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Chapter IV. The Hilbert schemes and the (Quot schemes

In this Chapter we turn our attention to global deformations. The
Hilbert schemes and the Quot schemes are important examples of parame-
ter schemes for global families of deformations of algebro-geometric objects.
They are used to describe and classify “extrinsic” deformations, i.e. defor-
mations of objects within a given ambient space (e.g. closed subschemes of
a given scheme). Their study is preliminary to the construction of “moduli
spaces”. Moreover they provide some of the most typical examples of con-
structions in algebraic geometry by the functorial approach. We will study
some of their properties and consider a few applications.
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IV.1. CASTELNUOVO-MUMFORD REGULARITY

In this Section we introduce the notion of m-regularity, also called Castelnuovo-
Mumford regularity, and we prove its main properties. They will be needed for the
construction of the Hilbert schemes and of the Quot schemes.

Let m € Z. A coherent sheaf F on IP" is m-regular if

H'(F(m 1)) = (0)

for all 4 > 1.

Because of Serre’s vanishing theorem, every coherent sheaf F on IP" is m-
regular for some m € Z.

The definition of m-regularity makes sense for a coherent sheaf on any projec-
tive scheme X endowed with a very ample line bundle O(1). For semplicity we will
consider the case X = IP" only, leaving to the reader the obvious modifications of
the statements and of the proofs in the general case.

(IV.1.1) PROPOSITION If F is m-regular then
(i) the natural map
H°(F(k)) @ H*(O(1)) = HY(F(k + 1))

is surjective for all k > m.

(ii) H(F(k)) = (0) for all i > 1 and k > m — i; in particular F is n-regular for all
n>m.

(iii) F(m), and therefore also F (k) for all k > m, is generated by its global sections.

Proof
We prove (i) and (ii) by induction on 7. If » = 0 there is nothing to prove. Assume
r > 1 and let H be a hyperplane not containing any point of Ass(F); it exists
because Ass(F) is a finite set. Tensoring by F (k) the exact sequence:

0—-0O(-H)—> 0 -0y —0
we get an exact sequence:
0—F(k—-1)— F(k) = Fu(k)—0
where Fg = F ® Og. For each ¢ > 0 we obtain an exact sequence

HY(F(m —1i)) = H(Fg(m —1i)) = HTYF(m—1i—-1))



Lejorimations o oCneines 109

which implies that Fp is m-regular on H. It follows by induction that (i) and (ii)
are true for Fg.
Let’s consider the exact sequence

HiY (F(m—i— 1)) = HYY(F(m —0)) — HY(Fu(m — 1))

If 4 > 0 the two extremes are zero (the right one by (ii) for Fp, the left one by the
m regularity of F), therefore F is (m + 1)-regular. By iteration this proves (ii).
To prove (i) we consider the commutative diagram:

HO(F(k)) éik HY(O(1)) — H(Fu(k)) éik H°(Ox(1))
w t
HO(F(k)) — HO(F(k+1)) — H(Fg(k+1))

The map u is surjective for k > m because H(F(k — 1)) = (0); moreover ¢ is
surjective for £k > m by (i) for Fg. Therefore v o w is surjective. It follows
that H°(F(k + 1)) is generated by Im(w) and by H°(F(k)) for all k > m. But
H°(F(k)) C Im(w) because the inclusion H(F(k)) C H°(F(k + 1)) is multiplica-
tion by H. Therefore w is surjective.

Let’s prove (iii). Let A > 0 be such that F(m + h) is generated by its global
sections. Then the composition

H°(F(m)) @ H°(O(h)) @ O — H*(F(m + h)) @ O = F(m + h)

is surjective because from (i) it follows that the first map is; we deduce that the
composition

H°(F(m)) @ H°(O(h)) @k O(=h) = H°(F(m)) @k O — F(m)

is also surjective, hence the second map is surjective too. g-e.d.

Note that if F is m-regular then the graded k[Xj, ..., X,]-module

I (F) = @ H(F(k))

keZ

can be generated by elements of degree < m. In fact this is equivalent to the
surjectivity of the multiplication maps

H°(F(m)) @k H*(O(h)) — H*(F(m + h))

for h > 1, and follows from part (i) of the proposition. In particular, if an ideal
sheat Z C Opr is m-regular then the homogeneous ideal

I =T,(T) C k[Xo,...,X,]
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is generated by elements of degree < m.
Note also that in the way of proving (IV.1.1) we have proved the following:

(IV.1.2) PROPOSITION If F is m-regular and
0—->F(-1)»F—-G—-0
is an exact sequence, then G is m-regular.

Conversely, we have the following:

(IV.1.3) PROPOSITION  Let
0> F(-1)=»F—-G—-0

be an exact sequence of coherent sheaves on IP", and assume that G is m-regular.
Then:

(i)  HY(F(k))=0 fori>2andk>m—1i
(i)  RY(F(k—1)) > h'(F(k)) fork>m—1
(ii1) HY(F(k)) =0 for k > (m — 1) + h*(F(m — 1))

In particular F is m + h'(F(m — 1))-regular.

Proof
(i) In the exact sequence

H'"Y(G(k)) — H'(F(k — 1)) = H'(F(k)) — H'(G(k))
the first and the last group are zero for ¢ > 2 and k > m — (i — 1). Therefore
HY (F(m—i) 2 H(Fm—i+1)ZHF(m—i+2))=...

From Serre’s vanishing theorem we get H*(F(m — i+ h)) = 0 for all h > 0 and (i)
follows.
(ii) For £ > m — 1 we have the exact sequence

0— HY(F(k—-1)) = H(F(k)) 2 H(G(k)) = H (F(k —1)) = HY(F(k)) =0

which implies (ii).
(iii) Assume vy surjective, and consider the commutative diagram:

HO(F (k) @ HO(O(1)) & HO(G(k)) ® HO(O(1))
1l 1 wg
HY(F(k+1)) iy HO(G(k+1))

Since wy, is surjective for k£ > m, we have that vi is surjective too. Therefore

HY(F(k—1) 2 H (F(k) 2 H (F(k+1))=--- =0



Lejorimatiorns of oCReines 194

If v, is not surjective then h'(F(k — 1)) > h'(F(k)). Therefore the function k —

hl(F(k)) is strictly decreasing for k > m — 1, and this implies (iii). g.e.d.
The following is a useful characterization of m-regularity.

(IV.1.4) THEOREM A coherent sheaf F on IP" is m-regular if and only if it
has a resolution of the form:

[IV.11] 0= O(=m—r—1)"* = ... = O(=m— 1)’ = O(=m)* = F = 0

for some by, ...,b.41 > 1.

Proof
Assume that F has a resolution [IV.1.1] and let

Ri= ker[(’)(—m)bo — f]

R; =ker[O(—m — j + 1)¥=* — O(—m — j + 2)b-2] ji=2,...,r
Rry1=O(—m —r)br+t

Using the short exact sequences:
0= Ri(m—1i) = O(=i)® = F(m—1i) =0

0—=Rij(m—1i) = O(—i—j+1)%1 %R _1(m—i) =0
0= O(—i—r—1)+ 5 O(—i—r)br 5 R, (m—14) =0

we see that for all 1 < ¢ < r we have:
HY(F(m—1)) =2 H T (Ry(m — i) = -

2 H (Ry—i(m —14)) 2 H'T (Ry—ip1(m —4)) = (0)

and F is m-regular.
Assume conversely that F is m-regular. By (IV.1.1)(iii) we have an exact
sequence:
0= R1—O(m) = F—0

with by = h°(F(m)), which defines R;.
If R1 =0 we are done; if R; # 0 from the sequences:
0= Ri(m—i+1) = O(—=i+1)* - Fm—i+1) =0
we deduce that A A
H'Ry(m—i+1)) =2 H Y (F(m—i+1)) 1<i<r

hence R is (m + 1)-regular. Applying the same argument to R, we find an exact
sequence:
05Ry—= O(—m—1)" 5 O(=m)»* - F =0
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with Ry (m + 2)-regular. This process can be repeated for at most r + 1 steps, by
the Hilbert syzygy theorem, and gives a resolution as required. g-e.d.

* * * * * ok

We will now turn to the problem of finding numerical criteria of m-regularity
for a coherent sheaf F on IP".

Consider a sequence o1,...,0n of N sections of Opr(1). We will call it
F-regular if the sequences of sheaf homomorphisms induced by multiplication by

J01,...-,0N:
0F I FoFL—0

0—)?12)?1—).?'2—)0

etc., are exact.

By choosing ;11 not containing any point of Ass(F;) one shows that F-
regular sequences of any lenght exist. Therefore any general N-tuple (01,...,0n) €
H°(Op-(1))V is an F-sequence.

(IV.1.5) DEFINITION Let F be a coherent sheaf on IP", and (b) = (bg, b1,...,bn)
a sequence of nonnegative integers such that N > dim[Supp(F)]. We will call F a
(b)-sheaf if there exists an F-regular sequence o1, . . .,on of sections of Opr (1) such
that h°(F;(=1)) < b;, 1 =0,...,N where Fo = F, and F;, i > 1, is the restriction
of F to the scheme of zeros of o1, ...,0; (F; = 0 if this scheme is empty).

Note that from the definition it follows immediately that if F is a (b)-sheaf
then Fi is a (by, ..., by)-sheaf.

It is likewise clear that for very coherent sheaf F on IP" there is a sequence (b)
such that F is a (b)-sheaf. Moreover a subsheaf of a (b)-sheaf is easily seen to be
a (b)-sheaf.

For example, every ideal sheaf Z C Op- is a (0)-sheaf, because Opr is clearly
a (0)-sheaf.

(IV.1.6) LEMMA Let
0—>F(-1)>F—=-G—-0

be an exact sequence of coherent sheaves on IP". If

ey = ()

then

X(G(k) = §:j+ ("7

The proof is left to the reader.
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(IV.1.7) PROPOSITION Let F be a (b)-sheaf, let s =dim[Supp(F)]| and

S

) =>a(" 7

=0

Then .
(i) For each k > —1 we have h®(F(k)) < >5_, b; (*19).
(ii) as < bs and F is also a (by, . ..,bs—_1, as)-sheaf.

Proof
(i) By induction on s. If s = 0 then ag = h°(F) = h°(F(—1)) < by and the
conclusion is obvious.

Assume s > 1. We have an exact sequence

0—->F(-1) > F—>F—0
with 71 a (b1, .., by)-sheaf and dim[Supp(F;)] = s — 1. Then:
hO(F(k)) = B°(F(k — 1)) < h®(F1(k))

and )
- ki
0 < .
CICIED ST G

by the inductive hypothesis. Since h°(F(—1)) < bg by induction on k > —1 we get
the conclusion.

(ii) By Lemma (IV.1.6) and by induction on s we get as < by and F; is a
(b1,...,bs—1,as)-sheaf. The conclusion follows. g.e.d.

(IV.1.8) DEFINITION The following polynomials, defined by induction for
each integer r > —1:

P4 = 0
PT(XO, . Xr) — Pr—l(Xlg . X’r) + Z:zo Xz (Pr—l(le..i.7Xr)_1+Z)

are called (b)-polynomials.

One immediately sees that
[IVIQ] PT(X(),. ..,Xt,O,. . ,0) = Pt(X(),.. -,Xt)

for each t < r.
The following Theorem gives a numerical criterion of m-regularity.

(IV.1.9) THEOREM Let F be a (b)-sheaf on IP", with (b) = (bo, b1,...,bn),

and let . .
) =37

1=0
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be its Hilbert polynomial. Let (co,...,c.) be a sequence of integers such that
¢ > b —ai, fori =0,...,7, and m = P.(co,...,¢.). Then m > 0 and F is
m-regular. In particular F is Ps_1(co,...,cs_1)-regular, if s =dim[Supp(F)].

Proof
By induction on 7. If » = 0 then m = 0 and F is n-regular for every n € Z, so the
theorem is true in this case. Assume r > 1. We have an exact sequence:

0—>F(-1)—>F—>F—0

with F; a (b1, ...,bn)-sheaf supported on IP"~!. From Lemma (IV.1.6) and from
the inductive hypothesis we deduce that n > 0 and F; is n-regular, where n =
P,_i(c1,...,¢). From (IV.1.3) we deduce that F is [n + h'(F(n — 1)]-regular and
hi(F(n — 1)) = 0 for i > 2. Therefore:

BU(F(n—1)) = B(F(n - 1)) = x(Fn—1)) < S (b — az) ("‘ ! “)

N 1
1=0

by (IV.1.7)(i). It follows that Fis n+ Y ;_, ¢ ("_ilJri)—regular, by (IV.1.1)(ii). This
proves the first assertion.
The last assertion follows from (IV.1.7)(ii) and from [IV.1.2]. g.e.d.

Note that the integer m in the statement of the Theorem depends on the
coefficients of the Hilbert polynomial of F as well as on the integers b;. In the
special case when F is a sheaf of ideals we can determine an m for which F is
m-regular which depends only on the Hilbert polynomial of F, as stated in the next
Corollary.

(IV.1.10) COROLLARY Foreachr > 0 there exists a polynomial F,. (X, ..., X,)
such that every sheaf of ideals T C Opr having Hilbert polynomial

=3 (")

i=0
is m-regular, where m = F,(ao,...,a,), and m > 0.
Proof
It suffices to observe that Z is a (0)-sheaf. Therefore the Corollary follows from
Theorem (IV.1.9) taking F,.(Xo,...,X,) = P.(—Xo,...,—X,). g.e.d.
NOTES

1. Corollary (IV.1.10) is in general false for coherent sheaves which are
not sheaves of ideals. An example (Mumford (1966)) is

F = Op:i (k) ® Op: (=)
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Infact x(F) = 2 is independent of k£ but the least m such F is m-regular is
K.

2. If 7 is the sheaf of ideals of the closed subscheme X C IP" and 7
is m-regular with m > 0, then Ox is (m — 1)-regular. Conversely, if Ox is
(m — 1)-regular and the restriction map

HC(IP",Opr(m —1)) = H*(X,0x(m — 1))
is surjective, then 7 is m-regular. This follows from the exact sequences
0 —>Z(k) > Opr(k) » Ox(k) =0

k>m—1.

