniversal if it is versal and moreover the differential
tr/a — tF Is bijective.
We will correspondingly speak of a versal formal couple (respectively a semiuniversal
formal couple).
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The condition satisfied by the morphism hr,p — F in case 4 € F (R) is semiu-
niversal in some sense corresponds to the notion of formally etale morphism in A*.
It is clear from the definitions that:

2 universal = 4 semiuniversal = 4 versal

but none of the inverse implications is true (see examples (I111.4.6)). We can also
describe these properties as follows.

Assume given p : (B,€g) — (A,€4), a surjection of couples for F' (i.e. pu is
surjective), and a homomorphism ¢ : R — A such that ¢(%) = £4. Then 4 is versal
if for every such data there is a lifting ¢ : R — B of ¢ (i.e. pp) = ¢) such that

Y(a) = Ep:

B éB
Y S

R lu i 1
N\ e

A &a

4 is universal if moreover the lifting 1 is unique. @ is semiuniversal if it is versal
and moreover the lifting 1 is unique when p : kle] — k.

Let (R, @) and (S,0) be two formal couples for F. A morphism of formal
couples
f:(R,a) = (5,0)

is a morphism f : R — S in A such that F'(f)(4) = 6. We will call f an isomorphism
of formal couples if in addition f : R — S is an isomorphism.

It is obvious that with this definition the formal couples for F' and their mor-
phisms form a category containing the category Ir of couples for F' as a full sub-
category.

(II1.1.7) PROPOSITION Let F be a functor of Artin rings. Then:
(i) If (R, ) and (S, ) are universal formal couples for F' there exists a unique iso-
morphism of formal couples (R, 1) = (S, 7).
(ii) If (R, @) and (S, ?) are semiuniversal formal couples for F' there exists an iso-
morphism of formal couples (R, @) 2 (S, 0), which is not necessarily unique but the
induced isomorphism tg = tg is uniquely determined.
(iii) If (R, 4) is a semiuniversal formal couple for F and (S, v) is versal, then there
is an isomorphism, not necessarily unique:

v: R[[X,...,X,]] = S
for some r > 0, such that F(pj)(4) = 0, where j : R C R[[X41,...,X,]] is the
inclusion.

Proof
(i) By the universality of (R,4) for every n > 1 there exists a unique f, €

hr/a(S/mEth) such that f, — v, € F(S/m%™") under the isomorphism associ-
ated to @. In this way we obtain
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which is uniquely determined. Analogously we can construct a uniquely determined
g:(S,9) — (R, ). By universality the compositions

9f: (R, @) = (R, )
and

fg:(8,0) = (S,9)
are the identity.

(ii)  Using versality, and proceeding as above we can construct morphisms of
formal couples

f:(R,a) = (S,0)

and
g:(S,0) — (R, 1)

We obtain a commutative diagram:

lr/A
NN

ls/pn — tF

where the vertical arrows are the differentials of f and g, and the other arrows are
the characteristic maps di and do. From this diagram we deduce that df = (di)~1dd
and dg = (d9)~'da are uniquely determined. Since

d(gf) = (dg)(df) = identity of t5/

and
d(fg) = (df)(dg) = identity of tp/a

it follows that f and g are bijections inverse of each other.
(iii) By the versality of (R, ) we can find a morphism of formal couples
[ (R, 4) = (5,9)
We obtain a commutative diagram:
tr/A
T N\
lsjpn. — tr
where dil : tg 5 — tF is bijective because (R, @) is semiuniversal, and dd : tg/p — tp

is surjective because (S,9) is versal. Hence df : tg/n — tgr/a is surjective. This
means that f induces an inclusion

th/a Ct3/a
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Let z1,...,2, € S be elements which induce a basis of tg/R = mg/[m% + f(mg)]
and define:
¢: R[[X1,....X,]] = S

by o(X;) =z, i=1,...,7. Let j: R C R[[X},...,X,]] be the inclusion. Letting

@ = F(j)(a) € F(R[[Xy,..., X,]])
we have a commutative diagram of formal couples:

(R[[X1,..., X,]l,®) = (S,9)

TJ v
(R, @)

such that F(@j)(4) = 9. Since

¢1: R[[X1,..., X, )]/M? = S/m%

is an isomorphism (here M C R[[Xy,...,X,]] denotes the maximal ideal) ¢ is

surjective. Let
Y1 : S/m%E — R[[Xq,...,X,]]/M?

be the inverse of ¢;. We have
F(ip1)(v1) = wy
hence, by the versality of (S, ), it is possible to find a lifting of 4);:
Y :S— R[[Xy,...,X,]]

such that F'(¢)(6) = w. Since by construction

d(1pp) = dip dp = identity of tgyxy)
it follows that ¢ is an automorphism of R[[X7, ..., X,]]. In particular we deduce
that ¢ is injective. q.e.d.
The following is a useful remark.

(III.1.8) PROPOSITION If a functor of Artin rings F : A — (sets) satisfying
Hy) has a semiuniversal element and tp = (0) then F' = hy, the constant functor.

Proof
The assumptions imply that there is a smooth morphism Ay — F. Since a smooth
morphism of functors satisfying Hy) is surjective, the conclusion follows. g.e.d.

* * * * * ok
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For the rest of this Section we will only consider functors of Artin rings satis-
fying conditions Hyp) and H.).

(III.1.9) DEFINITION Let F be a functor of Artin rings. Suppose that v(F)
is a k-vector space such that for every A in Ax and for every £ € F(A) there is a
k-linear map
&v t Exp (A k) — o(F)

with the following property: ~
ker(&,) consists of the isomorphism classes of extensions (A, ¢) such that

¢ € Im[F(A) — F(A)]

Then v(F) is called an obstruction space for the functor F'.
If F has (0) as an obstruction space then it is called unobstructed.

It is an immediate consequence of the definition that an unobstructed functor
is smooth.

If F is prorepresented by the formal couple (R, @), then o(R/A) is an obstruc-
tion space for F, as it follows from the functorial characterization of o(R/A) given
in §1.3. Conversely if v(F) is an obstruction space for F', and F' is prorepresented
by the formal couple (R, #), then it follows immediately from the definition that
v(F) is a relative obstruction space for R/A.

One can show that under relatively mild conditions a functor F' has an obstruc-
tion space. We will not discuss this matter here, and we refer the interested reader
to Fantechi-Manetti(1998).

The following are some basic properties of obstruction spaces.

(I11.1.10) PROPOSITION
(i) If F has (0) as an obstruction space, then it is smooth.
(ii) Let f : F — G be a smooth morphism of functors of Artin rings. If v(G) is an
obstruction space for G then it is also an obstruction space for F.
(iii) Let f : F — G be a morphism of functors such that df is surjective and F is
smooth. Then f and G are smooth.

Proof
(i) is obvious.
(i) Let A be in Ap and & € F/(A), and let

&= f(A)(€)v : Exa(4,k) — v(G)

the map defined by f(A)(&) € G(A). If A - A = A/(t) defines an element of
ker(£,) then, since v(G) is an obstruction space for G, there is n € G(A) such that
n +— f(A)(€) under the map G(A) — G(A). From the smoothness of f it follows
that the map

F(A) = F(4) xge) G(A)



L. OETTIEST 1UVU

is surjective, hence there is é € F(A) which maps to the formal couple (£,7). It
follows that £ — ¢ under F'(A) — F(A). ~ .
Conversely, if A is such that there exists £ € F(A) such that

F(A) — F(A)

£ = ¢
then from the diagram: ~

F(A) — F(A)

LI L)

G(A) — G(A)

we see that f(A)(€) — f(A)(€) hence f(A)(€) € Im[G(A) — G(A)]. Therefore the
extension A — A defines an element of ker[f(A)(£),]. This proves that &, satisfies
the conditions of definition (III.1.9).

(iii) is left to the reader. g.e.d.

(III.1.11) COROLLARY Let F : A — (sets) be a functor of Artin rings, and
suppose that (R, ) is a versal formal couple for F. If F has a finite dimensional
obstruction space v(F') then

dimk (tR) Z dlm(R) Z dimk(tR) — dlmk[’U<F)]

Proof
From the definition of versal formal couple and from Proposition (II1.1.10) we de-

duce that v(F) is an obstruction space for hr, hence for R. The conclusion follows
from (1.3.8). g-e.d.

We refer the reader to Proposition (I11.2.4) for a result about obstruction spaces
which is often used in application.
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I11.2. THE THEOREM OF SCHLESSINGER

In this Section we will prove a well known theorem of Schlessinger which gives
necessary and sufficient conditions, easy to verify in practice, for the existence of
a (semi)universal element for a functor of Artin rings. Before stating the theorem
we want to make some introductory remarks, which can be useful in what follows.

Let’s fix A € ob(.A) throughout this section. We start with a characterization of
prorepresentable functors:

(IT1.2.1) PROPOSITION Let F : Ay — (sets) be a functor of Artin rings
satisfying condition Hy. Then F' is prorepresentable if and only if it is left exact
and has finite dimensional tangent space, i.e. it has properties Hy and Hy.

Proof
The “only if” implication is obvious (see also §III.1). So let’s assume that F satisfies
H, and Hy. Then, by Proposition (A.4.9), the category Ir of couples for F is
cofiltered and

F =lim hx
= (X,8)

Let (A;, &) € ob(Ir) and consider all the subrings of A; images of morphisms
(A;,&5) — (A, &). By the descending chain condition there is (4;,§;) such that

By construction the couples (4;, &;) form a full subcategory of I in which all maps
are surjective. Moreover the corresponding category of representable functors h 4, /5
is clearly cofinal in (Ir)°, and therefore

Therefore replacing I by this subcategory we can assume that all homomorphisms
are surjective, and therefore we have:

F= Uh’Ai/A

Moreover, since Hy holds, F'(k[e]) = ha, (k[e]) when ¢ > 0. We can discard all those
A; for which this is not true and we get again a full subcategory. Therefore

F = limhAi/A
—
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and F(k[e]) = hy4,/a(k[e]) for all 5. Then for each ¢ we can find a surjection
A[[le K] X’I’” - Az
with » = dim(F'(k[e])), and these surjections are compatible, i.e. the diagrams

A[Xy,.. . X,]] — A

N
Aj

are commutative. Define By = A[[Xq,..., X,]]/(X)? = A;/m? for all i. Then fix
v > 2, and set A;, = A;/m?Tt. All A;,’s are quotients of A[[X1,..., X,]]/(X)"+!
and form a projective system:

"'_>Aj,u_>Ai,u_>"'

Let
B,=1lmA;, =A4;, 1>0
(_

Then by construction
...By_l_l_)By_)...

form a projective system and
F =limhpg,
—

Then

A

B :=1mB5B,
F

is in A, and prorepresents F'. g.e.d.

Unfortunately this characterization of prorepresentable functors is not very
useful in practise because given homomorphisms

AI AII
N
A

in Ay we have
Spec(A’ x4 A”) = Spec(A') U Spec(A”)
Spec(A)

and this is hard to visualize. That’s why left exactness of a functor of Artin rings F
is hard to check. On the other hand, if at least one of the above homomorphisms is
surjective then Spec(A’ x 4 A”) is easier to describe. The Theorem of Schlessinger
reduces the prorepresentability to the verification of the condition of left exactness
only in cases when at least one of the above maps is surjective. An analogous
condition is given for the existence of a semiuniversal element. The result is the
following.
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(IIL.2.2) THEOREM (Schlessinger) Let F : Ay — (sets) be a functor of Artin
rings satisfying condition Hy). Let A’ — A and A" — A be homomorphisms in Ap
and let

[I11.2.1] a: F(A' x4 A"y — F(A') x p(a) F(A")

be the natural map. Then
(i) F has a semiuniversal element if and only if it satisfies the following conditions:
H) if A” — A is a small extension then the map [II1.2.1] is surjective.
H.) If A=k and A" =Xk|¢| then the map [II1.2.1] is bijective.
Hf) dfmk(tp) < o0
(ii) F has a universal element if and only if it satisfies the following additional
condition:
H) the natural map

F(A’ XA Al) — F(AI) XF(A) F(AI)

is bijective for every small extension A’ — A in Aj,.

(II1.2.3) REMARK  The meaning of the conditions of the Theorem can be
explained as follows. Consider a small extension in Ax:

0=(t) A 2 40

Assume that F' = hp/y is prorepresentable. Then two A-homomorphisms f,g: R —
A’ have the same image in Homp_,4;4(R, A) if and only if there exists a A-derivation
d : R — k (which is uniquely determined) such that

g(r) = f(r) +d(r)t
equivalently if and only if g and f differ by an element of
Derp (R, k) = tr/a
Therefore the fibres of
F(p) : Homp_q19(R, A') — Homp_414(R, A)

that are non empty are principal homogeneous spaces under the above action of
lr/A = 1F.

Assume now that F' is just a functor of Artin rings having properties Hy and
H,, so that it has tangent space tr. We can define an action of ¢tz on F(A’) by
means of the composition

-1 F(b

Titp x F(A') % F(kle] xic A) =3 F(A)
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where a1 exists by property H.) and F(b) is induced by the morphism
b: kle xx A — A’
(x+ye,a') — o +yt
The action 7 maps the fibres of F(u) into themselves. Indeed the isomorphism
v: kle xx A — A xu A
(x +ye,a') — (d +yt,a)
induces a map

Bitp x F(A) %5 (ke xi A') 28 F(A x4 AY) — F(A') x pay F(A)

which coincides with

tp x F(A) — F(A") xpeay F(A)

(v,6)  — (7(v,€),€)

In case F' is prorepresentable we have just given another description of the action of
tr on the fibres of F'(u) introduced before. In general the map 3 is neither injective
(i.e. in general the action 7 is not free on the fibres of F'(u)) nor surjective (i.e. 7
is not transitive on the fibres of F'(u)). This depends on the properties of the map

o F(A, XA Al) —)F(AI) XF(A) F(AI)

If F' is left exact then o’ is bijective, hence § is bijective, and the action of tz on
the fibres of F'(u) is free and transitive, as expected since F' is prorepresentable by
Prop. (II1.2.1).

Conversely what this analysis shows is that for 7 to be free and transitive on the
fibres of F'(11) we only need o’ bijective, i.e. the condition H, weaker than H,. H
only guarantees the transitivity of such action: the failure from prorepresentability
is therefore related to the existence of fixed points of this action. In applications this
is usually due to the existence of automorphisms of geometric objects associated to
an element £ € F(A) which don’t lift to automorphisms of objects associated to an

element ¢’ € F(u)~1(€) (see §I11.4).

As an application of this analysis we prove a Proposition which is often applied
in concrete situations.

(III.2.4) PROPOSITION Let f : F — G be a morphism of functors of Artin
rings having a semiuniversal element. Assume that
i) df is surjective
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ii) F and G have obstruction spaces v(F') and v(G) respectively
iii) there is an injective linear map

o(f) : v(F) — v(Q)
such that for each A in ob(A) and for each £ € F(A) the diagram:

EXk (A, k)
[I11.2.2] " &v N\ T
o(F) oy u(G)

is commutative, where we have denoted n = f(A)(§).
Then f is smooth.

Proof
Let ¢ : A — A be a small extension. Consider the map

[I11.2.3] F(A) = F(A) xga) G(4)

and let (£,7) € F(A) xg(a) G(A). Since 71 — n = F(A)(£) we have 7,(¢) = 0.
By the commutativity of [II1.1.2] we also have §,(¢) = 0 and therefore there exists
€ € F(A) such that £ — . Let 7' = F(A)(§) € G(A). We have

~ =~/

U] U]
N
U

Since by Theorem (II1.2.3) the functor G satisfies condition H), there is w € tg
such that 7(w,#') = 7. From the surjectivity of df it follows that there is v € tr
such that v — w. Now 7(v,&) € F(A) satisfies

7(v,€) = (£, 1)

because the action 7 is functorial (as it easily follows from its definition). This
shows that [II1.2.3] is surjective and f is smooth. g.e.d.

Note that when F' and G are prorepresentable Proposition (I11.2.4) follows
directly from Theorem (1.3.5).

Proof of Theorem (I11.2.2)

(i) Let’s assume that F' has a semiuniversal formal element (R, ). Consider
a homomorphism f : A’ — A and a small extension 7 : A” — A both in A,, and
let

(€, ¢") € F(A") xp(ay F(A")
with
F(f)(&)=F(m)(¢") = € € F(A4)
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By the versality of (R, 4) the following maps are surjective:

Homp_q1(R, A') — F(A")

[111.2.4] HomA_alg (R, A”) — HomA_alg (R, A) XF(A) F(A”)
therefore there are
g’ € Homp_q14(R, A"), ¢" € Homa_qi4(R, A")

such that A
F(g")(a)=¢
and ¢"" — (fg’,&") under the map [ITI1.2.4]. This last condition gives:

7rg// — fg', ﬁ(g”)(ﬂ) — 5”

A

and consequently F'(wg”)(4) = €. Using the morphism ¢’ x ¢ : R — A’ x4 A” we
obtain an element

C:=F(g' x g")(0) € F(A' x4 A")

which, by construction, is mapped to (§',¢") by [II1.2.1]. This proves that (R, )
satisfies condition H).
If A” =k[e] and A = k the map [I11.2.4] reduces to the bijection

[III.2.5] HOIIlA_alg (R, k[e]) —tF

In this case if (1,(2 € F(A’ x 4 k[e]) are such that a((1) = a(l2) = (¢/,¢&") choose
g € Homp_44(R, A’) as before. By the versality the map

HOHlA_alg(R, A'ka[e]) — F(A’ ka[e]) XF(k[e])HomA—alg(R7 k[e]) = F(A, ka[e])

induced by the projection A’ xy k[e] — k[e] is surjective. Hence we obtain two
morphisms:
g xgi: R— A" xy k[e]

such that A

F(g' x gi)(0) = G
i = 1,2. But then F(g;)(@) = €”, i = 1,2, hence, by the bijectivity of [IIL.2.5],
g1 = g2, i.e. (1 = (2. This proves that F' satisfies condition H¢). Condition Hy) is

satisfied because the differential {g/5 — ¢F is linear and is a bijection by definition
of semiuniversal formal couple.

Conversely, let’s assume that F satisfies conditions H), H.) and Hy). We
will find a semiuniversal formal couple (R, u) by constructing a projective system
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{Rn;Pn+1: Rnt1 — Rp}n>o of A-algebras in A, and a sequence {u, € F(Ry)}n>0
such that F(p,)(un) = tp—1, n > 1.

We take Ry = k and uy € F(k) its unique element. Let r = dimg(tr),
{e1,...,e,} a basis of tp and denoting A[[X]] = A[[X4,..., X,]] we set

Ry = A[[X])/((X)? + maA[[X]])
Since we have
R = k[e] xk - - - Xk Kk[€] (r times)
from H.) we deduce that F(R;) =tp X -+ X tp.
Let’s take u; = (e1,...,e,.) € F(R1). Note that the map induced by u;:

k" 2 ((X)/(X)*)" = Homp a1y (R1, k[e]) — tr

is the isomorphism
A A) — Y Njej
J

Let’s proceed by induction on n: assume that couples (Rg, 1), (R1,u1), - - -, (Rp—1, Un—1)
such that
Ry = A[X]]/Jn, un € F(Rp), up+ up—1

h =1,...,n — 1 have been already constructed. In order to construct (R, u,) we
consider the family Z of all ideals J C A[[X]] having the following properties:

a) Ju—1 D J D (X)Jp—1:
b) there exists u € F(A[[X]]/J) such that the map

FA[X])/J) — F(Rn-1)

sends u — Up_1.

T # 0 because J,_1 € Z. Moreover Z has a minimal element .J,,. This will be
proved if we show that Z is closed with respect to finite intersections. Let I,J € 7
and K = INJ. It is obvious that K satisfies condition a). We may assume that
I+J = J, 1 (making J larger without changing K if necessary). This implies that
the natural homomorphism

AIX]]/K — A[[X]I/T xr,_, A[X]]/J

is an isomorphism. By H ) the map
a: FA[[X]]/K) — FA[X])/T) Xpr, 1) FALX]]/JT)

is surjective, therefore there exists u € F(A[[X]]/K) whose image in F(R,_1) is
un—1; this means that K satisfies condition b) as well, hence it is in Z.
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We take R, = A[[X]]/J, and u, € F(R,) an element which is mapped to
Un—1. By induction we have constructed a formal couple (R, #). We now show that
it is a semiuniversal formal couple for F'.

As already remarked, 4 induces an isomorphism of tangent spaces tg/x = tp.
Therefore we only have to prove versality, namely that the map

’0,7,- : HomA_alg(R, AI) — HomA_alg (R, A) XF(A) F(AI)
is surjective for every small extension 7 : A’ — A.

Let (f,¢') € Homp_qq(R, A) X pay F(A"), ie. F(f)(2) = F(r)(¢'). We must
find f' € Homa_q14(R, A’) such that u,(f") = (f,&’), i.e. such that

1) wf'=f 2) F(f)a)=¢

Let’s consider the commutative diagram:

[111.2.6]
HomA_alg(R, k[G]) X HomA_alg(R, Al) ﬁ) HomA_alg(R, Al) XHom(R,A) HomA_alg (R, A’)
+
tr x F(A") Ly F(A") xp(a) F(A)

where the vertical arrows are induced by 4. The map (31 is a bijection because the
action of Homp_ 44 (R, k[€]) on the fibres of Homp_qi4(R, A’) — Homp_4i4(R, A) is
free and transitive (see Remark (I11.2.3)). From H) it follows that 3, is surjective
(Remark (III.2.3) again). Therefore if f' € Homp_q4(R, A’) satisfies 1) then, letting

0 = F(f')(a) € F(A)

there exist v € Homa_qiq(R, k[e]) = tr, f” € Homp_qi4(R, A’) such that in
diagram [II1.2.6] we have:

(v, ) — (f", f)
{ {
(v,m') — (&)

This means that ., (f")
condition 1).
Let n > 0 be such that f factors as

(f,&). Tt follows that it suffices to find f’ satisfying

R R, ™4

Then f’ exists if and only if there exists ¢ which makes the following diagram
commutative:

R, 5 A

L Pn I

Rn—l — A
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equivalently if and only if the extension

’
™

fo(Al ) 0— ker(r) —» R,xaA — R, —0
| Vfa L fn
0— ker(r) — A’ -5 A =0
is trivial.
Suppose not. This means that 7’ induces an isomorphism of tangent spaces
(see (I.1.2)(ii)), i-e. that there exists an ideal I C A[[X]] such that

Ry xa A" = A[[X]]/1

By construction
Jn—l OID (X)Jn—l

Moreover, since by H) the map
F(Rn XA AI) — F(Rn) XF(A) F(AI)

is surjective, there exists u € F (R, x4 A’) inducing u,, € F(R,), hence inducing
Un—1 € F(R,—1). It follows that I satisfies condition a) and b) and, by the mini-
mality of J,, in Z, it follows that J,, C I. But this is a contradiction because from
the fact that m is a surjection with non trivial kernel it follows that I is properly
contained in J,,. This proves that f%(A’, ) is trivial and concludes the proof of the
fact that (R, @) is semiuniversal and of part (i) of the theorem.

(ii) If F is prorepresentable then it trivially satisfies conditions H), H) and
Hy), as already remarked.

Conversely, suppose that F satisfies conditions H), H), H.) and H;). We have
just proved that F' has a semiuniversal formal couple (R, ). We will prove that
this is a universal formal couple by showing that for every A in A, the map

i(A) : Homp_a1(R, A) — F(A)

induced by 1 is bijective.
This is clearly true if A = k. We will proceed by induction on dimy(A). Let
m: A" — A be a small extension in A,. By the inductive hypothesis

Homnp_q14(R, A) — F(A)
is bijective and, by the versality, the map
Gy : Homp_q1g(R, A") = Homp_q19(R, A) X p(a) F(A") 2= F(A')
is surjective. The map S in diagram [I11.2.6] is bijective by condition H), and this
implies that 4, is bijective. g-e.d.
NOTES

1. Theorem (II1.2.2) has been published in Schlessinger(1968). It had
also appeared in Schlessinger(1964). See also Levelt(1969).

2. From Theorem (I11.2.2) it follows that if F' has a semiuniversal
element then it has a tangent space which is of finite dimension, because F
satisfies Hy), H.) and Hy). This property was not implicit in the definition.
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II1.3. DEFORMATION FUNCTORS

The local moduli functors

In this Section we associate functors of Artin rings to the deformation problems
considered in Chapter II and we verify that, under certain restrictions, they satisfy
Schlessinger’s conditions. As an application we will obtain “formal (semi)universal
deformations” of the objects considered.

If X is an algebraic scheme then for every A in A we let

Defx (A) = {deformations of X over A} /isomorphism

By the functoriality properties already observed in §II.1 this defines a functor of
Artin rings
Defx : A — (sets)

This is called the local moduli functor of X. If X = Spec(By) is affine, we will often
write Def g, instead of Defx. We can define the subfunctor

Def’y : A — (sets)

by
Def’y (A) = {locally trivial deformations of X over A}/isomorphism
called the locally trivial moduli functor of X.

(IIL.3.1) PROPOSITION (i) For any algebraic scheme X the functors Defx
and Def'y satisfy Schlessinger’s conditions Hy, H, H.. Therefore, if Def x (kle])
(resp. Def’y (k[e])) is finite dimensional, then Defx (resp. Def’y ) has a semiuniversal
element.