3. The notion of m-regularity is related with that of bounded collection
of sheaves, important in moduli theory.

A collection of coherent sheaves {F}};cs on a projective scheme X is
said to be bounded if there is an algebraic scheme S and a coherent sheaf
F on X x S such that for each j € J there is a closed point s € S such
that F} is isomorphic to the sheaf F(s) = F|xxspec(s)- One also says that
the collection {F}};cs is bounded by the sheaf F on X x S. For details we
refer to Kleiman(1971)

4. The original source for the notion of Castelnuovo-Mumford regular-
ity is Mumford(1966). The treatment of (b)-sheaves has been taken from
Kleiman(1971).
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IV.2. FLATTENING STRATIFICATIONS

This Section is devoted to the proof of a powerful technical result due to
Grothendieck and Mumford, the existence of flattening stratifications, which is a
key ingredient in the construction of the Hilbert schemes, of the Quot schemes,
and of related schemes like the Severi varieties. We will start by brefly recalling
some properties of flat families of projective schemes which will be needed in this
Chapter.

% ok ox ok
Flatness and Hilbert polynomials
The following result gives the name to the “Hilbert scheme”.

(IV.2.1) PROPOSITION (i) Let S be a scheme, F a coherent sheaf on IP" x S
and p: IP" x S — S the projection. Then F is flat over S if and only if p,F(h) is
locally free on S for all h > 0.

(ii) Assume that S is connected. For each s € S let

Py(t) = x(F(s) (1)) = Y _(~1)'R (IP"(s), F(s)(t)

2

be the Hilbert polynomial of F(s). If F is flat over S then Py(t) is independent of
s € S. Conversely, if S is integral and Ps(t) is independent of s for all s € S, then
F is flat over S. If S is integral and algebraic and Py(t) is independent of s for all
closed s € S, then F is flat over S.

For the proof of this Proposition we refer the reader to Hartshorne(1977),
Theorem I11.9.9.

(IV.2.2) COROLLARY If

X C IP"xS

\
S

is a flat family of closed subschemes of IP" with S connected, then all fibres X (s)
have the same Hilbert polynomial; in particular they have the same degree.

Proof
It follows from (IV.2.1) applied to F = Ox. g-e.d.
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(IV.2.3) EXAMPLES (i) Let U; = {(20,21) € IP* : z; # 0}, U = Uy | [ Uy and
f : U — IP! the natural morphism. Then f is flat surjective and quasi-finite. The
fibres of f are 0-dimensional, hence projective, but their degree is not constant.
This is not a contradiction with Corollary (IV.2.2) because the morphism f is not
projective, since U is an affine variety.

(i) In IP3® with homogeneous coordinates X = (Xg, X1, X2, X3) consider the
curve

C, = Proj(k[X]/(X2, X3)) UProj(k[X]/(X1, X35 — uXp))

for every u € Al. If u # 0 then C,, consists of two disjoint lines, while
Co = Proj(k[X]/(X1 X2, X3))
is a reducible conic in the plane X3 = 0. The Hilbert polynomials are

P,(t) =2t +2 w0
Pyt)=2t+1

From Corollary (IV.2.2) it follows that {C,} cannot be the set of fibres of a flat
family of closed subschemes of IP3.

We may try to construct a morphism whose fibres are the C,’s considering the
closed subscheme X C IP3 x A! defined by the ideal

J = (X2, Xg) N (Xl,X3 — UXO) = (Xle,Xng, X2(X3 — UX()), X3(X3 — UXO))

of k[u, Xy, ..., X3]. From Hartshorne(1977), Prop. I11.9.7, it follows that X is flat
over Al. We have:

X(u) =Cy u#0
X (0) = Proj(k[X]/(X1 X2, X1 X3, X2 X3, X3))

and X (0) # Cp: indeed
X(0) = Cy U Proj(k[X]/ (X1, Xo, X2))

is a non-reduced scheme obtained from Cy by adjoining an embedded point in
(1,0,0,0). In particular we see that X' (0) and Cy have the same support. Prop.
IT1.9.8 of Hartshorne(1977) implies that AX'(0) is uniquely determined by the other
fibres, i.e. by X N [IP? x (A'\{0})].

Fix a scheme S and a coherent sheaf F on IP" x S. Consider a morphism
g:T — S and the diagram

P xT -5 Prxs
lgq ip

T AN S
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where h = id x g. For every open set U C S we have homomorphisms
HI(IP" xU,F) = H/(IP" x g~'(U), i*F) — H°(g""(U), R q.(h*F))
and therefore a homomorphism
Rip.F — gu[R? ¢ (W F)]
which corresponds to a homomorphism
9" (R'p.F) = R q.(h* F)

In case 7 = 0 we have the following asymptotic result which will applied later in
this Section:

(IV.2.4) PROPOSITION For all m > 0 the homomorphism
9* (T (m)) = g (R*F(m))

is an isomorphism and, if T is noetherian, R?q,(h*F(m)) =0 all j > 1.

Proof
We have
W F =T, (h*F) := [eamq*(h*.?-'(m))]~

Since F = I',(F) we also have
W F = B [Tu(FT] = [@mg™ (0. F)(m)]
and therefore for all m > 0
9" (P« F(m)) = gu(h*F(m))
For the last assertion cover T' by finitely many affine open sets and apply Theorem

I11.5.2 of Hartshorne(1977). g.e.d.

The homomorphism of Proposition (IV.2.4) is particularly important when
g : Spec(k(s)) — S is the inclusion in S of a point s € S; it is denoted

tj(s) : ij*(f)s R k(s) — Hj(ﬂjr(s)7f(s))

The study of these homomorphisms is carried out in [EGA], Ch. III, (see also
Chapter III, section 12, of Hartshorne(1977)). Their main properties are summa-
rized in the following Theorem and in its Corollary.

(IV.2.5) THEOREM Let S be a scheme, F a coherent sheaf on IP" x S, flat
over S, s € S and j > 0 an integer. Then:
(i) Ifti(s) is surjective then it is an isomorphism.
(ii) Ift'+1(s) is an isomorphism then Ritlp,(F) is free at s if and only if t7(s)
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is an isomorphism.
(iii) If Rip.(F) is free at s for all j > jo + 1 then t/(s) is an isomorphism for all
J = Jo-

Proof
(i) and (ii) are Theorem II1.12.11 of Hartshorne(1977). (iii) follows from (i) and (ii)
by descending induction on jg. q-e.d.

(IV.2.6) COROLLARY Let X — S be a projective morphism, and let F be a
coherent sheaf on X, flat over S. Then: ‘
(i) If H'+1(X(s), F(s)) = 0 for some s € S and j > 0 then R/ *'p,(F), = (0), and

t9(s) : Rip,(F)s @ k(s) — H’ (X(s), F(s))

is an isomorphism.
(ii) Let jo be an integer such that

H (X(s), F(s)) =0

for all j > jo+1 and s € S (e.g. jo = max,cs{dim[Supp(F(s))]}). Then tio(s) is
an isomorphism for all s € S.

(iii) Let jo > 0 be an integer. Then there is a non empty open set U C S such that
t0(s) is an isomorphism for all s € U.

Proof
(i) follows immediately from (IV.2.5). (ii) is a special case of (i).
(iii) It is the open set U = Nj>;,U;, where U; = {s € S : R7p,(F); is free} (apply
(IV.2.5) (iii) ). g.e.d.

Stratifications

Let S be a scheme. A stratification of S consists of a set of finitely many locally
closed subschemes {S1,...,S5,} of S, called strata, pairwise disjoint and such that
S=5U...US,.

Let F be a coherent sheaf on S and for each s € § let

e(s) := dimy(s) [Fs @ k(s)]

Fix a point s € S, let e = e(s) and let ay,...,a. € F, be such that their images
in Fs @ k(s) form a basis. From Nakayama’s Lemma it follows that the homo-
morphism fs : O ; — Fs defined by ay, ..., a. is surjective; therefore there is an
open neighborhood U of s to which f extends defining a surjective homomorphism
[+ Of — Fjy. With a similar argument applied to ker(f;) we may find an affine
open neighborhood U(s) of s contained in U and an exact sequence

[IV.2.1] 0@(5) < Ot (s) e Flu) =0
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It follows that:

(i) e(s") < e(s) for all s' € U(s): therefore s — e(s) is an upper semicontinuous
function from S to Z.

(ii) Let (gs;) be the e x d matrix with entries in H°(U(s), Os) which defines
g. The ideal generated by the g;;’s in H(U(s),Og) defines a closed subscheme
Zs of U(s) with support equal to Y, N U(s), where for each e > 0 we have set
Y. ={s € S:e(s) =e}. In particular Y, is a locally closed subset of S.

Moreover

(iii) If ¢ : T — U(s) is a morphism; ¢*(F) is locally free of rank e if and only
if ¢ factors through the subscheme Z;.

Proof
q factors through Z, if and only if all the functions ¢*(g;;) are zero on T'. Since the
sequence

0d T9 oe T x(py L

is exact on T, this is equivalent to ¢*(f) being an isomorphism and this condition
implies that ¢*(f) is locally free of rank e. Conversely if ¢*(f) is locally free of rank
e, let G = ker[q*(f)]. At every point ¢t € T we have an exact sequence:

0->Gk(t) = k() — ¢"(F)®k(t) — 0

Since ¢*(F) @ k(t) is a vector space of dimension e we have G ® k(t) = (0). By
Nakayama’s lemma G = (0) in a neighborhood of ¢ and therefore G = (0) everywhere.

(iv) Since property (iii) characterizes the scheme Z; and does not depend on
the presentation [IV.2.1], for any s,s’ € S the schemes Z; and Z coincide on
U(s)NU(s"); therefore the collection of schemes {Z; : s € S} defines a locally closed
subscheme Z, of S supported on Y. Evidently {Z. : e > 0} is a stratification of S.

(v) Because of (i), for each e the closure of Z, is contained in Ug>¢Ze. In
particular, if E is the highest integer such that Zg # (), then Zp is closed.

We have proved the following

(IV.2.7) THEOREM Let S be a scheme and F a coherent sheaf on S. There
is a unique stratification {Z.}e>o of S such that if ¢ : T — S is a morphism the
sheaf ¢*(F) is locally free if and only if q factors through the disjoint union of the
Z's: T =1, Ze — S.

Moreover the strata Zy, Z1, ... are indexed so that for each e = 0,1, ... the restric-
tion of F to Z. is locally free of rank e.

For a given e, Z, C Uer>eZer- In particular, if E' is the highest integer such that
Zgi # 0, then Zg is closed.

Theorem (IV.2.7) describes a natural way to construct stratifications on a
scheme. {Z.}c>0 is called the stratification defined by the sheaf F.
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(IV.2.8) EXAMPLE. Let ¢ : A — B be a homomorphism of locally free sheaves
on the scheme S, of ranks a and b respectively. Applying Theorem (IV.2.7) to
coker(p) we obtain a stratification of S with the property that Z,_. is supported
on the locus

{s € S :1k[p(s) : A(s) = B(s)] = e}

The scheme Z;_ of this stratification will be denoted D.(¢). Note that in particular
the subscheme Dy (¢p), called the vanishing scheme of ¢, is closed in S because of
(v) above. It has the property that a morphism f : T — S satisfies f*(¢) = 0 is
and only if f factors through Dg(¢p).

The ideal sheaf of Dy(¢p) is locally generated by the entries of a matrix repre-
senting ¢. More intrinsecally it can be obtained as follows. Since ¢ € Hom(A, B),
it induces by adjunction a homomorphism:

Hom(B,A) £ Og

whose image is just the ideal sheaf of Dy (¢p).
x % ok k% %

Flattening stratifications

(IV.2.9) DEFINITION Let S be a scheme and F a coherent sheaf on IP" x S.
A flattening stratification for F is a stratification {Si,...,S,} of S such that for
every morphism g : T — S the sheaf

Fg = (1x9)"(F)

on IP" x T is flat over T if and only if g factors through [ S;.

Note that if such a stratification exists it is clearly unique. In the special case
r = 0 we obtain again the notion of stratification defined by the sheaf F.
The following is a basic technical result.

(IV.2.10) THEOREM For every coherent sheaf F on IP" x S the flattening
stratification exists.

Proof
The Theorem has already been proved in the case r = 0 (Theorem (IV.2.7)). There-
fore we may assume r > 1. We will proceed in several steps.

Step 1): There are finitely many locally closed subsets Y',...,Y* of S such
that for each 1 = 1,...,k if we consider on Y* the reduced scheme structure then
F ® Oyiypr is flat over Y.

It follows immediately from a repeated use of the fact that there is a nonempty
open subset U C S such that F|pryy,,, is flat over U,cq (see Note 7).

Step 2): Only finitely many polynomials P!, ... P" occur as Hilbert polyno-
mials of the sheaves F(s), s € S.
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In fact from Corollary (IV.2.2) it follows that at most as many Hilbert poly-
nomials occur as the number of connected components of the sets Y1,...,Y¥.

Step 3): There is an integer N such that for every m > 0 and for every s € S
we have:

HI (IP"(5), F(s)(N +m)) = (0)
for 5 > 1 and the natural map:

[P« F(N +m)]s ® k(s) = H(IP"(s), F(s) (N + m))

is an isomorphism, where p : IP" x S — S is the projection.
For each 7 = 1,...,k consider the diagram

h: IPrxY'! — IP"xS
Y — S

and let n; > 0 be so that R/p;.[h"™* F(n; +m)] = (0) for all m > 0 and all j > 1
(apply Proposition (IV.2.4)). Letting

N > max{ni,...,ng}

we may apply Proposition (IV.2.4) to the diagrams [IV.2.2]; and to the sheaf F and
we obtain isomorphisms

[P« F(N 4+ m)] ® Oyi = pi[h* F(N +m)]
for all s € Y and for all i = 1,..., k. In particular we have isomorphisms
[1V.2.3] [P+ F(N +m)] @ k(5) = piu[h™* F(N +m)]s @ k(s)

for all s € Y and for all i = 1,..., k. We may also apply Corollary (IV.2.6) to the
sheaves h**F and to the projections p; for jo = 0 to deduce that

H (IP" (s), F(s) (N +m)) = (0)
forall s€ S, 7 > 1 and m > 0, and that
[1V.2.4] Pix[W*F(N +m)]s @ k(s) = H(IP"(s), F(s)(N + m))

forall s€ Y? and for all i = 1,...,% and all m > 0.
Comparing [IV.2.3] and [IV.2.4] we obtain the conclusion.