(ii) There is a canonical identification of k-vector spaces

[I11.3.1] Def’y (kle]) = HY(X, Tx)
In particular if X is nonsingular then
Defx (k[e]) = Def’y (k[¢]) = H' (X, Tx)
(iii) If X = Spec(DBy) is affine there is a canonical identification of k-vector spaces

[111.3.2] Def g, (k[e]) = T,
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(iv) If X is an arbitrary algebraic scheme then we have a natural identification
Def x (k[¢]) = Exk (X, Ox)
and an exact sequence:
0 — HY(X, Tx) - Defx (k[e]) = H*(X,TL) -2 H2(X,Tx)
(v) If X is a reduced algebraic scheme then there is an isomorphism

Defx (k[e]) = Exto , (%, Ox)

Proof
Obviously Defx and Def’y satisfy condition Hy. To verify the other conditions we
assume first that X = Spec(By) is affine.

Let’s prove that Defp, satisfies H. Let

AI AII
o
A

be homomorphisms in A, with A” — A a small extension. Letting A = A’ x4 A"
we have a commutative diagram with exact rows:

0 - () - A — A — 0
[111.3.3] | il }
0 — (¢ - A - A —> 0

Consider an element of
DefBO (A’) X Def , (A) DefBo (A/I)

which is represented by a pair of deformations f': A’ — B’ and f"” : A” — B" of B
such that A - B'®4/ A and A — B” ® 4» A are isomorphic deformations. Assume
that the isomorphism is given by A-isomorphisms B’ @ 4+ A &2 B = B" Q@41 A,
where A — B is a deformation. In order to check H it suffices to find a deformation
f: A — B inducing (f’, f"). Let

B=B"xpB"

endowed with the obvious homomorphism f : A — B. It is elementary to check that
there are an A’-isomorphism B® 5 A’ = B’ and an A”-isomorphism B® 5 A” = B”.

Therefore we only need to check that f is flat. Tensoring diagram [I11.3.3] with
® 1B we obtain the following diagram with exact rows:

(e®s4B — B — B — 0
I ! ’

0 — By - B” - B — 0
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where the second row is given by Lemma (A.2.8). This diagram shows that
(€) ®4 B— B

is injective: the flatness of f follows from Lemma (A.2.8).
Let’s prove that Defp, satisfies H.. Assume in the above situation that A” =
k[e] and A = k, and let f : A — B be a deformation such that a(f) = (f', f").
Then the diagram

B S BegA =D
3 { {
B A =B — By

commutes: the universal property of the fiber product implies that we have a ho-
momorphism v : B — B of deformations, hence an isomorphism by Lemma (A.2.3).
This proves that the fibres of a contain only one element, i.e. « is bijective. There-
fore Def g, satisfies condition H..
Let’s prove (i) for X arbitrary. Let’s consider a diagram in A:
AI AII
o
A

with A” — A a small extension and let A = A’ x4 A”. Consider an element

([XI], [X”D c Defx(Al) XDefX(A) Def)((A”)

Therefore we have a diagram of deformations:

X’ X”
NS S
1 X \J
Spec(A’) { Spec(A”)
N /
Spec(A)

where the morphisms f’ and f” induce isomorphisms of deformations
' X Spec(A’) SpeC(A) =x=x’ X Spec(A') Spec(A)

Consider the sheaf of A-algebras Ox' xo, Ox» on X. Then X := (|X|,Ox X0,
Oxn) is a scheme over Spec(A) (by the proof of the affine case). Reducing to the
affine case one shows that X is flat over Spec(A). Therefore X is a deformation of
X over Spec(A) inducing the pair ([X’],[X"']). This shows that the map

Defx (A) — Defx (Al) X Def x (A) Defx (A”)

is surjective, proving H for Defx. Moreover if the deformations X’ and X" are
locally trivial then so is X, and therefore H holds for the functor Def’y as well.
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Now assume that A” = k[e] and A = k. Then the previous diagram becomes

XI XII
NS
X

In this case any X — Spec(A) inducing the pair ([X’],[X"']) € Defx(4’) X Def x (A)
Defx(A”) is such that the isomorphisms

X X Spec(A) Spec(A') =X X X Spec(A) Spec(A") ~ X

induce the identity on X = X X spec(4) Spec(k). Therefore X fits into a commutative
diagram .
X
a N
Xl XII
NS
X

By the universal property of the fibered sum of schemes we then get a morphism of
deformations X — X, which is necessarily an isomorphism. This proves property
H. for Defx. The proof for Def’y is similar.

(ii) and (iii) The identifications [III.3.1] and [III.3.2] have been proved in
(IL.1.6) and (I1.4.4) respectively. The verification that they are k-linear are elemen-
tary and will be left to the reader.

(iv) If
X C X

I !
Spec(k) — Spec(k[e])

is a first order deformation of X then X C A is an extension of X by Ox because by
the flatness of X’ over Spec(k[e]) we have eOx = Ox (Lemma (A.2.8)). Conversely,
given such an extension X C X we have an exact sequence

0—)0)(1)0,\(—)0)(—)0

Oy has a natural structure of k[e]-algebra by sending, for any open U C X, € —
j(1). It follows from Lemma (A.2.8) that X is flat over Spec(kle]).

The map 7 corresponds to the inclusion Def’y (k[e]) C Defx (k[e]) in view of
[II1.3.1]. The map £ associates to a first order deformation & of X the section of Ty
defined by the restrictions {{y,} for some affine open cover {U;}. It is clear that
Im(7) = ker(¥).

We now define p. Let h € H°(X, T%) be represented, in a suitable affine open
cover U = {U; = Spec(B;)} of X, by a collection of k-extensions &; of B; by B,;.
Since h is a global section there exist isomorphisms ;5 : &ju,nu; = Eiju;nu,- These
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isomorphisms patch together to give an extension £ if and only if A € Im(¥) if and
only if we can find new isomorphisms o}; such that

[111.3.4] 0305k = Ok
on U; NU; N Uy. Such isomorphisms are of the form

g 'Ej = 0 ijt%j
where 0;; is an automorphism of the extension &;y,ny,. The collection of auto-
morphisms (6;;) corresponds, via Lemma (11.1.5), to a 1-cochain (¢;;) € C*(U, Tx);
conversely every 1l-cochain (t;;) defines a system of isomorphisms (aéj); and the
condition [II1.3.4] is satisfied if and only if (¢;;) is a 1-cocycle. Therefore we define
p(h) to be the class of the 2-cocycle (¢;; +t;x — tir,). With this definition we clearly
have ker(p) = Im(£). We leave to the reader to verify that the definition of p does
not depend on the choices made.

(v) Since we have a natural identification Defx (k[e]) = Exx (X, Ox) we con-
clude by Theorem (I.4.3). g.e.d.

(IIL.3.2) COROLLARY Assume that X is one of the following:
(i) a projective scheme.
(ii) an affine algebraic scheme with isolated singularities.
Then Def x has a semiuniversal element.

Proof
Either condition implies that H' (X, Tx) and H°(X,T%) are finite dimensional vec-
tor spaces. Therefore the conclusion follows from Theorem (II1.3.1). g.e.d.

The stronger property of being prorepresentable is not satisfied in general by
Def x. We will discuss this matter in section I11.4.

If (R, @) is a semiuniversal couple for Def x then the Krull dimension of R (i.e.
the maximum of the dimensions of the irreducible components of Spec(R)) is called
the number of moduli of X and it is denoted by p(X).

* ok k% ok k
The local Hilbert functor

Let X C Y be a closed embedding of algebraic schemes. For each A in A we
let
HY (A) = {deformations of X in Y over A}

It is immediate to verify that this defines a functor of Artin rings
HY : A — (sets)

called the local Hilbert functor of X in Y.
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(IT1.3.3) PROPOSITION  Given a closed embedding of schemes X C'Y then:
1) the local Hilbert functor satisfies conditions Hy, H., H, H.
i) the local Hilbert fi HY, satisfi ditions Hy, H, H, H
(ii) There is a natural identification

H (k[e]) = H*(X, Nx;y)

where Nx,y is the normal sheaf of X inY.

Proof
(i) Obviously HY satisfies condition Hy. Let

AI AII
o
A

be homomorphisms in A, with A” — A a small extension. Letting A = A’ x 4 A"
we have a commutative diagram with exact rows:

0 - () - A — A — 0
[111.3.5] [ ! !
0 — (¢ - A - A —> 0

Take an element of
Hy (A') x gy 4y Hx (A")

which is represented by a pair of deformations X’ C Y x Spec(4’) and X" C
Y x Spec(A”) such that

X' Xgpec(ar) Spec(A) = X" Xgpeoar) Spec(A) CY x Spec(A4)

Consider the sheaf of A-algebras Ox' Xp, Ox» on X. Then X := (|X],Ox' X0,
Ox) is a scheme over Spec(A), flat over Spec(A) (see the proof of (IT1.3.1)). There-
fore X is a deformation of X over Spec(A) inducing X’ and X”. We have a com-

mutative diagram:

X — X'
l Lo
X" — Y x Spec(A)

and the universal property of the fibered sum implies that there is a morphism
®: X — Y x Spec(4)

Pulling back ® over Spec(A”) (resp. Spec(A’)) we obtain the closed embedding
X" C Y x Spec(A”) (resp. X' C Y x Spec(A’)). Since Spec(A”) C Spec(A) is
a closed embedding defined by a square zero ideal, it follows that ® is a closed
embedding as well (details are left to the reader). Therefore ® : X C Y x Spec(A)
defines an element of HY (A) which is mapped to (X’, X"") by the map:

a: Hy(A" xa A") = By (A") X gy (a) Hx (A")
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It follows that a is surjective. Now let X C Y x Spec(A) be another element of
HY (A) which is mapped to (X', X""). Then by the universal property of the fibered
sum there is a morphism 7 : X — X which, as in the proof of (IT1.3.1), is easily
seen to be an isomorphism. Moreover the following diagram commutes:

Y x Spec(A)

N
X — X

Since the diagonal arrows are closed embeddings it follows that X = X as closed

subschemes of Y x Spec(A). This proves that « is actually a bijection and (i) follows.
(ii) has already been proved in (I1.3.3). g.e.d.

(II1.3.4) COROLLARY Let X CY be a closed embedding. If h°(X,Nx,y) <
oo, for example if X is projective, then HY is prorepresentable.

Proof
Follows from Proposition (III.3.3) and from Schlessinger’s Theorem. g.e.d.

If X C Y is a closed embedding of projective schemes then the prorepresentabil-
ity of HY follows directly from the existence of the Hilbert scheme HilbY because

H}g is prorepresented by the complete local ring (’A)Hilby7[ X1 (see §IV.4).
I T
Formal deformations

The Theorems proved in this Section can be interpreted in terms of “formal
deformations” which we now introduce.

Let Abein A. A formal deformation of X over A is a sequence of infinitesimal
deformations of X

x I,
Nn : \L \L T
Spec(k) —  Spec(A,)

where A,, = fi/ m}“, such that for all n > 1 7, induces n,_; by pullback under
the natural inclusion Spec(A4,,_1) — Spec(4,,), i.e. we have:

X I oxes Ani=X
Nn—1: J/ \l/_ﬂ-n—l
Spec(k) — Spec(An—1)

We will denote such a formal deformation by (A, {n,}). It can be also viewed as
the morphism of formal schemes 7 : & — Specf(A) where

X =(X,limOy,), 7=limm,
— —

Warning: a formal deformation (4, {n,}) is not to be confused with a defor-

mation of X over Spec(A) (see §IIL.5 for a discussion of this point).
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It follows from the definitions that a formal deformation (A, {n,}) defines an
element 7 € Def x (A) and conversely every such element is defined by some formal
deformation. Equivalently (A,7) is a formal couple for Defx.

The formal deformation (A, {n,}) will be called trivial (resp. locally trivial) if
each 7, is trivial (resp. locally trivial). For every algebraic scheme X and for each
A in A the trivial formal deformation of X over A can be identified with the formal

completion of X x Spec(A) along X = X x Spec(k), and this is in turn identified
with the product X x Specf(A).
Let A be in A and let X C Y be a closed embedding of algebraic schemes. A

formal deformation of X in Y is a sequence

Xn C Y x Spec(4,)
En:

Spec(Ay)

of infinitesimal deformations of X in Y over 4, = A/ m%ﬂ such that for alln > 1
§n induces &,—1 by pullback under the natural inclusion Spec(A,_1) — Spec(4,).
We can describe the formal deformation (A, {£,}) of X in Y as a diagram of formal

schemes _
X C Y x Specf(A)

!

Specf(A)
As in the case of the functor Def x, a formal deformation (4, {¢,,}) of X in Y defines

an element € € HY (A), i.e. a formal couple (A,£&) for HY, and conversely every
such element is defined by a formal deformation of X in Y.