Step 4): Let N be as in Step 3, and let g : T — S be a morphism. Then F, is
flat over T if and only if g*[p.F (N + m)] is locally free for all m > 0.
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Suppose that F, is flat over T' and let g : IP" x T' — T be the projection. Since
HI (IP"(t), F4(t)(N +m)) = H? (IP"(g(t)), F(g(t))(N +m)) = (0)
forallt € T, m > 0 and j > 1, from Corollary (IV.2.6)(ii) we deduce that
[1V.2.5] 0 Fg(N +m)e @ k(t) — H°(IP"(g(t)), F(g(t)) (N + m))

is an isomorphism for all ¢ € T. Theorem (IV.2.5)(ii) applied for j = —1 implies that
¢+F4(IN +m) is locally free for all m > 0. For all ¢ € T the natural homomorphism

¢ : g [P F(N +m)] = . Fg(N +m)
induces an isomorphism:
G PF(N +m)s @ k(t) 2 . Fy (N +m): k()

because both sides are isomorphic to H°(IP"(g(t)), F(g(t))(IN + m)) (the first be-
cause of Step 3, the second because of [IV.2.5]). From the fact that ¢.F,(N + m)
is locally free and from Nakayama’s Lemma it follows that ¢ is an isomorphism.
Therefore g*[p«F (N + m)] is locally free for every m > 0.

Conversely suppose that g*[p«F (N + m)] is locally free for all m > 0. Since
for all m > 0 the natural map ¢ is an isomorphism (Prop. (IV.2.4)) it follows that
¢+ Fg(N + m) is locally free for all m > 0: Proposition (IV.2.1) implies that F, is
flat.

Step 5): For every m > 0 apply Theorem (IV.2.7) to the sheaf p,F (N +m) and
let Yy, ; be the component of the corresponding stratification of S where p, F(N+m)
becomes locally free of rank j. Then for each j = 1,...,h we have the following
equality of subsets of S':

Nin>0SUPP (Yo, pi(N+m)) = Nm=o0,...,rSUPP (Yom, pi(N4m))

The inclusion C is obvious. For s € S let P,(t) be the Hilbert polynomial of
F(s). Then s € Ny>0Supp(Yom, pi(n+m)) if and only if

P,(N +m) = hO(IP"(s), F(s)(N + m)) = dim[p, F(N + m), @ k(s)] = P*(N + m)

for all m > 0, and this happens if and only if P,(t) = P*(t) as polynomials. On the
other hand s € Nyu=o,....-SUPP(Yin, pi(n4m)) if and only if Py(N +m) = Pi(N +m)
for m = 0,...,r. Since both Ps(t) and P*(t) have degree < r, it follows that
P,(t) = P(t) and therefore s € Nm>0SUPP (Yo, pé (N4+m))-

Step 6): Fix ¢ between 1 and h. For each integer ¢ > 0 the finite intersection

mm:O,...,c}/m,Pi(N—i—m)
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is a well defined locally closed subscheme of S. Because of Step 5 the subschemes

Nm=0,...,cYm,Pi(N+m) c=nr,r+1,...

for a descending chain with fixed support; in particular they form a descending
chain of closed subschemes of a fized open set V' C S, and therefore they stabilize.
In other words the intersection

Z' = ﬁ1nZOSU—pp(}/7n,Pi(N—i—m))
is a well defined locally closed subscheme of S. By Step 5 we have:

Supp(Z*) = {s € S: P,(t) = P;(t)}

Step 7): The subschemes Z1,..., Z" form a stratification of S. It follows im-
mediately from Step 4 that this is the flattening stratification for . This concludes
the proof of Theorem (IV.2.10). g-e.d.

NOTES

1. From the proof of Theorem (IV.2.10) it follows that the strata
Z1,..., Z" of the flattening stratification for F are indexed by the Hilbert
polynomials of the sheaves F(s), s € S.

2. Let
X 2y
o’
S

be a commutative diagram of morphisms of algebraic schemes, with X and
Y S-flat and X projective over S. Assume that ®, : X(0) — V(o) is a
closed embedding, for some k-rational point o € S. Then there is an open
neighborhood U C S of o such that the restriction ®(U) : X(U) — Y(U) is
a closed embedding.
Proof

Let K = coker[Oy — ®,(Ox)]. Since ® is projective ®,(Ox) is a coherent
sheaf and so is . Moreover K(0) = (0) because @, is a closed embedding. It
follows that there is an open subset U C S containing o such that Ky @) =
(0). Let Z = Spec(®.(Ox)), h: £ — Y the induced S-morphism and

X y

EN
g\ h
zZ

the Stein factorization of ®. Then it follows that h(U) : Z(U) — Y(U) is
a closed embedding. Moreover, since g has connected fibres and is bijective
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over Z(0), it follows that, modulo shrinking U if necessary, g(U) : X(U) —
Z(U) is an isomorphism. The conclusion follows. g.e.d.

3. Let X — S be a flat projective morphism of algebraic schemes, and
L an invertible sheaf on X'. Assume that for some k-rational point o € S the
sheaf L(0) is very ample on X (o) and satisfies H*(X(0), £(0)) = 0. Then
there is an open neighborhood V' C S of o such that Ly := Lx(v) is very
ample relative to V. In particular £(s) is very ample on X'(s) for every
seV.

Proof
By Corollary (IV.2.6) there is an open neighborhood U C S of o such that
(le*E)IU = (0) and

t%(u) : (fxL)u ® k(u) = H° (X (u), L(u))

is an isomorphism for all u € U. We may even assume that f,L is locally
free of rank h%(X(0), £L(0)) on U. From the surjectivity of the map ¢°(0) and
from the fact that £(o) is globally generated we deduce that the canonical
homomorphism :

F L) = L

is surjective on X'(0). Since f is projective it follows that there is an open
W C U containing o such that

[IV.2.6] [f*(f*ﬁ)h/l’(W) — ﬁW

is surjective and moreover [f*(f.L)]|xw) is locally free. The homomor-
phism [IV.2.6] defines a W-morphism

X(W) s P(f*(feL)) 12 w)
[IV.2.7] N\ e
w

whose restriction to X (o) is the embedding defined by the global sections
of L(0). From Note 2 above it follows that there is an open subset V. C W
containing o such that the restriction of [IV.2.7] to X(V) is an embedding.
This implies the conclusion.

4. Let £ be alocally free sheaf over IP! x S, with S an algebraic integral
scheme. Let o € S be a k-rational point, and £(0) = ®;O(nf) the fibre over
0. Then

(i) there is an open set U C S such that for each s € U we have

with
max;{n:} < max;{n‘} and min;{n%} > min;{n’}

1(1
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Moreover if £(0) is balanced (i.e. nt = nJ for all i, j) then £(s) =2 £(o) for
all s e U.
(ii) For each s € S we have

ng = ng
7 7

Proof
(Caporaso-Sernesi(2003)) (i) By the structure theorem for locally free sheaves
on IP! (see Okonek et al.(1980)) we know that for each s € S we have an
isomorphism £(s) & @;O(n’) for some integers n’. Let My = max;{n{}
and consider the sheaf £ := £ ® p*O(—Mgy — 1), where p : IP* x § — IP?
is the projection. Since h%(€£(0)) = 0, from the Semicontinuity Theorem it
follows that there is an open neighborhood U of 0 such that h°(£(s)) = 0
for all s € U; but this means that max;{ni} < M, for all s € U, which is the
first statement of the Proposition. The statement about the minimum is
proved similarly after replacing £ by its dual. The last assertion is obvious.

(ii) Applying (i) to det(€) we find that every point ¢ € S has an open
neighborhood Uy where Y, né = 3. ni for all s € U;. Since S is connected
we deduce that ), n’ is constant.

—_~ —~

5. Let f: X — S be a flat projective morphism with S an algebraic
scheme, and let o € S be a k-rational point. Prove that:

(i) If X (o) is connected and X(s) is disconnected for all s # o in an open
neighborhood of o then X (0) is non-reduced.

In particular:

(ii) If X (o) is connected and reduced then X (s) is connected for all s in an
open neighborhood of o.

(iii) If X' (o) is disconnected then X'(s) is disconnected for all s in an open
neighborhood of o.

6. Let f : X — Y be a proper morphism of algebraic schemes with
finite fibres. Let g : Y/ — Y be an arbitrary morphism, X’ = X xy Y/,
ff: X' -5 Y and ¢’ : X’ — X the projections. Then for every quasi-
coherent Ox-module F we have a canonical isomorphism

9" ([ F) = fulg™ F)

Proof
Since it is proper and quasi-finite, f is finite, in particular it is affine. The
conclusion follows from [EGA] Ch. II, 1.5.2. g.e.d.

7. Let f: X — S be a morphism of finite type with S integral, and let
F be a coherent sheaf on X. There is a dense open subset U C S such that
the restriction of F to f~1(U) is flat over U.

Proof
The conclusion being local in S we may assume that S = Spec(A) where
A is an integral k-algebra. Since X’ can be covered by finitely many affine
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open sets it suffices to prove the assertion for each of them: therefore we
may assume that X = Spec(B), where B is an A-algebra of finite type and
F corresponds to a B-module of finite type M. It will suffice to show that

(*) there exists a € A such that M, is a free A,-module.

Note that if
0O—-L—>M-—>N-—=0

is an exact sequence of B-modules such that L, is A,-free and N, is A.-
free for some a,c € A, then M, is A,.-free. Moreover, since M is finitely
generated, there is a composition series

M=M,D>---D>M,=/(0)

such that every quotient M;/M; ;1 is isomorphic to B/p; for some prime
ideal p; C B. Therefore it suffices to prove (*) for modules of the form B/p
where p is a prime ideal, i.e. we may assume that B is a domain and that
M = B.

Let K be the quotient field of A. Then Bx = B®4 K is a K-algebra of
finite type. We will prove (x) by induction on the dimension d of Spec(Bk).

If d = —1, i.e. Bg = (0), there exists a € A such that alp = 0: it
follows that B, = (0) is A,-free.

Let d > 0. By Nother’s Normalization Lemma there exist bq,...,bq €

Bk algebraically independent and such that B is integral over K [by, .. ., bgl.

It follows easily that there exists ¢ € A such that by,...,b5 € B, and B, is

integral over A.[by,...,bg]; in particular B, is an A.[by,. .., bg]-module of fi-
nite type. Therefore it is possible to find an exact sequence of A.[by, ..., bg]-
modules

0— Acfbr,...,bq)" - B.—-C—0

such that C' is torsion. Since A.[by, ..., bg]™ is A.-free it suffices to prove (x)
for C'. As before we may use a composition series for C' to reduce to the case
when C is an integral A.-algebra and, since C is torsion, dim[Spec(Ck)] < d.
We conclude by induction. g.e.d.

14(9
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IV.3. THE HILBERT SCHEMES - INTRODUCTION

Consider a projective scheme Y, and a closed embedding Y C IP". Let’s fix a
numerical polynomial of degree < r, i.e. a polynomial P(t) € Q[t] of the form:

P(t) = zr:ai (t t T)

1=0

with a; € Z all 1.
For every scheme S we let:

) flat families X C Y x S of closed subschemes of Y
Hilb () = { }

parametrized by S with fibres having Hilbert polynomial P(t)

Since flatness is preserved under base change, this defines a contravariant functor
Hilb};(t) : (schemes)® — (sets)

called the Hilbert functor of Y relative to P(t).
In case Y = IP" we will denote the Hilbert functor with the symbol H ilb’l;( "

If the functor H ilbg( £ is representable, the scheme representing it will be called
the Hilbert scheme of Y relative to P(t), and will be denoted Hilblg(t) (or Hilb% ) in
case Y = IP"). If P(t) = n a constant polynomial then Hilb}g(t) is usually denoted

by Yl
If the Hilbert scheme Hilb}g( " exists then there is a universal element, i.e. there
is a flat family of closed subschemes of Y having Hilbert polynomial equal to P(t):

[1V.3.1] W CY x Hilbp,

parametrized by Hilb}g(t) and possessing the following

UNIVERSAL PROPERTY: For each scheme S and for each flat family X C
Y x S of closed subschemes of Y having Hilbert polynomial P(t) there is a unique
morphism S — Hilbg(t), called the classifying map, such that

The family [IV.3.1] is called the universal family, and the pair (Hilbg(t), W) repre-
sents the functor Hilbg(t).
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The family W is the universal element of H4l bg( £ (Hilbg(t)), namely the element
corresponding to the identity under the identification

Hom(Hilbp ), Hilbp4y) = Hilb}, (Hilbp ;)

EXAMPLE Consider the constant polynomial P(t) = 1. Then we have a
canonical identification Y[ = Y and the universal family is the diagonal A C
Y xY.

To prove it consider an element of Y'1(S) for some scheme S:

' ¢ SxY
1f
S

Then f is an isomorphism: infact it is a one-to-one morphism and Og — f,Or
is an isomorphism since f,Or is an Og-algebra which is locally free of rank one
over Og. We therefore have the well defined morphism g = ¢f~! : S — Y where
q:S xY — Y is the projection. The morphism

(9f,q): T =Y xY

factors through A and induces a commutative diagram

r — A

{ {

S — Y
g

such that I' 2 g*A. Therefore the family I' is induced by A via the morphism g.

The existence of the Hilbert schemes in general will be proved in the next
Section. We will now consider two important special cases.

Xk K x k%
Hypersurfaces

If X C IP" is a hypersurface of degree d it has Hilbert polynomial

o= () =) e

Conversely, if a closed subscheme Y of IP™ has Hilbert polynomial k() then it
is a hypersurface of degree d.
Infact, since h(t) has degree r — 1, Y has dimension r — 1, so Y = Y; U Z, with Y3
a hypersurface and dim(Z) < r — 1. We have the exact sequence:

O%Iyl/Iy—)Oy—)OYI — 0
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where 7y, Ty, C Opr are the ideal sheaves of Y and Y;. We deduce that
h(t) = hy(t) + k(t)

where hj(t) is the Hilbert polynomial of ¥; and k() is the Hilbert polynomial of
Zy, /Iy . Since this sheaf is supported on Z, we have deg(k(t)) < r — 1; therefore

we see that
d

(r—1)!
so Y7 is a hypersurface of degree d, and therefore hq(t) = h(t). It follows that
k(t) =0, i.e. Ty, = Iy, equivalently Y = Y.