(II1.3.5) DEFINITION Let X be an algebraic scheme. A formal deformation
(R, {nn}) of X is called universal (resp. semiuniversal, versal) if it defines a universal
(resp. semiuniversal, versal) formal element of Defx, i.e. if (R,7) is a universal
(resp. semiuniversal, versal) formal couple for Def x.
Let X C Y be a closed embedding of algebraic schemes. A formal deformation
(R,{&n}) of X in Y is called universal (resp. semiuniversal, versal) if (R,7n) is a
universal (resp. semiuniversal, versal) formal couple of HY.

Of course Corollaries (II1.3.2) and (II1.3.4) can be rephrased as existence The-
orems for (semi)universal formal deformations.

* % ok x ok ok
Obstruction spaces

The elementary analysis of obstructions to lift infinitesimal deformations car-
ried out in Chapter II can be interpreted as the description of obstruction spaces
for the corresponding deformation functors. More precisely we have the following

(IT1.3.6) PROPOSITION (i) Let X be a nonsingular algebraic variety. Then
H?(X,Tx) is an obstruction space for the functor Defx. If X is an arbitrary alge-
braic scheme then H%(X,Tx) is an obstruction space for the functor Def’y.
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(ii) Let X = Spec(B) be an affine algebraic scheme. Then T3 is an obstruction
space for the functor Def x = Defpg.

(iii) Let X C Y be a closed regular embedding of algebraic schemes. Then H*(X, Nx y)
is an obstruction space for the local Hilbert functor H}g.

Proof
The Proposition is just a rephrasing of (I1.1.8), (I.5.3) and (I1.3.3). g.e.d.

In particular we see that X as in (i) or (ii) is unobstructed if and only if the
functor Def x is smooth. Similarly if X C Y are as in (iii), then X is unobstructed
in YV if and only if HY is smooth.

(II1.3.7) COROLLARY (i) Let X be a nonsingular projective algebraic variety
and let (R,{n,}) be a formal semiuniversal deformation of X. Then

hY(X,Tx) > dim(R) > h' (X, Tx) — h*(X, Tx)

The first equality holds if and only if X is unobstructed
(ii)) Let X = Spec(B) be an affine algebraic scheme with isolated singularities and
let (R, {n.}) be a formal semiuniversal deformation of X. Then

dimy (Tj5) > dim(R) > dimy(T) — dimy(T5)

The first equality holds if and only if X is unobstructed.
(iii) Let X C Y be a closed regular embedding of algebraic schemes with X projec-
tive and let (R, {&,}) be a formal universal deformation of X in'Y. Then

RO(X, Nx,y) > dim(R) > RY(X, Nx;y) — h'(X, Nx/y)

The first equality holds if and only if X is unobstructed in Y.

Proof
It is an immediate consequence of (II1.3.6) and of Corollary (II1.1.11). g.e.d.

In the case of a closed embedding X C Y which is not regular Proposition
(IT1.3.6) and Corollary (II1.3.7) say nothing about the obstructions of HY. We
refer the reader to §IV.5 and §IV.6 for some information about the general case.

If X is an algebraic scheme which is neither affine nor nonsingular the previous
results give no information about obstructions of the functor Defx. The following
Proposition addresses the case of a reduced l.c.i. scheme.

(IIL.3.8) PROPOSITION Let X be a reduced lLc.i. algebraic scheme X, and
assume char(k) = 0. Then Ext%x (2%, Ox) is an obstruction space for the functor
Defx.

Proof
Let A be in A and let

‘Spec(k) —  Spec(A4)
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be a family of deformations of X over A. We need to define a k-linear map
og : Exg (A4, k) — Ext%gx (Q%, O0x)

having the properties of an obstruction map according to Definition (III.1.9). Con-
sider an element of Exy (A, k) represented by an extension

0= () =A-L A0
Consider the conormal sequence of k — A— A
[111.3.6] 0—=(#) =250, ®;A4—Qan—0

which is exact by Example (A.1.9)(v). By pulling it back to X we obtain the exact
sequence

0— OX - f*(Qépec(AﬂSpec(A)) - f*(QéPeC(A)) —0
If we combine the above sequence with the relative cotangent sequence of f we
obtain the following diagram:

0— Ox — [f*9Q — f*(Qépec(A)) —0

Spec( A )
Spec(A)|Spec(A)

4
Q%
[111.3.7] 4
Q‘lz\f'/Spec(A)
0
and from this diagram we obtain the 2-term extension
0= Ox — ‘f*(Qépec(ﬁﬂSpec(A)) - Q}Y — Q-E‘f'/spec(f‘l) —0

which defines an element

0§ (T’) € EXt%’)X (Q.g(/Spec(A)a OX)

This defines the map og. The linearity of o is a consequence of the linearity of
the map Exy(4,k) — Extl(Q4 /k, k) associating to an extension 7 the conormal
sequence [II1.3.6].

Assume that there is a deformation of X over A extending &, i.e. that we have
a diagram:
X C X
L f VF
Spec(A) C Spec(A)
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Then diagram [II1.3.7] can be completed to a diagram as follows:

0—- Ox — J?*(Qépec(g))ISpeC(A) - f*(QéPGC(A)) =0

| J I
0—» Ox — Qiﬂx — QL —0
1 \L 1 \L
(QA?/Spec(A))l-X = QX/Spec(A)
1
0 0

In this diagram the first row is the pullback of the second row and this implies that

og(n) = 0.
Conversely, assume that o¢(n) = 0. Then diagram [III1.3.7] can be completed
as follows:

*(O)1 * (Ol
0= Ox — f (QSpec(A)|Spec(A)) - f (QSPGC(A)) —0

l I !
0—» Ox — £ — QL —0
X \
QX/Spec(A)
0

for some coherent sheaf £ on X. By the construction of Theorem (I.4.3) one finds
a sheaf of A-algebras O3 and an extension of sheaves of A-algebras

0-0x -0 —0x—0

such that £ = Qi?l »- 1t remains to be shown that O can be given a structure of

sheaf of flat fl-algebras. This can be done by means of the homomorphism

* 1 . 1
f (QSpec(A)|Spec(A)) — &= Q.ﬂX

(details are left to the reader). g.e.d.

The forgetful morphism
Let X C Y be a closed embedding of algebraic schemes. The forgetful morphism

®: HY — Defx
is the morphism which associates to an infinitesimal deformation of X in Y:
X C Y x Spec(A)

£:
Spec(A)
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the deformation of X:
X — X

1 1
Spec(k) — Spec(A)

(II1.3.9) PROPOSITION Assume that X and Y are nonsingular and that X
is projective. Consider the exact sequence

Then

(i) d® = 6 : H°(X,Nx)y) — H'(X,Tx) the coboundary map coming from
[I11.3.8].

(ii) If X is unobstructed in Y and ¢ is surjective then ® is smooth, X is unob-

structed as an abstract variety and has rk(0) number of moduli.
(iii) If H'(X, Ty|x) = 0 then ® is smooth.

Proof
(i) follows from (I1.3.6).
(ii) follows from (i) and from (I11.2.4)).
(iii) follows from (II.3.7) and (IIL.2.4)). g-e.d.

Part (iii) of the Proposition often gives a very effective way of proving that a
given X C Y is unobstructed as an abstract variety. If X is a curve in IP" the
vanishing of H'(X, Tpr|x) is related with the Petri map (see example (I1.3.10)(ii)).
The following examples are further applications of this principle.

(II1.3.10) EXAMPLES (i) (Kodaira-Spencer(1958)) Let’s give a non trivial
application of (III.3.9). Let X C IP", r > 3, be a nonsingular hypersurface of
degree d > 2. Then h'(Nx/pr) = h'(Ox(d)) = 0 and therefore X is unobstructed
in IP". On the other hand from the exact sequence:

0 — Tpr(—d) = Tpr = Tprix =0
and the Euler sequence:
0— Opr — OPr(l)T+1 — T_Pr — 0

we deduce that:
KW (Tprix) = B*(Tpr(—d)) =0 ifr >4

while for » = 3 we have the exact sequence:

0 H2(Tps(—d)V + HOps(d—4)) « H(Ops(d—5))*

I
HY(Tps x)¥
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Therefore we see that

1 ifr=3andd=4;

hl T r =
(T |X) {0 otherwise

From (IT1.3.9) we therefore deduce that HY" — Defx is smooth and X is unob-
structed as an abstract variety unless 7 = 3 and d = 4 (this is precisely the case
when X is a K3 surface). An analogous result holds more generally for complete
intersections (Sernesi(1975)).

Using [I11.3.8] one computes easily that H?(Tx) # 0 if X is a nonsingular
surface of degree d > 5 in IP3: therefore the unobstructedness of X could not have
been deduced from (II1.3.7) in this case.

(ii) The previous example can be easily generalized to nonsingular hypersur-
faces of IP" X IP™, 1 <n <m,n+m > 3. Let

Pr x pm Ly pm
ip
P’n

be the projections. Consider a nonsingular hypersurface X C IP™ x IP™ of bidegree
(a,b), i.e. defined by an equation o = 0 for some o € H(O(a, b)), where

O(a,b) :== p*O(a) ® ¢*O(b)
From the exact sequence
0—O— 0(a,b) = Nx/pnxpm — 0

one deduces that
H'(Nx;prxpm) = (0)

and therefore X is unobstructed in IP™ x IP™. For any coherent sheaf F on IP™ x IP™
we use the notation

Fla,B) =F @ 0O(a, B)

Using the fact that
Tpn xPm = p*TPn @ q*TPm

and the Leray spectral sequence with respect to any one of the projections, one
easily computes that

K (Tpnxpm (e, 8)) =0

when n+m > 4,4 =1,2 and (o, 3) arbitrary. Moreover, when (n,m) = (1,2) one
finds: ,

hZ(TPIXP2) =0 31122 1

h2(Tpixp2(—a,—b)) =0 unless (a,b) = (2, 3)
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Putting all these informations together and using the exact sequence
0— TanPm(—a, —b) — Tpnxpm — TﬂJnXPm|X —0

one deduces that
hl(TanPle) =0

unless (n, m) = (1,2) and (a, b) = (2, 3) (these are precisely tha cases when X is a K3
surface). Now as before we conclude that the forgetful morphism H )ﬂ; *P" _, Def x
is smooth and X is unobstructed as an abstract variety.

% * % % % *
The local relative Hilbert functor - Stability

Given a projective morphism p : X — S of schemes and a k-rational point
s € S, consider the fibre X(s) and a closed subscheme Z C X(s). For each A in
ob(A) an infinitesimal deformation of Z in X relative to p parametrized by A is a
commutative diagram:

Z C Xa - X
pY 3 . r
Spec(4) — S
where the right square is cartesian, the left diagonal morphism is flat and its closed
fibre is Z; this means in particular that the morphism s has image {s} and therefore

that A is an Og s-algebra. Then, letting A = Og ;, we can define the local relative
Hilbert functor

H;/s : Ap — (sets)

by
HX/S( A) = {inﬁnitesimal deformations of Z in X }
Z N relative to p parametrized by A

By definition the functor Hg/ 5 comes equipped with a structural morphism
H ;}/ o — hp

We have the following generalization of Corollaries (II.3.4) and (I11.3.8):

(IT1.3.11) THEOREM Let p : X — S be a projective morphism of schemes,
s € S a k-rational point, and Z C X(s) a closed subscheme of the fibre X (s).
Denote by A = Og ;. Then

(i) the local relative Hilbert functor Hg/ 5. An — (sets) is prorepresentable and
has tangent space H°(Z,Nz;x(s))-
(ii) If Z is regularly embedded in X(s) and p is flat then H'(Z, Nz x(s)) is an

. X/S
obstruction space for H Z/ , and we have an exact sequence:

[I11.3.9] 0— H%(Z,Nz/x(s)) = tr = TsS = H(Z, Nz x(s))
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where R is the local A-algebra prorepresenting Hg/ s,

Proof
(i) The proof of (II1.3.3) can be followed almost verbatim showing that Hg/ 5 sat-
isfies conditions Hy, H, H, H and that H°(Z, Nz x(s)) is its tangent space.

(ii) The proof of (II1.3.6) can be easily adapted to this case. The exact sequence
[II1.3.9] follows from the above and from [I.3.2]. g.e.d.

(IT1.3.12) DEFINITION In the above situation Z C X is called stable with

respect to the family p if the morphism Hg/ 5 ha is smooth. Z is stable in X
if it is stable with respect to every flat projective family p : X — S of deformations
of X, with X and S algebraic.