Therefore Hilbz( £’ if it exists, parametrizes a universal family of hypersurfaces

of degree d in IP". To prove its existence let V := HO(IP",O(d)) and in IP(V) take
homogeneous coordinates

hi(t) = 4

(' - -5 Ci(0),...,5(r) s - - ')i(O)—{—...—}—i(’r):d

The hypersurface H C IP™ x IP(V) defined by the equation

i(0) i(r) _
D Cio),.itn Xo - XA =0

projects onto IP(V) with fibres hypersurfaces of degree d. It follows from Proposi-
tion (IV.2.1) that # is flat over IP(V'). Let’s denote by p : IP" x IP(V) — IP(V)
the projection, and let Z3; C Opryp(v) be the ideal sheaf of H. For all z € IP(V)
we have

1= R°(IP" (z), Ty (a) (d)) = h°(IP" (), Tn(d) ()
and . )
0 = h'(IP"(2), Iaz)(d)) = h*(IP"(z), T3(d) ()
0= h(H(z), Onz)(d))

for all 4 > 1. Applying (IV.2.5) and (IV.2.6) we deduce that
a) R'p,Iy(d) =0
b) p«Z3(d) is an invertible subsheaf of p,Oprxpv)(d) =V Qx Op)

c) P+Oprxp(v)(d) /P« T3 (d) = pO3/(d) is locally free.
It follows that

I3 (d) = Opvy(—1)
the tautological invertible sheaf on IP(V'), and the natural map

P pZy(d) = Ty (d)
is an isomorphism. Therefore

Ty = [p*Opw)(—1)](—d)
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Let’s prove that H C IP" x IP(V) is a universal family.

Suppose that
X C IP"xS

Lf
S

is a flat family of closed subschemes of IP" with Hilbert polynomial h(t), i.e. hy-
persurfaces of degree d, and let Zy C Oprxs be the ideal sheaf of X'. Arguing as
above we deduce that f,Zx(d) is an invertible subsheaf of V ®x Og with locally free
cokernel f,Ox(d), and that

Ix = [f*fZx(d)](—d)
We have an induced morphism g : S — IP(V) such that
7*[Opw)(-1)] = fiZx(d)
The subscheme S X pyyH C IP" X S is defined by the ideal sheaf
(1xg)* Ty = (1 x g9)*[Opw)(=1)(=d)] =

= [*lg"0pw)(=D)](=d) = [f* f+Zx(d)](—d) = Ix

Hence S X pr) H = X. The proof of the uniqueness of g having this property is
left to the reader. Therefore we see that # C IP™ x IP(V) is a universal family, and
Hilb;;(t) =IP(V).

Grassmannians

The classical grassmannians are special cases of Hilbert schemes, since they
parametrize linear spaces, which are the closed subschemes with linear Hilbert poly-
nomials. Let’s fix a k-vector space V of dimension N, with and let 1 < n < N.
Letting

Gy, (S) = {loc. free rk n quotients of the free sheaf VV ®x Og on S}
we define a contravariant functor:
Gy : (schemes)—(sets)

called the Grassmann functor; we will denote it simply by G when no confusion is
possible.

(IV.3.1) THEOREM The Grassmann functor G is represented by a scheme
G, (V) together with a locally free quotient of rank n

VY &k Og, vy — Q
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called the universal quotient bundle.

Proof
Given a scheme S and an open cover {U;} of S, to give a locally free rank n quotient
of VV ®x Og is equivalent to give one such quotient over each open set U; so that
they patch together on the intersections U; N U;. Therefore G is a sheaf.

Let’s fix a basis {ex } of V¥ and choose a set J of n distinct indices in {1,..., N}.
We have an induced decomposition VY = E' @ E”, with E’ (resp. E") a vector
subspace of rank n (resp. N —n). We can define a subfunctor G of G letting:

G (S) = {loc. free tk n quotients VY ®x Os — F inducing E’ ® Og — F surjective}

Let S be any scheme and f : Hom(—, S) — G a morphism of functors corresponding
to a locally free rank n quotient

VV @k Os — F

The fibered product Sy := Hom(—, S) x@ G is clearly represented by the open
subscheme of S supported on the points where the map E’ @, Og — F is surjective;
this proves that G is an open subfunctor of G. Since clearly the S;’s cover S, we
also see that the family of subfunctors {G} is an open covering of G.

To prove that G is representable note that if

q: VY ®c0g — F
is an element of G(.S) then the induced map
n:E @O0 — F
is surjective if and only if it is an isomorphism; in this case the composition
nloq:VY®xOs — E' @ Os
restricts to the identity on E’ ®y Og, hence it is determined by the composition
E" @k 05 = VY @k Os = E' @ Og
It follows that we can identify
G;(S) = Hom(E" @k Os,E' @k Os) = Hom(E", E') ®x Og

This proves that G is isomorphic to Hom(—, AN _")), hence it is representable.
Now the theorem follows from proposition (A.4.0). g.e.d.

G, (V) is called the grassmannian of n-dimensional subspaces of V; it is also
called the grassmannian of (n—1)-dimensional projective subspaces of IP(V). When
V = k" the grassmannian G, (k") is denoted G(n, N).
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When n = 1 the functor Gy,; is represented by G1 (V) = IP(V) = Proj(Sym(V'")),
the (N —1)-dimensional projective space associated to V. In this case Q@ = Op(v)(1).

From theorem (IV.3.1) it follows that for all schemes S the morphisms f: S —
G, (V) are in 1-1 correspondence with the locally free rank n quotients

Vv®k05—>f

via f <> f*Q. This is the universal property of G,(V).
The universal quotient bundle defines an exact sequence of locally free sheaves
on Gp(V):
0—+K—>VY®kOg,v)—=Q—0

called the tautological exact sequence; K is called the universal subbundle. 1t is
often useful to consider the dual subbundle:

T := QV CV ®x OGn(V)

called the tautological bundle.
Let S be a scheme. Associating to every locally free quotient of rank n

VY @k Og — F

the quotient
(A"VY) @k Os — A" F

we define a morphism of functors Gy, =+ Gany,1, which is induced by a morphism
m:Gp(V) = IP(AN"V)

m is called the Plicker morphism.

(IV.3.2) PROPOSITION The Pliicker morphism is a closed embedding. In
particular G,,(V) is a projective variety.

Proof
As in the proof of (IV.3.1) we fix a basis of V¥ and we choose a set J of n distinct
indices in {1,..., N}. We obtain a decomposition VY = E’@® E" with dim(E") = n,
dim(E") = N — n, and an induced one:
/\nVV — EB?:O(/\n—iEﬂ) R /\iE” = A"E' oF
where F' = @2, (A" *E’) @ A*E". For every scheme S let
IP;(S) = {locally free rk 1 quotients A"V — L s.t. the induced A"E’ — L is surjective}

We obtain a subfunctor [Py of Gary,1. As in the proof of (A.4.10) we see that the
IP;’s form an open cover of Ga»y,1 by functors representable by affine spaces.
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Note that for every locally free rank n quotient VV ®x Og — F the induced
homomorphism:
E’ Rk Os — F

is surjective if and only if A"E’ — A"F is. Therefore G ; = m~1(IP;) and it suffices
to prove that 7 : Gy — IPy is a closed embedding.

We may identify G with (the affine space associated to) Homy (E’, E”) and
IP; with Homy (F, A" E’). Considering that

Homy (A" *E',A\"E') 2 N'E
canonically via the perfect pairing:
ANE'" x N"'E' — A\"E’
we have:
Homy (F, A"E") = ®7_Homy (A" *E') @ A'E",A"E') =

= @7, Homy (\'E"”, Homy (\" 7" E', A"E')) = &}, Homy (A'E", \'E)
and the map
7 : Homy (E"”, E') — Homy (F, A"E")
is
A= (AN, AT
This is the graph of a morphism of affine schemes, hence it is a closed embedding.
q-e.d.

For some 1 < n < r,let G = G(n + 1,7 + 1) be the grassmannian of n-
dimensional projective subspaces of IP". Consider the incidence relation

I:=PP(T) Cc IP"xG

ip
G

where 7 C p.Oprxg = (’)g+1 is the tautological bundle; note that 7 = p,Zy(1).
For every closed point v € G the fibre I(v) is the projective subspace IP(v) C IP",
hence it has Hilbert polynomial (t:"). From Proposition (IV.2.1) it follows that p
is a flat family. Suppose now that

A Cc IPPx S

lq
S

is another flat family whose fibres have Hilbert polynomial (t:"). We have an

inclusion of sheaves on S

¢:In(1) C ¢uOprxs(1) = OG!
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which has locally free cokernel ¢,Ox(1). By the universal property of G the above
inclusion induces a unique morphism

g:S—-G
such that ¢*(7) = g«Za(1). Since A = IP(q.Zx(1)) it follows that
A=S Xa I

namely the family ¢ is obtained by base change from the incidence relation via the
morphism g. This proves that

G(n + ]., r+ ]_) = Hl].blzt_;_n)

NOTES

1. The construction of the grassmannian given here is taken from
Kleiman(1969).
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IV.4. THE HILBERT SCHEMES - EXISTENCE

(IV.4.1) THEOREM For every projective scheme Y C IP" and every numerical
polynomial P(t), the Hilbert scheme Hilbg(t) exists and is a projective scheme.

Proof
We will first prove the Theorem in the case Y = IP". From Theorem (IV.1.2) it
follows that there is an integer mg such that for every closed subscheme X C IP"
with Hilbert polynomial P(t) the sheaf of ideals Zx is mg-regular. It suffices to take

mo = Fr.(—ag, ..., —ar—1,1 —a,)
It follows that for every k > my
[TV.4.1] R (IP", Ix(k)) =0

for 2 > 1 and
k+r

i zew) - (]

) - Pt
depends only on P(k). Moreover by remark (IV.1.12)(ii) we have
[IV.4.2] (X, 0x(k)) =0

all k > mg and all 2 > 1. Let

N = (mor-l— 7') _ P(mo)

V = H(IP", Opr-(my))

Consider the grassmannian G = G (V) of N-dimensional vector subspaces of V.
Let 7 C V ®k Og be the tautological locally free sheaf of rank N and

p:IP"xG—G

the projection. We may identify V ®x Og = p«[Oprxa(mo)]. The image of the
composition

p*T (—mo) — V @k Oprxa(—mo) — Oprxa

P*p«[Oprxa(mo)] ® Oprxa(—mo)
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is a sheaf of ideals: we will denote it by J. It can also be obtained as the ideal sheaf
in Opryg corresponding to the subsheaf TOg[Xy, ..., X,] of the sheaf of graded
Og-modules O¢[Xo, ..., X,].

Let Z C IP" x G be the closed subscheme defined by J and denote by ¢ : Z — G
the restriction of p to Z.

Consider the flattening stratification

G' 1[G ]]---c@

for Oz and let H be the stratum relative to the polynomial P(t). We will prove
that H = Hilbrp(t) and that the universal family is the pullback of ¢ to H:

W= HxgZ — Z

i lq
H - G

By the choice of H, WV defines a flat family of closed subschemes of IP" with Hilbert
polynomial equal to P(t).
Let’s prove that W has the universal property.
Consider a flat family of closed subschemes of IP" with Hilbert polynomial
P(t):
Xc IPPxS

Lf
S

From [IV.4.1] and [IV.4.2] and from Theorem (IV.2.5) it follows that
R f.Tx(mo) = (0) = R' f.Ox(mo)
In particular we have an exact sequence on S:

0= fiZx(mo) = fiOmprxs(mo) — fiOx(mo) — 0

|
V Qk Og

If we apply Theorem (IV.2.5) for j = —1 we deduce that f.Zy(mg) and f.Ox(my)
are locally free and f,Zx(mg) has rank N.

From the universal property of GG it follows that there exists a unique morphism
g : S — G such that

[«Ix(mo) = g*T

Claim: For all m > mg we have f,Ox(m) = ¢*p.Oz(m).

Proof of the Claim: For all m > mgy we have exact sequences:

0 = pedJ(m) = ¢Oprxa(m) — p«Oz(m) — 0



L. DETTIEST 104

on G and
0= filx(m) = fiOprxs(m) = fxOx(m) =0

on S; since g*p.Oprxa(m) = f«Oprxs(m) it suffices to show that:
feZx(m) = g*p.J(m)
for all m > my. For all such m we have the equality on G:
ped(m) = Im[T ® p.O(m —mp) — p«Oprxa(m)]

induced by the surjections p*7 (m — mgy) — J(m) of sheaves on IP" x G. Hence for
all m > mg we have:

g*pJ(m) = ¢*Im[T @ p.Oprxa(m —mg) = p.Oprxa(m)] =
= Im[g*T@ f*OPrxS(m — mo) — f*(’)prxs(m)] =
= Im[f*Ix(mo) ® f*OPrxs(m — m()) — f*ollarxg(m)] = f*Ix(m)

and this proves the Claim.
From the Claim it follows that
(i) g factors through H. Indeed from (IV.2.4) it follows that for all m > my:

Q*Q*02<m) = f*(l X g)*Oz(m)

Since g*p, Oz (m) = f,Ox(m) is locally free of rank P(m) for all such m Proposition
(IV.2.1) implies that (1 x ¢)*Ogz is flat over S with Hilbert polynomial P(t). Hence
g factors by the definition of H.

(ii) X = S xg W. Indeed
X = Proj [@m>>0 [+Ox(m)] = Proj [®m>>0 g* p0z(m)] =

= Proj[D,,,5.0 9" Ow(m)] = S X g Proj[D,, 5.0 7 Ow(m)| = S xg W

Properties (i) and (ii) imply that H = Hilbp(,) and that 7 is the universal
family.

By construction Hilbrp(t) is a quasi-projective scheme. To prove that it is
projective it suffices to show that it is proper over k. We will use the valuative
criterion of properness. Let A be a discrete valuation k-algebra with quotient field
L and residue field K, and let

¢ : Spec(L) — Hilbp
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be any morphism. We must show that ¢ extends to a morphism
¢ : Spec(A) — Hilbp
Pulling back the universal family by ¢ we obtain a flat family
X C IP" x Spec(L)

of closed subschemes of IP" with Hilbert polynomial P(t). Since Spec(A) is nonsin-
gular of dimension one and

Spec(L) = Spec(A)\{closed point}
Proposition I11.9.8 of Hartshorne(1977) implies the existence of a flat family
X' C IP" x Spec(A)

which extends X'. By the universal property of Hilb}(t) this family corresponds to
a morphism ¢ : Spec(A) — Hilbjp(,) which extends ¢. This concludes the proof of
the Theorem in the case Y = IP".

Let’s now assume that Y is an arbitrary closed subscheme of IP". It will suffice
to show that the functor H ilbg( £ is represented by a closed subscheme of Hilb}(t).

Applying Theorem (IV.1.2) twice we can find an integer p such that Zy C
Opr is p-regular and such that for every closed subscheme X C IP" with Hilbert
polynomial P(t) the ideal sheaf Zx C Op- is p-regular. Let

V =H(IP",0p-(n), U=H"(IP"Iy(p)

It follows from (IV.2.5) and (IV.2.6) that m.Zyy(u) is a locally free subsheaf of
V ®x Owuinp, with locally free cokernel.
On Hilbrp(t) consider the composition

U : U ®k Ouib = V Qk Omib — V' @k Owmin /T Iy (1)

Let Z C Hilbpy be the closed subscheme defined by the condition ¥ = 0, or
equivalently by the condition

[1V.4.3] U®x Oz C mTyy(u) @ Oz

Letting j : Z — Hilbp,y be the inclusion, one easily sees that condition [IV.4.3]
implies that
IYXZ C (1 X j)*IW C OPTXZ

hence that

[IV.4.4] ZXumwWCY xZCIP" x Z
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It is straightforward to check that Z = Hilbg(t) and that [IV.4.4] is the universal
family. This concludes the proof of Theorem (IV.4.1). g.e.d.

For any projective scheme Y C IP" it is often convenient to consider the functor:
HilbY : (schemes) — (sets)

defined as:
HilbY (S) = [ Hilb})(S)
P(t)

This functor is represented by the disjoint union

Hilb" = [ Hilbp,
P(1)

which is a scheme locally of finite type (but not of finite type because it has infinitely
many connected components unless dim(Y’) = 0). It is the Hilbert scheme of Y. One
convenient feature of HilbY is that it is independent on the projective embedding
of Y, even though the indexing of its components H ilbg(t) by Hilbert polynomials
does depend on the embedding. For this reason, when considering HilbY we will
not need to specify a projective embedding of Y.

Let’s fix a projective scheme Y, and in the Hilbert scheme HilbY let’s consider
a k-rational point [X] which parametrizes a closed subscheme X C Y. Denote by
T C Oy the ideal sheaf of X in Y. The local Hilbert functor H}:— is a subfunctor
of the restriction to A of the Hilbert functor; since HilbY represents the Hilbert
functor we have, with the notation introduced in §III.1:

HY (A) = Hom(Spec(A), Hilb" ) x]

for every A in ob(A). In particular HY is prorepresented by the local ring (’}Hilb’[ X1-
We can therefore apply the results proved in §III.3 to obtain information about the
local properties of HilbY at [X]. In particular we have the following:

(IV.4.2) THEOREM (i) There is a canonical isomorphism of k-vector spaces:
TixHilbY =2 H(X, Nx,y)

where Nx/y = Homo, (Z/TI?,Ox) is the normal sheaf of X inY.
(ii) If X C Y is a regular embedding then the obstruction space of O,y [x] IS a

subspace of H'(X, Nx/y).
Consider a flat family of closed subschemes of Y:

XC YxS

Lf
S
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It induces a functorial morphism S — HilbY whose differential at a k-rational point
s € S is a linear map
Xs : TsS = H°(X(s), Nx(s),v)

called the characteristic map of the family f.

The simplest illustration of Theorem (IV.4.2) is for YU = Y. In this case
(IV.4.2)(i) simply says that Hom(m,/m2, k) is the Zariski tangent space of Y at a
k-rational point p € Y. The obstruction space is 0o(Oym 1) = 0(Oy,p). Of course
if p is a singular point then it is not regularly embedded in Y, and H'(p, N, /y) =0
is not an obstruction space for the local Hilbert functor.

NOTES

1. It is a classical result of Hartshorne that Hilbp ;) is connected for all
r and P(t) (see Hartshorne(1966)). For general Y this is no longer true: for
example, if Q C IP? is a nonsingular quadric then Hilb?+1 has two connected
components.

2. Let X C Y be a closed embedding of projective schemes. It can be
easily verified that for any closed subscheme Z C X, the induced injective
linear map

H%(Z,Nz/x) = H%(Z,Nz;v)

coincides with the differential at [Z] of the closed embedding

Hilb* c HilbY

3. The Hilbert schemes, for their definition and construction, require
the representability of the grassmannians functors. Infact the projective
space IP" itself is a special case of grassmannian, and the proof of the exis-
tence of the Hilbert schemes relies heavily on the fact that the grassmannians
functor is representable.
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IV.5. THE QUOT SCHEMES

We will now introduce an important class of schemes, the so called Quot
schemes, which generalize the Hilbert schemes. As special cases we will obtain
the relative Hilbert schemes.

Let p: X — S be a projective morphism of algebraic schemes, and let Ox (1)
be a line bundle on X very ample with respect to p. Fix a coherent sheaf H on X
and a numerical polynomial P(t) € Q[t]. We define a functor

Quoti/g(t) : (schemes/S)° — (sets)
called the Quot functor of X/S relative to H and P(t), in the following way:

coherent quotients Hz — F, flat over Z, }

X/S _
Quoty p) (2 = §) = { having Hilbert polynomial P(t) on the fibres of Xz — Z

where we have denoted Xz = Z Xg X and Hz the pullback of H on Xz, as usual.
When S = Spec(k) we write Quoti p(r) instead of Quoti/ Isf(’f)c(k)
This Definition generalizes the Hilbert functors which are obtained in the case

S = Spec(k) and H = Ox.

(IV.5.1) THEOREM The functor Quot = Quotﬁ{ g(t) is represented by a pro-
jective S-scheme

Quoti{lf(t) - S

Proof
We first consider the case S = Spec(k) and X = IP". From Proposition (IV.1.14)
it follows that there is an integer m such that for each scheme Z and for each (¢ :
Hz — F) € Quot(Z), letting N = ker(yp), all the sheaves N(z),H(z) = H, F(z),
z € Z, are m-regular. Therefore, letting pz : IP" x Z — Z be the projection, we
obtain an exact sequence of locally free sheaves on Z:

0 = pze N(m) — H°(IP",H(m)) ®x Oz — pz.F(m) — 0
Moreover, for each m’ > m there is an exact sequence
H(IP",0(m' —m)) @k pz«N(m) = H(IP",H(m')) @ Oz — pz.F(m') =0

where the first map is given by multiplication of sections. This shows that pz.F(m)
uniquely determines the sheaf of graded Oz[Xy,..., X,|-modules @, pz+F(k),
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which in turn determines F. Therefore, letting H°(IP",H(m)) = V, we have an
injective morphism of functors:

QUOt — GV,P(m)

given by:
(HZ —)F) — [V Rk OZ —>pZ*F(m)]

OnG=0G P(m)(V) consider the tautological exact sequence
0K —->Vek0g—>Q—0

Let moreover py : IP" X G — G and p; : IP" x G — IP" be the projections. On
G we have ', (H) Qk Og, which is a sheaf of graded Og[Xy, ..., X,]-modules, and
determines p}(#H). Consider the subsheaf KOg[Xy,...,X,] and the sheaf F on
G x IP" corresponding to the quotient I'y(H) ®x Oq/KOg|Xo, ..., X;], and let
Gp C G be the stratum corresponding to P of the flattening stratification of F.
Then we claim that a morphism of schemes f : Z — G defines an element of
Quot(Z) if and only if f factors through Gp, and therefore Quot is represented by
Gp. The proof of this fact is similar to the one given for the proof of Theorem
(IV.4.1) and will be left to the reader.

Since G p is quasi-projective, to prove that it is projective amounts to prove that
it is proper over k, and this can be done using the valuative criterion of properness.
Let A be a discrete valuation k-algebra with quotient field L and residue field K,
and let

¢ : Spec(L) - Gp

be any morphism. We must show that ¢ extends to a morphism
@ : Spec(A) —» Gp

The datum of ¢ corresponds to an element (¢r, : Hr — Fr) of Quot(Spec(L)). The
existence of ¢ will be proved if there is a quotient ¢4 : Ha — F4 on IP" x Spec(A)
which is flat over Spec(A) and which restricts to Fr, over IP" x Spec(L). Let ¢ :
IP" x Spec(L) — IP" x Spec(A) be the inclusion, and take F4 = i.(Fr). Obviously
F4 restricts to Fr,. Moreover, if K1, = ker(¢r,), we have R'i, (K1) = 0 and therefore
a surjection H 4 = i.(Hp) — Fa. We need the following

LEMMA Let X be a scheme, U an open subset of X and i : U — X the

inclusion. Then for every coherent sheaf F' on U we have

Ass(i.(F)) = Ass(F)

Proof
Since iy (F)jy = F we have Ass(i,(F)) N U = Ass(F'). Therefore we only need to
prove that Ass(i.(F)) C U.
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We may assume that X = Spec(A4) and U = Spec(B) are affine. The inclusion
1 corresponds to an injective homomorphism A — B and F = M~ for a f.g. B-
module M. Let z € Ass(i,(F')) and assume that € X\U. Then the ideal p, C A
annihilates an element m, € i,(F'), which corresponds to a section m € I'(V, i, (F))
for some open neighborhood V of z. Up to shrinking X we may assume V = X,
so that m € T'(X,4.(F)) = I'(U, F) = M is annihilated by the ideal p,B. But
peB = B because x ¢ U and therefore m = 0: this is a contradiction. The Lemma
is proved.

From the Lemma it follows that Ass(Fa) = Ass(Fp) : therefore, using the
fact that Fp, is flat over Spec(L) and (Hartshorne(1977), Prop. I11.9.7), we deduce
that F4 is flat over Spec(A). This concludes the proof of the Theorem in the case
S = Spec(k) and X = IP".

Assume now that S and X are arbitrary. Consider the closed embedding j :
X — IP" x S determined by Ox(1). Replacing H by j.H we can assume that
X =1IP" x S. Let h, h’ > 0 be such that we have an exact sequence:

Oprxs(=0 )M = Oprys(-)M = H =0
for some M, M'. Then for each S-scheme Z — S and for each
(Hz = F) € Quoti{g(t)(Z — S)
we obtain that the composition

Oprxz(-W" - Hz - F =0

is a surjection, i.e. is an element of Quotgéfh)M P(t)(Z — S). This proves that the
X/S

functor Quoti/ S( " is a subfunctor of the functor Quot,, )

) p(y)> and this functor
is evidently represented by Quotg(r_ hM Pt X S.
Conversely, a quotient

(Oprxz(~W)M = F) € Quoty!5 i py(Z = S)

is in Quoti/ g( #(Z — S) if and only if the composition

Oprxz(—hl)Ml — Oprxz(—h)M — F

is zero. This means that the condition for an S-morphism

X/S

_ P /k
O(—h)M,P(t) = Quot x S

Z — Quot O(=m)M,P(t)

to define an element of Quoti/g(t)(Z — S) is that it factors through the closed
subscheme defined by the entries of the matrix of the homomorphism:

OPTxQuot(_hl)M’ — OprxQuot (—h)M
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and this is a closed condition. This proves that Quoti/ 1‘2 ) is represented by a closed

subscheme of Quoto( /h)M P() % x S. g.e.d.

From the fact that QuotH/ g( ) represents the functor Quoti/ If( " it follows that
there is a universal quotient

X/s X/S
(HQuot = F) € QUOtH,/P(t)(QHOtH,/P(t))

corresponding to the identity morphism under the identification

Hom(Quot, Quot) = Quot(Quot)

In case H = Ox the scheme QuotX/ 5 is denoted Hilb>/% and called the relative

Hilbert scheme of X/S with respect to the polynomial P(t).
It will be sometimes convenient to consider the functor

Quotﬁ/ 5, (schemes/S)° — (sets)

defined as: X/ /s
Quoty/”(Z = 8) = H QuotH,P(t)(Z — 9)
P(t)

This functor is represented by the disjoint union

QuotX/S H QuotH 30
P(t)

which is a scheme locally of finite type, called the Quot scheme of X over S relative
to H; it carries a universal quotient Hquet —+ F.-
Similarly we will consider the relative Hilbert scheme of X over S:

Hilb™/® = ] Hilby/
P(t)

The construction of the Quot scheme commutes with base change; this is a result
which follows quite directly from the definition, but it is worth pointing it out:

(IV.5.2) PROPOSITION (base change property) Given a projective morphism
X — S, a coherent sheaf H on X, and a morphism T' — S, there is a natural
identification:

QuotXT/ =T xg QuotX/ o
H

Proof
Consider the product diagram

TxQuoti/ 5o QuotX/ o

l l
T — S
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The universal quotient HX/5 — F on Quotﬁ/ o pullsback to a quotient HX7/T —
Fron T X Quoti/ S Tt is immediate that the T-scheme T x Quoti/ 5 endowed with

this quotient represents the functor Quotig/ T g.e.d.

* * * * * ok

Local properties

(IV.5.3) PROPOSITION Let X — S be a projective morphism of algebraic

schemes, H a coherent sheaf on X, flat over S, and 7 : Q = Quoti/s — S the

associated Quot scheme over S. Let s € S be a k-rational point and q € 7~ 1(s) =
Q(s) corresponding to a coherent quotient f : H — F with kernel K. Let

fs : H(s) = F(s)

be the restriction of f to the fibre X (s), whose kernel is K(s) = K ® Oxs) (by the
flatness of F). Then there is an exact sequence

0 — Hom(K(s), F(s)) = t,Q % t,8 — Extl,_ _ (K(s), F(s))

and an inclusion:

ker[o(nt)] C Ext}gx(s) (K(s), F(s))

where o(w}) : 0(Og,q) = 0(Os,s) is the obstruction map of the local homomorphism
wh: Oss = Oq,q- In particular 7 is smooth at q ifExt}QX(s) (K(s),F(s)) =0.