This Definition generalizes a notion introduced and studied in Kodaira(1963)
for a compact complex submanifold of a complex manifold. Stability implies that
Z extends to every local deformation of X or, as stated in Kodaira(1963), that
“no local deformation of X makes Z disappear”. With this terminology Theorem
(IT1.3.11) implies the following:

(IT1.3.13) COROLLARY Let Z C X be a regular embedding of projective
schemes. If H'(Z,Nz,x) = (0) then Z is stable in X.

(III.3.14) EXAMPLES (i) (Kodaira(1963), Th. 5) Let Y be a projective
nonsingular variety, v C Y a nonsingular closed subvariety and # : X — Y the
blow-up of Y with center v. Let E = m~1(y) C X be the exceptional divisor;
then E = IP(N,,y) is a projective bundle over : let ¢ : E — 7 be the structure
morphism. Then Ng,x = Og(E) and it is well known that the restriction of Ng,x
to each fibre IP of ¢ is Op(—1). Therefore by the Leray spectral sequence of g we
immediately deduce that

h'(E,Ng/x) =0
for all i. From Corollary (I11.3.13) we obtain that F is a stable subvariety of X.

(ii) Let X be a projective nonsingular algebraic surface and Z C X an irre-
ducible nonsingular rational curve with self intersection v = Z2. Then Z is stable
in X if v > —1 because H'(Z, Nz/x) = 0 in this case. On the other hand if v < —2
then in general Z is not stable in X. An example is provided by the negative section
E in the rational ruled surface F,, for m > 2. In fact E2 = —m and we have seen
in Example (I1.1.1)(ii) that there is a family f : W — A! of deformations of F,,
for which [E] is an isolated point of Hilb"Y/ A" pecause E does not extend to the
other fibres W(t), t # 0, since they are isomorphic to F;, for some 0 < n < m. This

shows that 7 : Hilb™/A" — Al is not smooth at [E], i.e. E is not stable w.r. to f.

Another generalization can be obtained with no extra effort. Consider a pro-
jective scheme X and a formal deformation of X

7 : X — Specf(R)
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where R is in A and 7 is a flat projective morphism of formal schemes; let Z C X
be a closed subscheme. For each A in ob(.A) define an infinitesimal deformation of
Z in X relative to T parametrized by A as a commutative diagram:

Z C XA - X

N IR
Spec(4) = S

where the right square is cartesian, the left diagonal morphism is flat and its closed
fibre is Z. Note that Spec(A) = Specf(A) and the morphism s is defined by a
surjective homomorphism R — A, so that &4 is just an ordinary scheme projective
and flat over Spec(A). We can define the local relative Hilbert functor

HY/SpeeA(B) . 4y (sets)

as above. A result analogous to (II11.3.11) can be proved in this case as well with a

similar proof. Details of this straightforward generalization are left to the reader.

Note that the functor Héx/ Spect(R) ¢omes equipped with a structural morphism

HZX/Specf(R) ~ hg

Algebraic surfaces

In this subsection we will assume char(k) = 0. We will denote by S a projective
nonsingular connected algebraic surface. Let (R, @) be a semiuniversal deformation
of S, and denote by

w(S) := dim(R)

the number of moduli of S.

(IT1.3.15) PROPOSITION
[I11.3.10] 10(pg + 1) — 2(K?) 4+ h°(S, Ts) < u(S) < (S, Ts)

where p, = po(S) := x(Os) — 1 is the arithmetic genus of S. If h*(S,Ts) = 0 then
both inequalities are equalities.

Proof
A direct application of the Riemann-Roch formula gives

h'(S,Ts) — h*(S,Ts) = 10(p, + 1) — 2(K?) + h°(S, Ts)

By applying Corollary (II1.3.7) we obtain the conclusion. g-e.d.
The first inequality was proved by Enriques (see Enriques(1949)).
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(IIL.3.16) EXAMPLES (i) If S is a minimal ruled surface and S — C is the
ruling over a projective nonsingular curve C, then letting S(x) = IP! be the fibre
of any x € C' we have

h'(8(x), Ts|s(z)) = 0
as an immediate consequence of the exact sequence

0— TS(:E) — TS|S(:1:) — NS(a:)/S —0

Os(x)

Therefore R'p,Ts = 0 by Corollary (IV.2.6) and the Leray spectral sequence implies
that H2(S,Ts) = 0. Therefore S is unobstructed and u(S) = h'(S,Ts). This
computation for the rational ruled surfaces F,, is also done in example (A.1.10)(iii).

(ii) Assume that S is a K3-surface. Then
h%(S,Ts) = h°(S,Q%) = h'(S,05) =0
Therefore S is unobstructed. Moreover
h%(S,Ts) = h*(S,Q5) = h'(S,ws) =0

and Defg is prorepresentable (Corollary (I111.4.3)). Formula [III.3.10] gives in this
case
w(S) = ht(S,Ts) = 20

(iii) Let 7 : X — S be the blow-up of S at a point s and E = 7~1(s) the
exceptional curve. Then we have an exact sequence

0—-Tx »>7"T¢ - N, — 0
Since N, = Og(1) (use the exact sequence [II1.6.13]) we see that
(X, Tx) = h*(S, Ts)

This implies for example that non-minimal rational or ruled surfaces and blow-ups
of K3-surfaces are unobstructed.

(iv) When k-dim(S) > 1 then in general h?(S,Ts) = h°(S, Q! ® wg) # 0 and
infact such surfaces can be obstructed. We will give some examples below. If we
assume that h®(S,Ts) = 0 the estimate for u(S) given by Proposition (II1.3.15)
becomes

10(pa +1) — 2(K?) < pu(S) < B(S,Ts) = 10(pa + 1) — 2(K?) + h7(S, Q" @ ws)

and to give an upper bound for u(S) amounts to giving one for h%(S, Q! ® wg)
in terms of p,, K2,q. We refer the reader to Catanese(1988) for a more detailed
discussion of this point.
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(v) If h°(S,ws) > 0 and g > 0 then certainly
RO(S, Q' @ wg) > 0
This is because there is a bilinear pairing
HO(S, QL) x H°(S,ws) — H°(S, Q! ® wg)
which is non-degenerate on each factor. For example, if S is an abelian surface then
RO(S, Q' @ ws) = 2 = hO(S, Ts)

Formula [I11.3.10] gives
2 < u(S) <h'(S,Ts) =4

In fact the second equality holds because abelian surfaces are unobstructed. This
is a property common to all abelian varieties and can be proved along the lines of
Proposition (I11.4.4) (we refer the reader to Oort(1972)).

(vi) One should keep in mind that u(S) is defined as the number of moduli
of S in a formal sense. This is because the semiuniversal deformation (R, ) can
be non-algebraizable. For example u(S) = 20 for a K3-surface, but every algebraic
family of K3-surfaces has dimension < 19. Similarly an abelian surface has p(S) = 4
but every algebraic family of abelian surfaces has dimension < 3. In order to give
an algebraic meaning to the number of moduli one should count the maximum
dimension of a semiuniversal deformation of a pair (S,L) where L is an ample
invertible sheaf on S. See the appendix by Mumford to Chapter V of Zariski(1971).

NOTES

1. Let X be a reduced scheme and let £ : X — Spec(k[e]) be a first
order deformation of X. Then the conormal sequence of X C X

[I11.3.11] 0= Ox = Qyx = x =0

is exact and defines the element of Exty (%, Ox) which corresponds
to ¢ in the identification Defx(k[e]) = Extp, (2%, Ox) of Proposition
(IT1.3.1)(v) (see also Theorem (1.4.3)).

Given an infinitesimal deformation & : X — Spec(A) of X we have
a Kodaira-Spencer map k¢ : ta — EXté)X (Q%,0x) which associates to
a tangent vector 6 € t4 the conormal sequence of the pullback of £ to
Spec(k[e]) defined by 6.

2. Let X C Y be a regular embedding of algebraic schemes with X
reduced and Y nonsingular, Z C Oy the ideal sheaf of X, and let ® : H}g —
Def x be the forgetful morphism. The differential

d® : H°(X, Nx/v) = Homo, (I/I% Ox) — Exty  (Q, Ox)
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is the k-linear map which associates to o : Z/Z? — Ox the pushout o,(S)
where
S:0=T/T% = Qpx = Qx =0

is the conormal sequence of X C Y. This generalizes Proposition (II1.3.9).
The proof consists in considering, for a first order deformation of X in Y

X C X CY x Spec(k[e])
the induced diagram of conormal sequences

0= Z/?®0x — Qpx®0x — QU —0
! 1 I

0— Ox — Qx - QY -0
and in recognizing the second row as the pushout of the first.
3. Consider a reduced hypersurface X C IP", r > 3, of degree d > 2.
Then the conormal sequence is
0= Ox(—d) = Qprx = Qx =0

so that H'(X, Nx,pr) = 0 and we have the exact sequence

HY(X,Nx/pr) 25 Extl (Q,0x) = Ext! QL. x, Ox)

| |
H°(X,0x(d)) HY(X,Tpr|x)

where the equality on the right is because Qi;” x is locally free. Therefore

as in example (I11.3.10)(i) we see that ® : HY — Defx is smooth and X is
unobstructed if (r,d) # (3,4).

1240
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I11.4. AUTOMORPHISMS AND PROREPRESENTABILITY

The following Theorem gives a criterion on an algebraic scheme X to decide
whether Def x, resp. Def’y, has a universal element and not merely a semiuniversal
one.

(II1.4.1) THEOREM Assume that X is an algebraic scheme such that Defx
has a semiuniversal element (e.g. X affine with isolated singularities or X projec-
tive). Then the following conditions are equivalent:
(i) Defx is prorepresentable
(ii) for each small extension A’ — A in A, and for each deformation X' of X over
Spec(A’), every automorphism of the deformation X’ Xgpec(ar) Spec(A) is induced
by an automorphism of X'.

A similar statement holds for the functor Def'y.

Proof
(i) = (ii) Let X = X' Xgpec(ar) Spec(A) and let f : X — X’ be the induced
morphism; assume that 6 is an automorphism of X'. Letting A = A’ x4 A’, one
can construct two deformations Z and W of X over A as we did in the proof of
Proposition (II1.3.1) as fibered sums fitting into the two diagrams:

Z 14%
/ N / N
X' XX X'
NfO NfoooAT
X X

Since [Z], [W] € Defx (A) have the same image ([X’],[X’]) under the map
DefX(A) — DefX(A') XDefX(A) DefX(A/)

and since this map is bijective by (i), we have an isomorphism of deformations
p: 2 = W. The isomorphism p induces automorphisms ; and 63 of X’ and an
automorphism 9 of X such that:

01f0 = fib, O2f = fo
This equality implies f0 = 070, f:
xS
Tf Tf

x 5 x
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and therefore 67 0y induces 6.

(ii) = (i) Since Defx has a semiuniversal element, it suffices to show that it
satisfies condition H of Theorem (I11.2.2). Let A" — A be a small extension in A:
letting A = A’ x 4 A’ we must show that the map

« Defx(x‘i) — Defx(Al) X Def x (A) Def x (Al)

is bijective. Given deformations X’ and X’ of X over A’ inducing the deformation
X over A, we have the “fibered sum” deformation X over A, which fits into the
diagram:

=

and satisfies a([X]) = ([X'],[X']). Suppose that Z is another deformation of X over
A such that «([Z]) = ([X'],[X']). We have isomorphisms of deformations induced
by the two projections:

X' 2 Z Xgpec(a) Spec(A') = X
There remains induced an automorphism 6 of X as the composition:
x=x X Spec(A’) SpeC(A) =z X Spec(A) Spec(A) >~ X’ X Spec(A’) SpeC(A) =4

and @ fits into the commutative diagram:

xS

By (ii) we can lift 6 to an automorphism o : X' = X’. Replacing the lower left map
f by of we obtain the commutative diagram

Z
/ N
X’ X
Nof  Af
X

By the universal property of the fibered sum we obtain an isomorphism X =z
which is an isomorphism of deformations. Therefore [Z] = [X] and « is bijective.
In the case of Def’y the proof is similar. g-e.d.
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When X is a projective scheme condition (ii) of Theorem (III.4.1) can be stated
in a different way by means of the automorphism functor, which we now introduce.

Assume that X is an algebraic scheme such that Defx has a semiuniversal
couple (R, ). Consider the functor of Artin rings

Autyg : Ag — ( sets)
Autyz(A) = the group of automorphisms of the deformation X4

where X4 is the deformation induced by @ under the morphism R — A. Then we
have the following

(IT1.4.2) PROPOSITION If X is projective then Auty is prorepresented by a
complete local R-algebra S. Moreover the deformation functor Defx is prorepre-
sentable if and only if S is a formally smooth R-algebra, i.e. if it is a power series
ring over R.

Proof
Obviously Autg satisfies condition Hy because by definition the only automorphism
of the deformation Xy = X is the identity. Now consider a diagram in Ag:

AI AII
o
A

with A” — A a small extension and let A = A’ x 4 A”. There is induced a diagram

of deformations:
X

N
XA’ XAI/

NS
X4

and therefore a natural homomorphism:
[III41] OXA _>OXA’ XOXA OXAH

which is compatible with the structure of deformations. Since Ox,, = Ox; ® 1 A’
it follows from Lemma (A.2.3) that [III.4.1] is an isomorphism; in particular we
obtain an induced isomorphism

O}A = O}A, XO:YA oj\fA//
and therefore
[111.4.2] H°(0%,) = H(O%,,) Xm0y, ) H'(O%,,,)

Now note that for every A in Apg the elements of Aut;(A) are identified with the
subgroup of H%(0%,) consisting of those elements which restrict to 1 € O%. Hence,
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considering that [III.4.1] is compatible with the structure of deformations we see
that [II11.4.2] immediately implies the bijection

Autg (A) & Autg (AI) X Autg (A) Aut, (A”)

Therefore the functor Aut; also satisfies conditions H) and H.).
From Lemma (II.1.5) it follows that

[111.4.3] Autg (k[e]) & HO(X, Tx)

which has finite dimension since X is projective, and also Hy) is satisfied. This
concludes the proof of the first assertion.

Condition (ii) of Theorem (II1.4.1) can be rephrased by saying that the functor
Auty is smooth over Defx. The conclusion follows. g-e.d.

An important application of the above Proposition is the following result, which
is the scheme-theoretic version of a classical Theorem due to Kodaira-Nirenberg-
Spencer:

(I11.4.3) COROLLARY If X is a projective scheme such that h°(X, Tx)
then Defx is prorepresentable. If moreover X is nonsingular and h?(X,Tx) =
then Def x is prorepresented by a formal power series ring.

0
0

Proof
From [I11.4.3] it follows that S = R if H°(X,Tx) = (0) and in particular S is a
formally smooth R-algebra. Then the first part follows from Proposition (II1.4.2).
The last assertion is a consequence of Corollary (II1.3.7). g.e.d.

The condition H°(X,Tx) = 0 means that Aut(X) is finite and reduced. In
this case, as we saw in the proof of (II1.4.3), it follows from Proposition (II1.4.2)
that Aut; = Defx; in other words every infinitesimal deformation of X has no
non-trivial automorphisms, and in particular Def x is prorepresentable by Theorem
(IT1.4.1). We thus see that the existence of a finite and reduced automorphism
group does not prevent Defx from being prorepresentable. On the other hand the
existence of automorphisms whatsoever is a source of difficulties when one considers
local deformations (see §IIL.5).

Note also that the condition H°(X,Tx) = 0 is not necessary for the prorepre-
sentability of Defx. An example is given by X = IP", r > 1: in this case Defx is
trivially prorepresentable because X is rigid, but h®(X,Tx) = (r+1)2 -1 > 0. For
another example see the following (II1.4.4).

Corollary (II1.4.3) can be generalized in a straightforward way to conclude that
any functor of Artin rings F' classifying isomorphism classes of deformations of a
scheme with some additional structure or of any other algebro-geometric object =
(a morphism, etc.) is prorepresentable provided F' has a semiuniversal element and
= has a finite and reduced automorphism group. As an application of this remark
we have the following
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(IT1.4.4) PROPOSITION Let X be a projective irreducible and nonsingular
curve of genus 1. Then Def x is prorepresentable.

Proof
Fix a closed point p € X. For each A in A we define a deformation of the pointed
curve (X, p) to be a pair (&, 0) where

X — X

£ .
Spec(k) — Spec(A4)

is an infinitesimal deformation of X over A and o : Spec(A) — X is a section of
m such that Im(o) = {p}. We have an obvious definition of isomorphism of two
deformations of (X, p) over A, and we define a functor of Artin rings

Def x ) — (sets)

by
Def x ;) (A) = {deformations of (X, p) over A}/isomorphism

We have a morphism of functors:
o: Def(X,p) — Def x

induced by the correspondence

(€ 0)—=¢

which forgets the section o. The Proposition is a consequence of the following two
facts:

a) ¢ is an isomorphism of functors.

b) Def(x ) is prorepresentable.

To prove a) let A € ob(A) and consider an infinitesimal deformation ¢ of X
over A. The point p defines a morphism Spec(k) — X making the following diagram
commutative:

X

p .
Spec(k) —  Spec(A)

By the smoothness of X over Spec(A) there is an extension of p to a section o :
Spec(A) — X of m: this proves that Def(x ;)(A) — Defx(A) is surjective. Now let
(&,0) and (n,7) be two deformations with section of X over A, where

X — Yy

n: 4 1q
Spec(k) — Spec(A)
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and suppose that there is an isomorphism of deformations

X
e h
x 2, y
pY v
Spec(A)

Then 9o, T : Spec(A) — ) are two sections of q. We now use that fact that ) has a
structure of group scheme over Spec(A) with identity 7 (in outline this can be seen
as follows: X is a group scheme with identity p and the group structure is given by
a multiplication morphism y : X x X — X; the group operation on ) is defined by
a morphism p4 : Y X4 Y — YV which extends p and which exists because we have
a commutative diagram:

XxX 5 X c y
n !
Y xaly — Spec(A)

and ) is smooth over Spec(A)). Replacing ¥ by by ¢’ = (o)~ we obtain
an isomorphism of deformations %’ such that ¢’c = 7 and therefore v’ defines
an isomorphism of (£, o) with (n,7): this proves that Def x ,)(A) — Defx(A4) is
injective as well, and a) is proved.

In particular it follows that Def x ;) has a semiuniversal element because Def x
does. Now observe that the vector space of automorphisms of the trivial deformation
of (X,p) can be identified with the vector subspace of H°(X,Tx) = H°(X, Ox)
consisting of the derivations D : Ox — Ox vanishing at p, and this is equal to
H°(X,0x(—p)) = (0). Now the remark following Corollary (III.4.3) applies to
conclude that Def(x ;) is prorepresentable, i.e. b) holds. g.e.d.

The following Corollary computes in particular the number of moduli of pro-
jective nonsingular curves.

(IT1.4.5) COROLLARY If X is a projective nonsingular connected curve of
genus g then Def x is prorepresentable. More precisely, Def x = hr where

k ifg=20
R= K[X] ifg=1
k[[Xl, .. .,ng_g]] Ifg Z 2

Proof
X is unobstructed by Proposition (II1.3.6) and
0 ifg=0
hl(X,TX):{l ifg=1
3g—3 ifg>2
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So it remains to show that Def x is prorepresentable. In case g = 0 this is because
IP! is rigid; in case g > 2 since deg(Tx) = 2 — 2g < 0 we have H%(X,Tx) = 0 and
therefore (I11.4.3) applies. If g = 1 we use (I111.4.4). g.e.d.

(IT1.4.6) EXAMPLES

(i) (Schlessinger(1964)) Let C = Spec(By), where B = k[z,y]/(zy), be a
reducible affine plane conic. Then Def¢ is not prorepresentable although C has a
semiuniversal deformation by Corollary (II1.3.2). Infact consider the deformation
of C over kle] given by zy + € = 0 and its automorphism:

r +— T+ xe€
Yy = Y

This automorphism does not extend to an automorphism of zy-+¢ = 0 over k[t]/(t3):
if it did it would be of the form

x — z+zt+ at?
Yy y + bt?

for some a,b € k[z,y]. But this implies that bx + ay = —1 in k[z,y], which is
impossible. From Theorem (III.4.1) we deduce that Defe is not prorepresentable.

(ii) The condition of Corollary (II1.4.3) is not satisfied by the surfaces F,,
m > 0 (see Example (A.1.10)(iii)). Since h'(Tr,) = 0 = h'(TF,) we find that
Fo and Fy are rigid; in particular Defp, and Defp, are prorepresentable. On the
other hand when m > 2 Defp_ is unobstructed (since h?(Tr,) = 0) and has a
semiuniversal element but it is not prorepresentable. To see it we can argue as
follows. For simplicity let’s consider the case m = 2. By Note 1 of §A.1we can
identify F, with the hypersurface ¥y of IP' x IP? of equation

z2v —y?u=0

where (z,y; u,v,w) are bihomogeneous coordinates in /P! x IP?. The linear pencil
Y C P! x IP? x A!

of equation:

v — y2u —trxyw =0

defines a flat family ¥V — Al such that V(0) = X and V(t) 2 X for all ¢ # 0. In
fact we have an isomorphism V\V(0) — V(1) x A'\{0} over A'\{0} sending

(@, y;u, v, w; t) = (2,45 u, v, tw; 1);

on the other hand ¥y = V(1) by the isomorphism

2

(z,y;u,v,w) = (z,y; —z2uw — zyw?, zyu® + y?vw, 22u? + 2ryuw + y>w?)
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(V is essentially the family considered in Example (A.2.1)(iii) for m = 2). The
pullback
Ve = V(2?0 — y®u — exyw) C IP* x IP? x Spec(kle])

has the automorphism defined by sending w — w + eu and leaving all the other
coordinates unchanged. We leave to the reader to check that this automorphism

does not extend to the pullback of V over Spec(k[t]/(¢®)). From Theorem (I11.4.1)
we deduce that Defp, is not prorepresentable.

NOTES

1. The family F : Y — A™ ! of deformation of F,, considered in
Example (I1.1.1)(iii) can be identified with the family of deformations of
Y.m defined by the linear system:

ym) - Pl x P2 x A™!

of equation
m—1

" —yMu = Z t,x¥y™ Y w

v=1

The projection IT : V™) — A™~1 defines a proper smooth family such that
Vm(0) = %, and

VO (0, ..ty 0) 2 VIO, 1,...,0)) & S

for all ty # 0 and £k = 1,...,m — 1 (where ¥_;, := Xp, h > 0). The first
isomorphism is given by

('Ta Yysu, v, w) = (.’13, Yy u,v, tkw)
and the inverse of the second isomorphism is
(z,y;u,v,w) —

m—kw2) k, m—k

= (z,y; —(z™vw + zFy , wFy™ Ry + ymow, x™uv + 2Fy™ Fuw + 2™ FyFow + y™mw?)

Moreover the Kodaira-Spencer map
kit ToA™ ' = HY (S, Ts,,)

is an isomorphism.

2. Corollary (111.4.3) can be also proved directly without using Propo-
sition (II1.4.2). Just observe that if H®(X,Tx) = 0 then using Lemma
(I1.1.5) one shows by induction that every infinitesimal deformation of X
has no automorphisms.
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I11.5. FORMAL VERSUS ALGEBRAIC DEFORMATIONS

We have already mentioned (see Examples (II.1.4) and (II.1.12)(ii)) that in-
finitesimal deformations do not explain faithfully some of the phenomena which can
occur when one considers deformations parametrized by algebraic schemes or by the
spectrum of an arbitrary noetherian, or even e.f.t., local ring. In this Section we
will make such statements precise and we will explain the main reasons why the
functor Defx : A* — (sets) considered in the Introduction is not representable in
general even when X is a projective scheme. We will start from a few definitions
and some terminology.

Let X be a projective scheme and consider a flat family of deformations of X
parametrized by an affine scheme S = Spec(B), with B in (k-algebras)

x Lox
n: i Ay
Spec(k) =+ S

namely a cartesian diagram with 7 projective and flat. The deformation 7 is called
algebraic if B is a k-algebra of finite type. If B is in A* then 7 is called a local
deformation of X. If B is in A we obtain an infinitesimal deformation of X which
is simultaneously local and algebraic. We will identify the deformation n with the
couple (S,n) or (B,n) and we will also denote it by (S, s,n) or (B, s,n).

Let (S,s,n) be a deformation of X. Let 7, be the infinitesimal deformation
induced by pulling back n under the natural closed embedding

Spec(Os,/m™ 1) — S

We have Og ;/m"t! = @S,s/mnﬂ and therefore it follows that ((’A)S,s, {NMn}n>0) is
a formal deformation of X. It will be called the formal deformation defined by (or
associated to) 1.

(S, s,m) is called formally trivial (resp. formally locally trivial) if the formal
deformation defined by 7 is trivial (resp. locally trivial).

(IIL.5.1) DEFINITION A deformation (S, s,n) of X is called formally uni-
versal (resp. formally semiuniversal, formally versal) if the formal deformation
(Os.s, {Nn}n>0) associated to n defines a universal (resp. semiuniversal, versal) for-
mal element of Defx. A formally versal algebraic deformation of X is also called
with general moduli.
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A flat family m : X — S is called formally universal (resp. formally semiuni-
versal, formally versal, with general moduli) at a k-rational point s € S if

X (s) C X
n: 1 lm
Spec(k) =+ S

is a formally universal, (resp. formally semiuniversal, formally versal, with general
moduli) deformation of X (s).