Proof
A vector in ker(dm,) corresponds to a commutative diagram:

Spec(kle]) — @
{ i
Spec(k) — S

such that the upper horizontal arrow has image {g}. The above diagram corresponds
to an exact and commutative diagram of sheaves on X (s):

0 0
1 \

K(s)e — K(s) —0
1 \J

0— €H(s) — H(s)] — H(s) —0
1 1 \

0= €eF(s) — F(s)e — F(s) —0
1 1 \J
0 0 0
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where the middle row is exact by the flatness of H. Replacing the middle row by
its pushout under eH(s) — €F(s) we see that this diagram is equivalent to the
following one:

0 0
\ \

Ks)y = K(s) —0
\ \

0— €eF(s) - P — H(s) —0
I } I

0— €eF(s) — F(s)e — F(s) —0
! I |
0 0 0

and therefore we deduce that ker(dm,) = Hom(K(s), F(s)).
Now consider A in A and a commutative diagram

A & 0g,
B A OS,S

]
where 7 is a small extension in A. This diagram corresponds to an exact diagram
of sheaves on X:

0
\J
Ka
i}
[1V.5.2] y: 0= H(s) - HQxB — HQKA —0
\J
Fa

!
0

where the row is exact by the flatness of H over S. By pushing out by the quotient
fs : H(s) — F(s) and then pulling back by « : K4 — H ®x A we obtain an element

[0 for (7)] € Exthy g4 (K, F(s)) = Exthy (K(s), F(s))

By construction this element vanishes if and only if the previous diagram can be
embedded in a commutative diagram with exact rows and columns

0 0 0
1 \J 1

0—> K(s) — Kg — Ka —0
1 \J 1

0= H(s) - H®KB — HKA —0
1 \J 1

0— F(s) — FB — Fa

+ + +
0 0 0
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The middle column of this diagram is an element of Quoti/ S(Spec(B)), which
corresponds to a homomorphism ¢’ : Og , — B making the diagram

A & O0.q

tn S
B — OS,S
%)

commutative. Therefore we have associated an element of Ext%f)x o (K(s), F(s)) to

each diagram [IV.5.2]. It is straightforward to check that this correspondence is
linear.
Taking 7 : k[e] — k we get an inclusion

coker(dmy) C Ext%f)x(s) (K(s), F(s))
Taking any small extension 7 in A we can apply Proposition (1.3.7) to yield the

conclusion. g.e.d.

(IV.5.4) COROLLARY Under the same assumptions of (IV.5.3), if
Bxtb,, (K(s), () =0

then w: Q — S is smooth at g of relative dimension dim |[Hom(K(s), F(s))].

When S = Spec(k) we obtain the following “absolute” version of Proposition
(IV.5.3).

(IV.5.5) COROLLARY If X is a projective scheme, H a coherent sheaf on X
and f : H — F a coherent quotient of H with ker(f) = K then, letting Q@ = Quot%,
we have:

T[f]Q = HOIIl(IC, .7:)

and the obstruction space of Ogq [y is a subspace of Ext' (K, F).
In particular, if Ext' (K, F) = 0 then Q is nonsingular of dimension dim (Hom(K, F))
at [f].

A special case of Proposition (IV.5.3) is the following:

(IV.5.6) PROPOSITION Let p : X — S be a projective flat morphism of
algebraic schemes, and 7 : Hilb*/5 — S the relative Hilbert scheme. For a closed
point s € S let X = X (s) be the fibre over s and let Z C X be a closed subscheme
with ideal sheaf T C Ox. Then there is an exact sequence:

dm
0— H°(Z,Nz/x) — TizHilb =3 T,S — Ext} (Z,0z)

If moreover Z C X is a regular embedding then the above exact sequence becomes:

dm
[1V.5.3] 0 — H°(Z,Nz/x) — Tz Hilb =% T,S — HY(Z, Ng/x)
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If Exte (Z,0z7) = (0) (resp. HY(Z,Nz/x) = (0) in case Z C X is a regular
embedding) then m is smooth at [Z] of relative dimension h°(Z, Nz;x).

NOTES

1. One should compare the statement of (IV.5.6) with (II1.3.11), since
the local relative Hilbert functor of Z in X relative to X — S is prorepre-
sented by the local ring O

X/S.
(2]

Hilb
2. Our presentation of the Quot schemes is an adaptation of the one
given in Huybrechts-Lehn(1997). For a description of the sheaf of differen-

tials of the Quot schemes see Lehn(1998).
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IV.6. EXAMPLES

Complete intersections

We have already discussed some properties of the local Hilbert functor of a
complete intersection X C IP", which of course correspond to local properties of
the Hilbert scheme Hilb" at [X]. It is easy to check that, despite the fact that
H'Y(X, Nx) # (0) in general, every complete intersection X is unobstructed in IP".

We may assume dim(X) > 0. Let’s suppose that X C IP", r > 2, is the
complete intersection of r —n hypersurfaces fi,..., f._, of degrees d; < dy < ... <
d,_, respectively, n < r.

Consider a basis ®(), ... &™) of @; H°(IP",0(d;)) where

o™ = (¢{",.... 00"

h=1,...,m, and the (bgh) € k[Xy,...,X,]. Consider indeterminates w1, ..., Uy,
and the (r — n)-tuple

[IV.6.1]
frur @D+ +upn @™ = (frtu ¢+ Aum ™, frenturdt) 4 tun ™)
of elements of the polynomial ring k[u, z] = k[u1,. .., U, Xo, -, Xr]-

Let Ko(f + 3, un®®) be the Koszul complex relative to [IV.6.1] and

A := Supp[Hy (Ko (f + Y up®™))] € A™H+ = Spec(k[u, z))
h

Denoting by p : A™*+7+1 — A™ the projection, U := A™\p(A) is the set of points
u € A™ such that Ko(f + >, tn®®) is exact; U is an open set containing the
origin.

In IP" x A™ counsider the closed subscheme

= Proj(klu, zl/ (it m D+ Aumd™, . front gD+ FumdT)))

the projection m : X — A™ and its restriction my : Xy — U, where Xy := 7~ 1(U).
All the fibres of my are complete intersections of multidegree (dq,...,d,_,) and
X(0) = X. The Hilbert polynomial of a complete intersection depends only on its
multidegree because it can be computed using the Koszul complex: it follows that
all the fibres of myy have the same Hilbert polynomial P(t) and therefore 7y is a
flat family of deformations of X in IP". In an obvious way the tangent space of U
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at 0 can be identified with @; H°(IP", O(d;)), and the characteristic map with the
restriction

@ : @; H(IP",0(d;)) — &, H°(X, Ox(d;))

Since dim(X) > 0 the map ¢ is surjective, as one easily verifies using the Koszul
complex; since moreover U is nonsingular at 0, we see that the family 7y is complete
at 0. From Proposition (1.8.3)(iii) it follows that Hilbjp ;) is smooth at [X]. From
the completeness of 7y it also follows that complete intersections are parametrized
by an open subset of Hilbrp(t).

It is interesting to observe that the closure of this open set may contain points
parametrizing nonsingular subschemes of IP" which are not complete intersections.
An example of such a subscheme is given by a trigonal canonical curve C C IP*:
the quadrics containing C intersect in a rational cubic surface S, so it is not a
complete intersection since it has degree 8; but [C] is in the closure of the family of
complete intersections of three quadrics. It is apparently unknown whether a similar
phenomenon may occur in IP3, namely whether there are nonsingular curves in IP3
which are flat limits of complete intersections without being complete intersections.

The Kodaira-Spencer map of the families 7y has been studied in Sernesi(1975)
in the case of complete intersections of dimension > 2: 7y has general moduli except
for the cases of surfaces of multidegrees (4),(2,3),(2,2,2) (respectively in IP3, in
IP* and in IP%), i.e. for complete intersection K3-surfaces.

An obstructed nonsingular curve in P> (Mumford(1962))

We will show that the Hilbert scheme Hilb™" has an everywhere nonreduced
component Y which generically parametrizes nonsingular curves of degree 14 and
genus 24. It will follow that every curve parametrized by a general point of X is
obstructed in IP3.

A general element of ¥ is constructed as follows. Let F' C IP3 be a nonsingular
cubic surface, £, H C F respectively a line and a plane section in F'. Let C C F
be a general member of the linear system |[4H + 2E|. Using Bertini’s Theorem
one easily checks that C is irreducible and nonsingular; its degree and genus are
(C-H)=14 and 3(C — H - C) + 1 = 24. From the exact sequence:

0— Ke(H) — Ng — Oc(3H) = 0
we see that
hY(C, No) = h*(C,0c(3H)) = h°(C, Ko(—3H)) = h°(C,0c(2E)) =1
where the last equality follows easily from the exact sequence
0= Op(—4H) - Op(2E) - O¢c(2E) = 0

and from h®(Op(—4H)) = 0 = h'(Op(—4H)) and h°(Or(2E)) = h°(Op(E)) = 1.
Moreover the linear system |C| = |4H + 2E| has dimension

dim(|/C|) = 1 +dim(|C|¢) = h°(C, Kc(H)) = 37
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and therefore, since every curve C is contained in a unique cubic surface (because
9 < 14), the dimension of the family W of all curves C we are considering is
19 + 37 = 56 = 4 - 14 but they satisfy h°(C, Ng) = 56 + h'(C, No) = 57. We will
prove that W is an open set of a component ¥ of Hilb® ® and this will imply that X
is everywhere nonreduced. Our assertion will be proved if we show that our curves
C are not contained in a family whose general member is a curve D not contained
in a cubic surface. But on every such D the line bundle Op(4) is nonspecial and
therefore, by Riemann-Roch, h°%(D, Op(4)) = 33, hence D is contained in a pencil
of quartic surfaces. Let G1, G5 be two linearly independent quartics containing D:
they are both irreducible because otherwise D would be either contained in a plane
or in a conic, which is not the case because there are no nonsingular curves of degree
14 and genus 24 on such surfaces. We have G; N G2 = D U g where ¢ is a conic;
since ¢ has at most double points D has at most triple points and therefore G; and
G2 cannot be simultaneously singular at any point of D, thus the general quartic
surface G containing D is nonsingular along D. By applying Riemann-Roch on
G we obtain dim(|D|g) = 24. Therefore, since G is not a general quartic surface
(because D is not a complete intersection), we see that the family of pairs (D, G)
has dimension < 33+ 24 = 57 so that the family Z of curves D has dimension < 56.
This shows that the family W, which has dimension 56, cannot be in the closure of
Z and this proves the assertion.

It is instructive to observe that we can write the linear system |C| on a nonsin-
gular cubic surface F' as |[4H + 2E| = |6H — 2(H — E)| and this means that we can
find a sextic surface Fg such that F' N Fg = C Uq; Uqge where ¢; and g9 are disjoint
conics; if [C] € X is general then one can show that ¢q, g2 and Fg can be chosen to
be nonsingular.

There is another component R of HilbT * which generically parametrizes non-
singular curves C’ of degree 14 and genus 24 such that

C'"UEUT = F3N Fy

where FE is a line and I is a rational normal cubic which are disjoint. We have in
this case |C'| = |6H — E —T'| and

h1(C',Ng') = h(C', Oc: (3H)) = hO(C', Ko (—3H)) =
= h°(C'",0c/(2H — E =T)) = h°(F3,0p,(2H — E -T)) =0

so that general curves of R are unobstructed.

We refer the reader to Curtin(1981) for another point of view about this ex-
ample.

This example was the first published of this kind. Many others have appeared
in the literature since thereafter (see Gruson-Peskine(1978), Gruson-Peskine(1982),
Sernesi(1981), Ellia-Fiorentini(1984), Kleppe(1987), Walter(1992), Bolondi-Kleppe-
Miro Roig(1991), Martin Deschamps-Perrin(1996), Guffroy(2003)).

A line is obstructed inside a cone
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Let Q C IP? be a quadric cone with vertex v, and L C Q a line. Then
Npjg=01(1) C Nyyps = Or(1) ® O(1)
(see example (I1.3.5)(iii)); in particular H®(L, Ny o) = 2 and H'(L, N ,q) = 0.
On the other hand the Hilbert scheme Hilb? is 1-dimensional at the point [L] since

L moves in a 1-dimensional family. It follows that L is obstructed in @ (see Di
Gennaro(1990) for generalizations of this example).

An obstructed (non reduced) scheme

In IP? consider the scheme
X = Proj (k[Xo, . Xg]/J>

where

J = (X1X, X1X3, X5 X35, X3)

X is supported on the reducible conic defined by the equations
X1X2 == 0, X3 == O

has an embedded point at (1,0, 0,0) and has Hilbert polynomial 2(¢+1) (see example
(IV.3.4)). As in (IV.3.4) we consider the flat family parametrized by A':

X = PI‘Oj (k[u, X(), ey X3]/(X1X2, X1X3, Xg(Xg—UX()), X3(X2—UX()))) C PBXAI

We have X = X(0). If u # 0 then X (u) is a pair of disjoint lines. Let
g: Al — Hilby, 1
be the classifying map. If u # 0 we have
R (X (u), Nx() = 0;  h(X(u), Nx()) =8

Therefore g(u) is a smooth point and the tangent space has dimension 8.
In order to show that X is obstructed it suffices to show that

[1V.6.3] R°(X,Nx) > 8

because ¢g(0) and g(u) belong to the same irreducible component of Hilb‘;’(t +1)-
Consider the surjection

f:0ps(—-2)%* - ZIx =0
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determined by the four equations of degree two which define X. Elementary com-

putations, based on the fact that the generators of the ideal are monomials, lead to
the following resolution of Ox which extends f:

[IV6.4] 0= Ops(—4) 25 Ops(=3)%* - Ops (—2)®* -5 Ops = Ox = 0

A and B being given by the following matrices:

X3 X3 X3 0 0

~X; [ -x2 0 X3 o
B= X9 A= 0 - X, 0 X3

—X1 0 0 _Xl _X2

By taking Hom(—, Ox) we obtain the following exact sequence:

0 - Nx — Ox(2)®* ~4 0x(3)®*
from which we deduce that
[IV.6.5] HO(X, Nx) = ker[H'(Ox (2))®* A H(X, 0x(3))®4]
Using resolution [IV.6.4] it is easy to show that the restriction maps
n + HO(IP®,0(n)) — H°(X, Ox(n))
are surjective if n > 2. This allows us to identify H°(X, Ox(2)) and H°(X, Ox(3))
with the homogeneous parts of degree 2 and 3 respectively of k[Xy,..., X3]/J.

Hence using [IV.6.5] we can represent H%(X, Nx) by 4-tuples of polynomials. Pre-
cisely H°(X, Nx) is, modulo .J, the vector space of 4-tuples

q = (q1, 92,93, q4)

of homogeneous polynomials of degree 2 such that A tg € (J3)*. Tt is easy to find
all of them because J is generated by monomials. Computing one finds that a basis
of H°(X, Nx) is defined by the following column vectors:

X2 X1Xo X2 XoXo X3Xp O 0 0 0 0 0 0
0 0 0 0 0 X2 X1Xo X3Xo O 0 0 0
0 0 0 0 0 0 0 0 X2 X2Xo, X3Xp 0
0 0 0 0 0 0 0 0 0 0 0 X3Xp

In particular we see that h®(X, Nx) = 12, and this proves [IV.6.3].