The expression “general moduli” goes back to the classical geometers. Infor-
mally, it means that the family parametrizes all possible “sufficiently small” de-
formations of X(s); when the family 7 parametrizes varieties for which there is a
moduli space, or just a moduli stack (whatever this means for the reader since we
have not introduced these notions), = with general moduli means that the functo-
rial morphism from S to the moduli space or stack is open at s. An expression like
“consider a variety X with general moduli” is used to mean: “choose X as a fibre
in a family with general moduli”.

The early literature on deformation theory of complex analytic manifolds (in
the approach of Kodaira and Spencer) considered only families parametrized by
complex analytic manifolds. In that context the expression “effectively parametrized”
was used to mean what we call here semiuniversal, and the word “complete” was
used to mean versal, in the category of germs of complex analytic manifolds.

The following result is very useful in practise:

(II1.5.2) PROPOSITION Let (S, s,n) be a deformation of X. Then:
(i) If n is formally versal (resp. formally semiuniversal or formally universal) then
the Kodaira-Spencer map

Kr,s : TsS — Def x (k[e])

is surjective (resp. an isomorphism).

(ii) If S is nonsingular at s and the Kodaira-Spencer map Kk, s is surjective (resp.
an isomorphism) then 7 is formally versal (resp. formally semiuniversal) and X is
unobstructed, i.e. the functor Def x is smooth.

Proof
(i) is obvious in view of the definitions of versality and semiuniversality of a formal
couple applied to h@S L Defx.

(ii) follows from Proposition (II1.1.6)(iii) applied to f : he, , — Defx. g.e.d.

The Proposition applies in particular to an algebraic deformation, giving a cri-
terion for it to have general moduli. A classical result (see Kodaira-Spencer(1958b))
states the completeness of a complex analytic family of compact complex manifolds
if the map K , is surjective. Part (ii) of Proposition (IIL.5.2) is the algebraic version
of this result. It turns out to be very useful because it reduces the verification of
formal versality to the computation of the Kodaira-Spencer map.
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(ITI1.5.3) DEFINITION A formal deformation (A, {n,}) of X is called alge-
braizable if there exists an algebraic deformation (S,s,€) of X such that there
exists an isomorphism Og , = A sending n, to &, for alln (i.e. (A, {n,}) is isomor-
phic to the formal deformation defined by £). The deformation (S, s, §) is called an
algebraization of (A, {n,}).

An algebraization, if it exists, is obviously not unique, because replacing S
by any etale neighborhood of s and pulling back £ we obtain another algebraic
deformation of X having the same associated formal deformation. It goes without
saying that an algebraization of a formal versal (resp. semiuniversal, universal)
deformation is formally versal (resp. formally semiuniversal, formally universal).

The existence of algebraizations is a highly non trivial problem. It can be
considered as the counterpart of the convergence step in the construction of local
families of deformations in the Kodaira-Spencer theory of deformations of compact
complex manifolds. But the algebraic case presents some characteristic features
which make the two theories radically different in methods and in results. The
main results on this matter are due to M. Artin who gave criteria of algebraization
which apply to very general functors (see Artin(1969a), Artin(1969b), Artin(1976)).

We will not discuss Artin’s Algebraization Theorem here. Our concern will only
be to derive the existence of formally universal algebraic deformations in specific
geometrical situations. The following is a Theorem of such type which applies only
in certain special cases, but it is sufficient for several applications.

(II1.5.4) THEOREM Let X be a projective scheme such that
H°(X, Tx) = (0)

and let (A, {n,}) be a formal universal deformation of X (it exists because Def x is
prorepresentable by Corollary (111.4.3)). Assume that there is an algebraic defor-
mation (S, s,&) of X having general moduli. Then (A, {n,}) is algebraizable.

Proof
Since Defx = hz and (S, s,€) has general moduli we have an isomorphism (’A)S,s =
A[[Ty,...,Ty]] for some Ty,...,T; € mg,. Let

B=0s,/(Ty,...,Ts)

Then B = A. Now let U C S be an open set containing s where Ti,..., T} are
regular and let W = V(T4,...,Tx) C U. Then the restriction of £ to W has the
required properties. g.e.d.

Note that we used H°(X, Tx) = (0) only to ensure the existence of (4, {n,}).
The existence of the algebraic deformation (S, s,&) is a strong condition. In fact
to give conditions which imply its existence is the difficult and delicate part of the
algebraization theorem of M. Artin. On the other hand in several concrete cases the
existence of (S, s,£) is easy to prove and Theorem (III.5.4) addresses those cases.

* * * * * ok
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The notions of triviality and of formal triviality of an algebraic deformation
are related in a quite subtle way, as shown by example (II.1.12)(ii). Such example
is a special case of an important phenomenon, called isotriviality.

(IIL.5.5) DEFINITION Let X — S be a flat family of schemes, and let s € S
be a k-rational point. 7 is called isotrivial at s if there is an etale neighborhood
f:(8',s") = (S,s) such that the pullback wg: : 8" xg X — S’ of w is trivial. « is
called isotrivial if it is isotrivial at every k-rational point of S.

Every trivial family is isotrivial; the family of example (I1.1.12)(ii) is isotrivial
(why?) but is not trivial.

(IT1.5.6) PROPOSITION Let w : X — S be a flat family of algebraic schemes,
and let s € S be a closed point. If 7 is isotrivial at s then the formal deformation
of X(s) associated to m is trivial.

Proof
It follows immediately from the already remarked fact that an etale base change
has no effect on associated formal deformations. q-e.d.

If a scheme X has an isotrivial local deformation n which is non-trivial then
the local moduli functor
Defx : A* — (sets)

considered in the introduction cannot be representable, i.e. the local deformation
v considered there cannot exist. Infact, since 7 is non-trivial it must be pulled
back from v by a non-constant morphism g : Spec(A) — Spec(O). On the other
hand, since 7 is isotrivial its pullback to Spec([l) is trivial and is therefore obtained
by pulling back v in two different ways: by the constant morphism and by the
composition

Spec(A) £+ Spec(4) L O

which is non-constant because ¢ is faithfully flat hence surjective, and this contra-
dicts the universality of v.

These remarks explain why we cannot expect to be able to construct families
representing functors defined on A* or on (k-algebras) or on (schemes), which clas-
sify isomorphism classes of schemes having non-trivial isotrivial deformations; and
the existence of such deformations is closely related to the existence of non-trivial
automorphisms of such schemes. A similar remark applies to deformations of other
objects, for example vector bundles, which have not been considered here. Here
it is interesting to quote a letter of Grothendieck to Serre of november 1959 (see
Colmez-Serre(2001), p. 94):

chaque fois que ... une variété de modules ... ne peut exister, malgré de bonnes
hypothéses de platitude, propreté, et non singularité eventuellement, la raison en
est seulement D'existence d’automorphismes de la structure.

This discussion suggests that while the consideration of isomorphism classes of
deformations is not a drawback when one is studying infinitesimal deformations, it
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becomes inadequate for the classification of algebraic deformations and for global
moduli problems. In other words, because of the presence of non trivial automor-
phisms we cannot in general expect to find a scheme structure on the set M of
isomorphism classes of objects we want to classify in such a way that it reflects
faithfully the functorial properties of families. For example, in the case of projec-
tive nonsingular curves of genus 0 one should have M = Spec(k) and the universal
family should be IP! — Spec(k) because there is only one isomorphism class of such
curves; but the families F,, — IP' (Example (A.1.10)(iii)) cannot be pulled back
from it.

That’s why it would be more natural, instead of taking isomorphism classes of
deformations, to consider all families together and analize them and their isomor-
phisms. This will result in a more general structure, called a stack, which contains
all the informations about families and deformations of the objects of the set M we
want to classify.

NOTES

1. We will not say anything about stacks here. We refer to Deligne-
Mumford(1969), Vistoli(1989) and Laumon-Moret Bailly(2000) for details.

2. The notion of isotriviality has been introduced for the first time
in Serre(1958). The inverse implication of Proposition (IIL.5.6) is false in
general: there are families which are formally trivial but not isotrivial, as
shown by example (II.1.4). But if 7 is projective then the converse is also
true. This follows from Grothendieck’s fundamental Theorems and from
Artin’s algebraization Theorem.
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I111.6. MORPHISMS

In this Section we study deformations of a morphism between algebraic schemes.
In the analytic case the corresponding theory has been developed in Horikawa(1973),
Horikawa(1974), and Horikawa(1976). More recent related work is in Ran(1989).

We will consider deformations of a morphism which keep the target fixed. This
case is already sufficient to cover many important cases. For the general case we
refer the reader to the above quoted papers of Horikawa and Ran.

(IT1.6.1) DEFINITION Let g : X — Y be a morphism of algebraic schemes.
A commutative diagram

X <, Y xS

[111.6.1] T\ Vg
S

where S = Spec(A) with A in ob(A) (resp. in ob(A*)), 7 is flat and the pullback
of [II1.6.1] over the closed point o € S is

X N Y
N
Spec(k)

is called an infinitesimal (resp. local) family of deformations of g with target Y
parametrized by A (shortly a deformation of g over A with target Y). If we replace
S by a pointed scheme (S, 0) we will call [II1.6.1] a family of deformations of g with
target Y.

We have a well defined functor of Artin rings
Defy/y : A — (sets)

Def,/y (A) = {deformations of g over A with target Y}

which will be called the functor of infinitesimal deformations of g with target Y.
Note that this definition differs from Horikawa’s and Ran’s because they con-
sider deformations modulo isomorphism.
If g is a closed embedding then Defy/y = HY. There is an obvious morphism
of functors of Artin rings (the “forgetful morphism”)

® : Def,/y — Defx
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which, for each A in ob(A), associates to a family [II1.6.1] the isomorphism class of
the family

X — X
I11.6.2] ! !
Spec(k) — Spec(A4)

The main result about Def,/y is the following:

(IT11.6.2) THEOREM Let g : X — Y be a morphism between projective alge-
braic schemes. Let 7 : & — Specf(R) be a semiuniversal formal deformation of X
and I'y C X xY the graph of g. Then there is a natural identification of functors:

Defg/y _ HI/‘XO'XY/Specf(R)

In particular Def,y is prorepresentable.

Proof
Given a deformation [IIL.6.1] of g with A in ob(.A) consider the associated deforma-
tion [IT1.6.2] of X. By the formal semiuniversality of 7 there is an induced morphism
Spec(A) — Specf(R) such that

X = Xp=2X XSpecf(R) SpGC(A)

1
Spec(A)

and the graph

I' CX xY xSpec(A) = & XY Xgpect(r) SPeC(A)

of G is an element of Hp. x¥/Spect(R)( 4) " Conversely, given a morphism Spec(A) —

Specf(R) for some A in Sb(.A), and an element

I C & XY Xgpect(r) Spec(A) = &a x Y x Spec(A)

of Hlix; xY/Spect(R) (A), we obtain a deformation of g over A by the projection G4 :
I' - Y x Spec(A), because I' & &4 is a deformation of X, and T is identified with
the graph of G 4. q-e.d.

When the functor Def /vy is smooth we call g unobstructed. The local properties
of Def,/y can now be easily deduced.

(I11.6.3) COROLLARY Let g : X — Y be a morphism between projective
algebraic schemes, with X reduced and Y nonsingular. Then there is an exact
sequence:

[111.6.3]
0 — H(X, g*Ty) — Def /v (k[e]) 25 Exty (2, Ox) 2 HY(X, g*Ty)
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and if H'(X, g*Ty) = (0) the forgetful morphism ® : Defy,y — Defx is smooth.

Proof
As in the proof of Proposition (I1.3.8) one shows that I'y; C X x Y is a regular
embedding and that H%(T',, Nr_/xxy) = H°(X, g*Ty). Therefore, after identifying

Det,/y with the relative local Hilbert functor Hy AxY/Spect(R) o we did in the proof
of the Theorem, the exact sequence [I11.6.3] is Just the reformulation in this case of
[I11.3.5]; moreover if H'(X, g*Ty) = (0) then the structural morphism

HX XY /Specf(R)

o

—)hR

is smooth and therefore the forgetful morphism, which equals the composition

HX XY /Specf(R)

Defg/y = — hR — DefX

is also smooth. g-e.d.

To a morphism g : X — Y as above there is associated an exact sequence of
coherent sheaves on X

[I11.6.4] 0— Tx/y = Tx % g*Ty — Ny — 0

which defines the sheaf N, called the normal sheaf of g. The morphism g is called
nondegenerate when T,y = 0; if g is smooth then N, = 0. In these two special
cases the information we get is more precise. We start with the nondegenerate case.