A little extra work shows that [X] = g(0) belongs to two irreducible components
of Hilb‘;’(t +1)- We already know one of them of dimension 8: it contains g(u), u # 0,
and a general point of it parametrizes a pair of disjoint lines.
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The other component has dimension 11 and a general point of it parametrizes
the disjoint union Y = Q U {p} of a conic ) and a point p. Note that

h°(Y, Ny) = h°(Q, Ng) + h°(p, N,) =8 +3 =11

and h'(Y, Ny) = 0. Hence Y is a smooth point of a component of dimension 11 of
Hilb‘;’(t +1)- Therefore to conclude it suffices to produce a flat family parametrized
by an irreducible curve, e.g. Al,

Y cC PP x Al
such that Y(0) = X, Y(1) =Y. Here it is:
Y = Proj (k[v, Xo, X1, Xo, X3]/I)
where

I=(X1X2, X1X3+ vX1 X0, X2 X3+ vX2Xo, X3 — 02 XJ)
Clearly Y(0) = X; since

1= (Xl,X2,X3 — ’UX()) N (X3 + ’I)X(),Xle)

it follows that for all v # 0 Y(v) is the disjoint union of a conic and a point. The
flatness of ) follows from A.2(XV).

This example shows that in general the Hilbert schemes are reducible and not
equidimensional.

A reducible Hilbert scheme of divisors

Another example of reducible Hilbert scheme is the following, which appears in
Severi(1916). Let Y = C' x C’" where C and C’ are projective nonsingular connected
curves of genera g and ¢’ respectively and let

y 2 ¢
ip
C

be the projections; assume g, g’ > 2. Consider an effective divisor D = z1+---+z,
of degree g on C, and an effective divisor D’ = z7 + - -- + zj, of degree g’ on (',
both consisting of distinct points, and let

P=p (D) +p (D) =Cp, +---+Cp +Cog -+ Ca,
g

where C! = p~!(z) and C,» = p'~!(z’). T is a reduced divisor, has gg’ nodes and
no other singularity. If either D or D’ is non-special the curve I'" belongs to an
irreducible component H; of HilbY of dimension g + ¢’ generically consisting of
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curves of the same form, obtained by moving D and D’. When both D and D’
are special divisors the curve I' belongs to a linear system of dimension > 3 whose
general member is a nonsingular curve and therefore belongs to another irreducible
component Hy of HilbY which has dimension g+ ¢’ — 1. The intersection Hy N Ho
is irreducible of dimension g + ¢’ — 2.

Elementary transformations

Let ‘H be a coherent sheaf on the projective scheme X, and let P(t) = n be
a constant polynomial, where n is a positive integer. Then we have two different
Quot schemes associated to these data.

The first one is Quoti/ :( , whose k-rational point are quotients H — F which
are locally free of rank n. It will be considered later in this Section.

The other one is Quotﬁn. A k-rational point of this scheme is nothing but a
quotient H — F such that F is a torsion sheaf with finite support and h°(F) = n.
When n = 1 then F = k() for some closed point z € X: therefore we have a

natural morphism
q: Quoti,l — X

(H—F) +— Supp(F)

and Quo‘uﬁ,1 is a scheme over X. Let H — F be a k-rational point of Quotﬁ,l;
then ker[H — F| is called an elementary transform of H. The process of passing
from H to ker[H — F] is called an elementary transformation centered at z. This
construction is classical when X is a projective nonsingular curve and H is locally
free. For generalizations of it see Maruyama(1986).

(IV.6.1) PROPOSITION  Assume that Supp(#) is connected. Then Quots ,

is connected.

Proof
The natural morphism

q: Quotﬁ,1 — X
(H—F) ~— Supp(F)
has image Supp(H). Every H — F factors as
H — H®O,

o +— W<«
IR
Q
8

and therefore the fibre ¢~ (z) is identified with IP(H°(H®O,))Y which is connected.
The conclusion follows. g.e.d.

Hilbert schemes of points
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Consider a projective scheme Y and, for a positive integer n, the Hilbert scheme
YY", We have already seen in §IV.3 that Y 22 ¥ we will therefore assume n > 2.
Let Z C Y be a closed subscheme of length n. Then

H(Z,Nz)= @ Hom(Zz,,0z,)
y€ESupp(Z)

and
HY(Z,Nz) = (0)

Moreover from the exact sequence [IV.3.9] applied to Z C Y we see that

Ext'(Iz,0z) = H(Y, Eat'(Iz,02)) = @ Ext'(Zz,,0z,)
y€ESupp(Z)

It follows that the local properties of Y[l are determined by the independent con-
tributions from each of its points. The following properties follow at once:

a) If Z is reduced and supported at n distinct points of Y then [Z] is a non-
singular point of Y™ if and only if it is supported at nonsingular points of Y.

b) If Y is reduced then the set of [Z]’s with Z supported at n nonsingular
points of Y is an open set of dimension n dim(Y) contained in the nonsingular
locus of Y"1,

Another important property is the following:
¢) (Fogarty(1968)) If Y is connected then Y™l is also connected.

Proof
Let n > 1 and let T C Oy .y be the ideal sheaf of the universal family in Y x Y7l
Then we have a diagram of morphisms:

Yy xyln]
Quotz 7

' D (¢

yln+1] Y x Yl

where ¢ is the natural morphism, which is surjective because Supp(Z) = Y x YIrl.
The morphism p is defined as follows.

Let (y,[Z]) € Y x Y™ be a k-rational point and let v : T — k(y,[Z]) be a

. D . . [n] )
quotient, which is a k-rational point of Quoty XY . Then ker(y) C Oy yyin is

an ideal sheaf such that ker(y)Oy [z has colength 1 in Z ® Oy 4[z]. Therefore
ker(7)Oy x1z] defines a subscheme W C Y of length n + 1 containing Z and z; we
define p(y) = [W]. The morphism p is clearly sutjective. Since Y x Y™ is connected
by induction, we conclude that Y[?+1 is connected by Proposition (IV.6.1). g¢.e.d.
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In general Y1 is singular even if Y is nonsingular. Notable exceptions are the
cases dim(Y) = 1, 2.

If C is a projective nonsingular curve and n > 1 an integer, every closed
subscheme D C C of length n is a Cartier divisor, therefore regularly embedded in
C. Tt follows that C!"l is nonsingular of dimension

h®(D,Np) = h°(D,0p) =n

The case of surfaces is more subtle.

(IV.6.2) THEOREM (Fogarty(1968)) If Y is a projective nonsingular con-
nected surface then Yl is nonsingular connected of dimension 2n.

Proof
Let [Z] € YI"l. We then have:

Ext‘(Zz,0z) = (0) i>3
Moreover from the exact sequence:
0—-Zz7 -0y -0z —0

we obtain the sequence:

0 — HOIII(OZ, Oz) — HOIIl(Oy, Oz) — HOIII(Iz, Oz) —
— Eth(Oz, Oz) — Eth(Oy, Oz) — Eth(Iz, Oz) —
— EXt2(0z, Oz) — EXtZ(Oy, Oz) — EXtZ(Iz, Oz) — 0

Since Ext*(Oy, 0z) = H(Y,Oz) = (0) for i > 1 we see that
Ext?(Zz,0z) = (0)
and
Ext'(Tz,0z) = Ext?(0z,0z) = Hom(Oz, OzQwy)Y = Hom(Oz,0z)" = H*(Z,0z)Y

Therefore

Y (~1)'dim[Ext*(Zz, Oz)] = h°(Z,Nz) — h°(Z,0z) = h°(Z,Nz) — n

=0

Since the left hand side is independent of Z, it follows that h%(Z, Nz) is also inde-
pendent of Z. But Y™ is connected and has an open set which is nonsingular and
of dimension 2n: the conclusion follows. g.e.d.

To see that Y1l is singular if dim(Y) = 3 consider IP? with homogeneous co-
ordinates Xy, ..., X3 and the subscheme Z = V (X2, X2 X2, X1 X5, X1 X3, X2X3).
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Then [Z] € (IP?). A computation similar to that of the example of the previous
subsection shows that the Zariski tangent space of (IP%)[ at [Z] has dimension 18.

But (1P3)[4 is irreducible and its general point is nonsingular of dimension 12: it
follows that [Z] is a singular point.

Relative grassmannians and projective bundles

Consider a coherent sheaf £ on an algebraic scheme S, and let P(t) = n, where
n is a positive integer, be a constant polynomial. Then Quotg,/,f is a projective
S-scheme which will be denoted Quot,,(£) in what follows. We will denote by
p: Quot, () — S
the structural projective morphism and by

prE€— Q

the universal quotient sheaf; Q is locally free of rank n. The pair (Quot,,(£)/S, Q)
represents the functor

Quoty,(£) : (schemes/S)° — (sets)
defined by:
Quot, (E)(f : T — S) = {locally free rk n quotients f*€ — F on T'}
On Quot,, (£) we have a tautological exact sequence
0=>K—=p*(€)—Q—0
If £ is locally free we define
Gn(€) := Quot,,(Y)

and call it the grassmannian bundle of subbundles of rank n of £. Forn =1 and £
locally free we obtain

the projective bundle associated to £. The tautological exact sequence on IP(£) is:
0—=K = p*(€Y) = Ope)(1) =0
Note that for a finite dimensional k-vector space V we have

P(Vc0Os)=IPV) xS
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(IV.6.3) PROPOSITION Let £ be a locally free sheaf on the algebraic scheme
S, and let

[1V.6.2] 0->K—=p*(€)—Q—0

be the tautological exact sequence on Quot,,(£) for some 1 < n < rk(£). Then
there is a natural isomorphism

Quot, ()5 = Hom(Q, K)

and therefore
TQuot, (€)/s = Hom(K, Q)

Proof
Letting B = Quot,, (£) consider the product B x g B with projections pr; : BxsB —
B,i=1,2, and let £px,p be the pullback of £ on B xg B. Denote by Zn C Opx.B
the ideal sheaf of the diagonal A C B xgB. The tautological exact sequence [IV.6.2]
pulls back to two exact sequences:

O—)prflC—)EExSB —pr;iQ —0
on B xg B whose restrictions to A coincide, and A is characterized by this prop-
erty. This can be also expressed by saying that A is the vanishing scheme of the

composition
prik — 5§x53 — pryQ

Therefore we have a surjective homomorphism:
Hom(pr3Q,prik) — Za
(see (IV.2.2)) which, restricted to A, gives a surjective homomorphism:
Hom(Q,K) — Ia/Ta = 9}3/5

Since both sheaves are locally free and of the same rank, it has to be an isomorphism.
g-e.d.

(IV.6.4) PROPOSITION Let

0% F g0

be an exact sequence of locally free sheaves on the algebraic scheme S, and n > 1
an integer. Then there is a closed immersion

Quot,, (G) C Quot,, (F)
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and a natural identification:

NQuotn(g)/Quotn(.'F) = p*gv ®RA® OQuotn(g)

where p : Quot,, (F) — S is the structure morphism and p*F — Q is the universal
quotient.

Proof
Let f:T — S be a morphism. For every locally free rank n quotient

(f*G = H) € Quotn(G)(T)

there is associated, by composition with the surjective homomorphism f*(3) :
f*F — f*G, an element

(f*F = H) € Quot,(F)(T)

Therefore Quot,(G) is a subfunctor of Quot, (F). Consider the diagram of homo-
morphisms on Quot,, (F):

p*(€)

Given a morphism f : T — S, an element of
Quot,(F)(T) = Homg(T, Quot,, (F))

belongs to Quot,(G)(T) if and only if it factors through the closed subscheme
Do(vp*(@)) of Quot, (F). This proves that Quot,(G) is a closed subfunctor of
Quot, (F), and therefore the embedding Quot,, (G) C Quot, (F) is closed. More
precisely, this analysis shows that Quot,,(G) = Do(vp*(c)). According to Example
(IV.2.8) we therefore have a surjective homomorphism:

Hom(Q,p*(€)) > T

where T C Oquot,, () is the ideal sheaf of Quot,, (G). By restricting to Quot,, (G) we
obtain a surjective homomorphism:

Hom(Q, p*E) ® Oquot, (g) — T/ -0
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which is an isomorphism because both are locally free and of the same rank. The
conclusion follows. g.e.d.

The following is immediate:

(IV.6.5) COROLLARY Let
0=-€&E—=>F—=G—-0

be an exact sequence of locally free sheaves on the algebraic scheme S. Then there
is a closed immersion
P(€) C IP(F)

and a natural identification:

Npe)ypF) = r'G Q Ope (1)

(IV.6.6) REMARKS: Let £ be a locally free sheaf on an algebraic scheme S,
and let

[IV.6.3] 0= QY —p*(€)—=KY—0

be the dual of the tautological exact sequence [IV.6.2] on G,,(£) = Quot,, (V).
Tensoring with Q we obtain the exact sequence:

0— QYA — P2 — KV®Q —0
[1V.6.4] |

Tg, (&)

In the case n = 1 and S = Spec(k) we have £ = V a vector space and G1(V) =
IP(V) = IP; the dual of the tautological sequence is

0—-0p(-1) > VeO0p »>Tp(—1) =0
and the sequence [IV.6.4] is the Euler sequence
0->0p —>VRO0p(1l)—>Tp —0

Therefore [IV.6.4] is a generalization of the Euler sequence.
The scheme Hom(X,Y).

Let X and Y be schemes, with X projective and Y quasi-projective. For every
scheme S let:
F(S) =Homg(X x S,Y x S)

This defines a contravariant functor:

F : (schemes)® — (sets)
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called the functor of morphisms from X toY.

For every ® € F(S) let I'es C X x Y x S be its graph. Then I's =2 X x S
is flat over S and therefore defines a flat family of closed subschemes of X x Y
parametrized by S. This means that F is a subfunctor of HilbX*Y .

If G C X xY x 8 is a flat family of closed subschemes of X x Y, proper over S,
then the projection 7 : G — Y x S is a family of morphisms into Y and the locus
of points s € S such that 7(s) is an isomorphism is open (Note 2 of §IV.2). This
means that F is an open subfunctor of HilbX*Y  represented by an open subscheme
of HilbX*Y | which we denote Hom(X,Y). Tt is called the scheme of morphisms of
X into Y.