(IT1.6.4) PROPOSITION Let g : X — Y be a morphism between projective
nonsingular algebraic schemes. Assume that g is nondegenerate. Then we have an
exact sequence

(0) » H°(X,Tx) — Det, vy (kle]) > H°(X, Ny) — (0)

and H'(X, N,) is an obstruction space for Def,/y. In particular if HY(X, N,) = (0)
then g is unobstructed.
Moreover we have a commutative diagram

[I11.6.5]
(0) = HO((X,g*Ty) = Defyyy (k[e]) = Def x (k[¢])
} Ip |
(0) — % —  H°(X,N,) LN HY(X,Tx) —

— HY(X,g*Ty) — H'(X,N,) - H?(X,Tx)

where the second row is the exact sequence induced by [II1.6.4] and ¢ induces the
obstruction map of ® : Def,,y — Defx.
If in particular H°(X,Tx) = (0) then

Def, v (kle]) = H*(X, Ny)
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Proof
Everything follows easily from Corollary (II1.6.3) except for the assertion about

P

obstructions. Let S in ob(A) be the local ring which prorepresents Def,/y and R
as in the statement of (II1.6.2). We have a commutative diagram with exact rows:

tr -  o(S/R) — oS) —= olR)
| N 1 p N
HY(Tx) — H(¢g*Ty) — H(N,) — H*(Tx)

The first row is [1.3.2], the second row is [II1.6.5] and p; is induced by the diagram.
From the commutativity it follows that p; is injective. g.e.d.
In the smooth case we have:

(IT1.6.5) PROPOSITION Let g : X — Y be a morphism between projective
nonsingular algebraic schemes. Assume that g is smooth. Then we have an exact
sequence

(0) » H°(X,Tx) — Def, vy (kle]) 2> HY(X, Tx,y) — (0)

and H?(X,Tx,y) is an obstruction space for Defy/y .
Moreover we have a commutative diagram

[I11.6.6]
(0) = HO((X,g*Ty) — Def,/y (k[€]) 42, Def x (k|e])
J Ip |
(0) » BT HY(X, Txyy) LN HY(X,Tx) —

— HY(X,g*Ty) — H*(X,Tx;y) > H*(X, Tx)

where the second row is the exact sequence induced by [II1.6.4] and § induces the
obstruction map of ® : Def,,y — Defx.
If in particular H°(X,Tx) = (0) then

Def,,y (k[e]) = H' (X, Tx/v)

Proof
Left to the reader (it is similar to the proof of (I111.6.4)). g.e.d.

x % % % k%
Morphisms from a nonsingular curve
The previous results apply in particular to a morphism
p:C—=Y

where (' and Y are projective and nonsingular, C is a curve, and ¢ is not constant
on each component of C. Consider the exact sequence

0—>Tcﬂ><p*Ty—>N¢—>0
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The vanishing divisor
Z = D() (d(p)

of dy is called the ramification divisor of ¢; the index of ramification of p at p € C
is the coeflicient of p in Z. ¢ is unramified if and only if Z7 = 0. The homomorphism
dy extends to a homomorphism

Tc(Z) = o™ Ty
whose cokernel we denote by J\_ﬂp; it is locally free. We have
N, o =N, <p/ Hy

where H, C N, is the torsion subsheaf; it is supported on Z. The following
commutative and exact diagram summarizes the situation:

0
1
H‘P
\J
[111.6.7] 0> To B Ty - N, —0
! | b
0= Tc(Z) — Iy — N, —0
\J
0
We obtain:
[111.6.8] X(Ny) = x(¢*Ty) + 39 — 3

Assume that C' is connected of genus g, that Y is a projective connected non-
singular curve of genus v, and that ¢ has degree d; then

N,=0, N,=H,=0y
where O(Z) = ¢*(Ty) ® K¢, so that
X(Ny) = h(N,,) = deg(Z) = 2[g — 1+ (1 = 7)d]

and ¢ is unobstructed because h'(N,) = 0.
Note that ¢ is rigid if g > 2 and Z = 0, i.e. if it is unramified.

* *

*

% * %
Morphisms from a curve to a surface

Assume now that ¢ : C — S is a non-constant morphism from an irreducible
projective nonsingular curve C' of genus g to a projective nonsingular surface S and
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that ¢ is birational onto its image; let I' = ¢(C) C S. Then we have a commutative
and exact diagram

0
\:
0— T¢ o, p*Ts — N, — 0
\: | ]
0— QO*TF — (P*TS — (P*NF/S

Since ¢*Nr,s is invertible the homomorphism j factors through Nq, and the above
diagram gives rise to the following:

0
4 _

0— TC(Z) — QO*TS — th —0
1 I !

0— QD*TI‘

-  *Ts — (p*NI"/S —0

where Z is the ramification divisor of ¢ and Ny g = ker[Nr/s — T}] is the equi-
singular normal sheaf (see also §IV.7). This diagram implies the following facts:

Tc(Z) 2 ¢*Tr, N, =" f/s, H, = coker[Te — ¢*(TT)] =: Ny

where we have denoted by ¢ : C' — I' the morphism induced by ¢. In particular
@*Tr and ¢* N7, /s are invertible and

QO*[TC(Z)]gTF(g(p*OC; W*ngNf‘/S(@@*OC

On I'" we have a natural exact sequence:

0—=>0r = p,0c—t—0

where t is a torsion sheaf supported on the singular locus of I'. Since Np,g is
invertible the homomorphism

Nrys = Nrys ® .Oc¢
is injective and it follows that we have an exact sequence

sV

Nf*/s 029 SO*OC

0— Nf/s —

— N ,g®t —0
[111.6.9]

This sequence implies in particular:

hO(Ny,g) < hO(Np) < hO(Ny)

hl(Nll“/s) Zhl(Nso) :hl(N<p)
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(IT1.6.6) LEMMA If the singularities of I' are nodes and ordinary cusps then
NIC/S ® t = 0, equivalently

1I“/S = s Nso
Proof

The exact sequence [II1.6.9] can be embedded in the following exact and commuta-
tive diagram:

0 0
i 3

0= Npg — PuN, — Nig®t —0

la ld

0— NF/S — NP/S®QO*OC — NF/S®t —0
\ \ le

0 T} % Tleeo0c — Tret —0
! | !
0 0 0

The arrow a is injective because it is a nonzero homomorphism of torsion free
rank one sheaves. Because of the assumptions made on the singularities, at each
singular point p € I we have t, = ¢.Ocp/Orp = k. Therefore the arrow c is an
isomorphism because Np/s ® t =t = TE ®t. Thus d = 0. The arrow b is injective
because at each singular point p € I' we have

1 _ w1\~ ) K2 if pis anode
(T} © 6.00), = o' (TE,) = { D2 mod

(proved by easy local computation) while
Tl o k if pis a node
Tp k? if pis a cusp
The conclusion now follows from the “Snake Lemma”. g-e.d.

It is possible to show that conversely if N7, /s ® t = 0 then the singularities of

I’ are nodes and ordinary cusps (see Greuel(1984)).
If Y = IP? then, letting L = ¢*O(1), d = deg(L), from the Euler sequence
restricted to C':
0= 0c— L = p*Tp> =0

we deduce x(¢*Tp2) = 3d + 2 — 2g and from [II1.6.8]
[111.6.10] X(Ny) =3d+g—1

By Proposition (I11.6.4) the unobstructedness of ¢ is related to the vanishing of
H'(C,N,). From [II1.6.7] we see that

c1(Ny) = c1(¢*Tp2) — deg(Te) = 3d + 29 — 2
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and that B
hl(Ncp) = hl(Ncp)
But

deg(N,) = c1(N,) — deg(Z2)
and therefore N, is a non-special line bundle whenever deg(Z) < 3d. We can
therefore state the following result:

(II1.6.7) THEOREM Let ¢ : C — IP? be a non constant morphism from an
irreducible projective nonsingular curve C of genus g. Let d = deg(¢*O(1)), and
let Z be the ramification divisor of ¢. Then the formal semiuniversal deformation
of ¢ has dimension > 3d+g—1+h°(C,T¢). If deg(Z) < 3d then ¢ is unobstructed
and the above inequality is an equality.

% % % * % *
Deformations of a blow-up

Let Y be a projective nonsingular variety, v C Y a nonsingular closed subvari-
ety of pure codimension > 2 and 7 : X — Y the blow-up of Y with center . Let
E = n71(y) C X be the exceptional divisor. We have Tx/y =0 because Tx,y is a
subsheaf of the locally free T'x and is supported on E; therefore 7 is nondegenerate.
Since m,0x = Oy and Rin,Ox = 0 for 4 > 1, from the Leray spectral sequence we
deduce that

[I17.6.11] H{(X,n*Ty) = H\(Y, (1.7*Ox) ® Ty) = H'(Y, Ty), i>0
Also recall that '

all 7 (see Example (II1.3.14)(i)).
Let ¢ := mg : E — v; then we have an exact and commutative diagram of
locally free sheaves on E:

0 0
1 1
0— Tg)y — Tg - q'T, — 0
|| ! !
[111.6.12] 0— Tg)y — Txig — ¢Ty — Ny —0
) ! ||
0 — Ng/x — ¢Ny,y — Nz —0
1 1
0 0

In particular we see that we have an exact sequence of locally free sheaves on E:

[111.6.13] 0— Ng/x =+ q"Nyjy — Ny =0
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The verification of these facts is straightforward and it is left to the reader.

(I11.6.8) PROPOSITION In the above situation, assume that HY(Y,Ty) =
(0), i.e. that Y is rigid. Then
(i) The forgetful morphism @ : Def, )y — Defx is smooth.
(ii) There is a natural morphism of functors

U :HY — Def,y

which is an isomorphism if H°(X,Tx) = (0).
In particular, if vy is obstructed in Y then X is obstructed as an abstract variety.

Proof
(i) follows from Corollary (II1.6.3) and from [I11.6.13].
(ii) We have a well defined morphism of functors

U : HY — Def,y
which associates to a family of deformations

YA C Y x Spec(A)

1
Spec(A)

of v in Y over A the blow-up
ma:Xa = Bly,(Y x Spec(A)) = Y x Spec(A)

of Y x Spec(A) along ya. Assume that H%(X,Tx) = (0): then the differential of ¥
is the composition

av : H0(77N7/Y) = HO(E7q* ’y/Y) — HO(X7 N7r)

where the first map is the obvious isomorphism and the second one comes from the
exact sequence [I11.6.13]; in a similar way one describes the obstruction map of ¥
as the one induced by the composition

H'(y,N.

'y/Y) = Hl(Ea q*Nry/Y) - Hl(Xa N7r)

deduced from the exact sequence [II1.6.13]. These facts can be easily verified by
chasing diagram [II1.6.12]. From our assumptions we see that these maps are both
bijective, and the conclusion follows.

The last assertion is an obvious consequence of the fact that the composition
PV : H%’ — Def x is smooth. g.e.d.

Observe that it follows from (ii) that the complete local ring prorepresenting

H 3{ is a power series ring over the ring R prorepresenting Def x.

As a consequence we get:
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(I1.6.9) COROLLARY Let m : X — IP? be the blow-up with center a non-
singular irreducible and nondegenerate curve v C IP® which is obstructed. Then X
is obstructed.

Note that H%(X, Tx) = (0) because v is nondegenerate.

(II1.6.10) EXAMPLE  Let 7 : X = Bl g 0JJP? = IP? be the blow-up of IP”
with center the point [1,0,0]. From the exact sequence [I11.6.13] we deduce that
N, = Og(1). Therefore

RO(X,Ny) =2, A (X,Np)=0,i>1

Moreover h®(X,Tx) = h®(IP?, Tp> @ L1 o,0)) = 6 as can be easily checked using the
Euler sequence. Therefore from the exact sequence [II1.6.5] we see that h' (X, Tx) =
0, i.e. X is rigid. It also follows from Proposition (III.6.4) that Def, p2 is smooth
of dimension 8.

NOTES

1. Let Y be a scheme, ® : X — Y x S a family of morphisms into Y
parametrized by an algebraic scheme S, with X — S projective. Assume
that for a k-rational point o € S the fibre @, : X(0) — Y is a closed em-
bedding. Then there is an open neighborhood U C S of o such that the
restriction ®(U) : X(U) — Y x U is a family of closed subschemes of Y.
Suppose moreover that ®, an isomorphism. Then there is an open neigh-
borhood U C S of o such that the restriction ®(U) : X(U) - Y x U is an
isomorphism. (use Note 2 of §IV.2).

2. By applying Corollary (I11.6.9) to the curve v C IP? of degree 14
and genus 24 described in §IV.6 we obtain an example of obstructed pro-
jective variety of dimension 3. This has been the first published example
of an obstructed projective nonsingular variety (see Mumford(1962)). The
analysis of deformations of blow-ups given here is due to Kodaira (see Ko-
daira(1963)).

3. The analysis of morphisms from a nonsingular curve is taken from
Arbarello-Cornalba(1981). For Lemma (II1.6.6) see also Tannenbaum(1984).