Let X and Y be as above, and consider the contravariant functor

G : (schemes)® — (sets)
defined as follows:
G(S) = {S-isomorphisms X x § - Y x S}

Clearly G is a subfunctor of F'. It is easy to prove that G is represented by an open
subscheme Isom(X,Y) of Hom(X,Y), called the scheme of isomorphisms from X
toY. When X =Y it is denoted Aut(X) and called the scheme of automorphisms
of X.

The following result follows immediately from Proposition (II.3.8) and Corol-
lary (11.3.9):

(IV.6.7) PROPOSITION Let f : X — Y be a morphism of algebraic schemes,
with X reduced and projective and Y nonsingular and quasiprojective. Then

Ti5)(Hom(X,Y)) = H(X, f*Ty)

and the obstruction space of Hom(X,Y) at [f] is contained in H' (X, f*Ty).
If X is nonsingular then the tangent space to Aut(X) at 1x is HO(X, Tx).

Let 7 : X C Y be a closed embedding of projective nonsingular schemes. Then
j induces an inclusion

J : Aut(X) C Hom(X,Y)

such that J(1x) = j and which is induced by the closed embedding 1x xj : X x X C
X xY. It follows that J is a closed embedding. Its differential at 1x is the injective
linear map

H°(Tx) — H°(Ty|x)

coming from the natural inclusion Tx C Ty |x. In fact from the diagram of inclu-

sions:
XxX C XxY

U U
A =Ty
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we deduce the commutative diagram:

Nasxxx C Nry/xxy

Tx C Ty|X

and we conclude according to §1V.4, Note 2.

As an example consider X = IP', Y = IP" and j : IP! — IP" the r-th Veronese
embedding. Locally around [j] we have a well defined morphism

M : Hom(IP', IP") — Hilb™"

sending [4] — [j(IP')] with fibre M ~1([j(IP')]) an open neighborhood of the identity
in Aut(IP'). Consider the following diagram consisting of two exact sequences:

0
T

0> Tp1 — 7*Tpr —- N; —=0
T

OPl (r)r+1

T
Op:

T
0

From the vertical sequence (the Euler sequence restricted to IP!) we get
W' (j*Tpr) =0, hO(j*Tpr) =r(r+2)

Since h'(Tp1) = 0 from the other sequence we obtain A'(N;) = 0 and the exact
sequence

*

(0) — H%(Tpr) — HO(j*Tpr) — H°(N;) — (0)

| | |
Ty, Aut(P') Ty;;Hom(P', IP") T;pryHilb™”

Since the map * can be identified with dMj; we see that M and Hom(IP', IP") are

smooth at [j] and Hilb?" is smooth at [j(IP')]; moreover
dimpj(Hom (P, P") = r(r + 2) = dim;(pr) (Hilb"") + 3

For more on the schemes Hom(/P!, X) and applications to uniruledness see De-
barre(2001).
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IV.7. SEVERI VARIETIES

An important refinement of the Hilbert functors derives from the consideration
of flat families of closed subschemes of a projective scheme Y having prescribed
singularities, i.e. of families all of whose members have the same type of singularity
in some specified sense. This leads to the notion of equisingularity and to a related
vast area of research. In this Section we will only concentrate on the specific case of
families of plane curves with assigned number of nodes and cusps: we will show how
to construct universal families of such curves, whose parameter schemes are called
Severi varieties for historical reasons. This is a subject with a long history and a
wealth of important results, both classical and modern. Here we will limit ourselves
to prove a few basic results and to indicate some of their generalizations and the
main references in the literature. We will assume char(k) = 0 in this Section.

x ok ok x kK
Equisingular infinitesimal deformations

Let Y be a projective nonsingular variety and X C Y a closed subscheme whose
ideal sheaf Zx C Oy we will sometimes simply denote by Z in this subsection. Recall
([IL.4.4]) that on X we have an exact sequence of coherent sheaves:

0—Tx = Tyjx = Nx;y > Tx =0

The sheaf
Ny = ker[Nx;y — Tx]

is called the equisingular normal sheaf of X in Y. Clearly NE{/Y = Nx)y if X
is nonsingular (see §I1.4). By definition sections of the equisingular normal sheaf
parametrize first order deformations of X in Y which are locally trivial, because
they induce trivial deformations around every point of X.
An alternative description of the equisingular normal sheaf can be given as
follows. Let
Ty(— lOgX) C Ty

be the inverse image of T'x under the natural restriction homomorphism Ty —
Ty|x. Then Ty (—log X) is called the sheaf of germs of tangent vectors to Y which
are tangent to X. We clearly have an inclusion ZTy C Ty (— log X) such that

TX = Ty(— 10gX)/ITy
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and an exact sequence
[IV.7.1] 0= Ty(—logX) = Ty — Ny,y =0

From the definition it follows that, for every open set U C Y, I'(U, Ty (— log X))
consists of those k-derivations D € I'(U,Ty) such that D(g) € I'(U,Z) for every
g € (U, 7).

(IV.7.1) EXAMPLES

(i) Assume that X is a hypersurface in Y; then Nx,y = Ox(X). Locally on
an affine open set U C Y we have (Nx,y)junx = Ovnx. Assume that X can
be represented by an equation f(zi,...,2,) = 0 in local coordinates on U; then
from the definition of T it follows that (N% /y)|Un x C Oynx is the image of the
ideal sheaf (0f/0x1,...,0f/0x,) C Oy. We deduce that an equisingular first order
deformation of X in Y corresponding to a local section g of N¥% /vy can be written
locally as

f(z) +eg(z) =0

where

of of
9(z) = al(ﬁ)a—j;1 +-F an(g)a—xn
restricts to g. Therefore if Y = IP™ and X is a hypersurface of degree d we have an
exact sequence

0— Opn = Z(d) = Nx/pn — 0

where Z C Opn is the ideal sheaf locally generated by the partial derivatives of a
local equatio of X. In the special case of a curve X in a surface Y assume that
p € X is a singular point and let f(z,y) = 0 be a local equation of X around p.
If p is a node then (0f/0x,0f/0y) = m, is just the maximal ideal of p; if p is an
ordinary cusp with principal tangent say y = 0 then (0f/0x,0f/0y) = (x,y?) is an
ideal of colength 2.

(ii) Let X C IP? be a (possibly reducible) plane curve of degree d of equation
F(Xo, X1, X3) =0, having § nodes p1, ..., ps and no other singularity. This case is
important because every nonsingular projective curve is birationally equivalent to
a nodal plane curve. Denote by A = {p1,...,ps} C IP? the 0-dimensional reduced
scheme of the nodes of X and by v : ' = X the normalization map. The above
analysis shows that sections of H°(Za(d)), i.e. curves of degree d which are adjoint
to X, cut on X sections of N /P2 This means that

V(N p2) = v*[Ox(d) @ Ta] =
= v*Ox (d)(—py —p{ — - —p5 — P§) = wc @ v*O(3)
where v (p;) = {p},p!},i=1,...,d, and therefore we have

W (C,v*(Nx/p2)) =3d+g—1, h'C,v*(Ny/p2)) =0
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where g is the geometric genus of X. Moreover, since

ve[v* (N p2)] = va[v* (Ox (d) ® Ta] =

Ox(d) ® v Oc(—py —p{ — - —ps —p§) = Ox(d) ® Ia = Ny p»
we have

RO(X, Nig p2) = hO(C,v* (Nl pa)) = 3d + g — 1 = (14?) =6 - 1
[1V.7.2]
hl(Xa NAIX/IP2) = hl(C, V*(NA/X'/P2)) =0

Finally, since
d+2
h"(md))z( N )—5:3d+9

and H°(Za(d))/(F) C H°(Nk /=), comparing with [IV.7.2] we see that A imposes
independent conditions to curves of degree d and that

H°(Nx/p2) = H°(Za(d))/(F)
or, equivalently, the restriction map
H°(Za(d)) = H°(Nx/p2)
is surjective. Note that N /P2 is a non invertible subsheaf of Nx,p2.

(iii) Another interesting case is obtained by taking an irreducible curve X C IP?
of degree d having ¢ nodes pi,...,ps and k ordinary cusps qi,...,q, as its only
singularities. This case is important because branch curves of generic projection on
IP? of projective nonsingular surfaces are curves of this type.

Let v : C — X be the normalization map. Denoting g; = v=(g;), j = 1,..., &,
we have in this case, according to the above description
v*(Nx p2) = Oc(d)(—py — Py — - =05 — 5 — 3% — -+ — 30) =
=wo @V Ox(3)(—q1 — - — qx)

As before one shows that v,[v* (N p2)] = N, p» and therefore
[IV.7.3]

d+2
h (X, N p2) = B°(C,wo @ v* Ox (3)(—1 — -+ — ) > ( 0 ) —6—2Kk—1
and in general we may have strict inequality and A'(X, N / p2) 7 0 because the
invertible sheaf we @ ¥*Ox(3)(—q1 — -+ - — ) can be special. But if ¥ < 3d then
it is certainly non special and therefore in such a case we have
hO(X, Ny po) = (132) =6 =26 —1=3d+g—1—x

(X, N p2) = 0
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The Severi varieties

Given an integer d > 0 consider the complete linear system |O(d)| of plane
curves of degree d. It is a flat family of closed subschemes (precisely of Cartier
divisors) of IP? parametrized by the projective space ¥4 = IP[H°(IP?, O(d))]:

H CP2XEd

O@)]:
Y4

The linear system |O(d)| has a universal property with respect to families of plane
curves of degree d because The pair (X4, |O(d)|) represents the Hilbert functor:

Ay : (algschemes)® — (sets)

A4(S) = {flat families C C IP? x S of plane curves of degree d parametrized by S}

(see §IV.3). In this subsection we want to consider the problem of constructing a
universal family of reduced curves in IP? having degree d, an assigned number § of
nodes and x of ordinary cusps and no other singularity. If such a universal family
exists it is parametrized by a scheme which we denote by Vg’”. These schemes have
been studied classically: the foundations of their theory were given in Severi(1921)
and they are therefore called Severi schemes or Severi varieties.

If the Severi scheme Vg’” exists then, by the universal property, there is a
functorially defined morphism

[1V.7.4] 1A

We start from the definition of the functor we want to represent.

(IV.7.2) DEFINITION Let d, d, k as above. Then
V3" : (algschemes)® — (sets)
is defined as follows. For each algebraic scheme S

flat families C C IP? x S of plane curves of degree d
VZ’K(S ) = { formally locally trivial at each k-rational s € S whose geometric
fibres are curves with § nodes and k cusps as singularities

Obviously Vg’” is a subfunctor of Az. The main result about Vg’” is the
following
(IV.7.3) THEOREM For each d, 6, k as above the functor Vg’” is represented

by an algebraic scheme Vg’“ which is a (possibly empty) locally closed subscheme
of Ed.
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In case kK = 0 we write Vg instead of Vg’o. The first published proof of this
result is in Wahl(1974). We will not reproduce it in full generality here, but we will
only consider the case x = 0, i.e. the case of nodal curves. This assumption allows
a technically simpler argument without changing the structure of the original proof.
We need some Lemmas.

(IV.7.4) LEMMA Let p € IP?, O the local ring of IP? at p, By = O/(f,) the
local ring of a plane curve having a node at p. Assume that for some A in A we
have a deformation A — B of By over A such that Té /A is A-flat. Then B is trivial

andTé/A%A.

Proof
By induction on dimy(A). The case A = k is trivial because

T, = O/(fo, fox, for) = O/(fox, for) =k

(see (I1.4.2)). In the general case consider a small extension
0—>(e)>A—A >0

and the induced deformation A" — B’. We have B = (A®xO)/(f) for some f which
reduces to fo modulo m4, and Té/A = B/(fx, fy)- Therefore B' = (A" ®@x O)/(f")

where f’ is obtained from f by reducing the coefficients to A’, and
Té’/A’ =B'/(fx, fy) = B/(fx, fr) ®a A" = T};/A ®a4 A

It follows that Tlla" /Al is A’-flat and, by induction, we have

B' = (A" @x 0)/(fo)

and
Tpija = A @k [0/ (fo, fox, foy)] = A’

Thus f = fo + eg where g € k. We have:

Tha = (AQk 0)/(fo + €9, fox, fov) = A/(eg)

where the last equality follows from the fact that fo € (fox, foy). Since A/(eg) is
A-flat if and only if g = 0 it follows that B = (A ®x O)/(fo) = A ®x (O/(fo)) is
the trivial deformation and T’ ja=A qg.e.d.

(IV.7.5) LEMMA Let f : X — S be a flat morphism of algebraic schemes
which factors as _
X L v
Noda
S



L. DETTIEST 410

where j is a regular embedding of codimension 1 and q is smooth. Then for every
morphism of algebraic schemes ¢ : 8" — S we have

1 ~/ * 1
Tgiyox/s = P Tx/s

where @ : S’ xg X — X is the projection (i.e. T)lc/s commutes with base change).
Proof

Since the question is local we may reduce to a diagram of k-algebras of the form:

B="P/(f) — B'=Pa/(f)
T )
A — A

where P is a smooth A-algebra, f € P is a regular element, and f’ is the image of
fin Py = P®4 A'. Then we have

N/ =B % QpapB

f — df ® 1
and ;
/G =B 25 Qpyep B
f! > df' ® 1
But since

Qpija @p B' = (Qp/a @p B) @p B’
we have ¢’ = § g B’ and

Té/A ®p B’ = coker(6Y) ® g B’ = coker(§"V) = Té’/A'

g.e.d.

(IV.7.6) LEMMA Let S be an algebraic scheme and C C IP? x S a flat family
of plane curves of degree d. Let s € S be a k-rational point such that the fibre
C(s) is a curve having at most nodes as singularities. Then TC1 /s is S-flat at a point

p € C(s) if and only if the family is formally locally trivial at s around p.

Proof
If p is a nonsingular point of C(s) then C — S is smooth at p, hence T*(C/S, O¢), = 0
and the assertion is obvious.

Let’s assume that p is a node of C(s). Let A = Og,, Ay := A/m®, Sy =
Spec(Ay) and Cy — S, the induced infinitesimal deformation of C; = C(s); denote
by B = O¢, and by B, = Oc_, p. By Lemma (IV.7.5) we have:

[IV.7.5] T3 /s.p=Th. s, =T (C/S,0¢)p ®0c, Ba=Tg,4 ®5 Ba

Assume that T*(C/S,Oc), = Té/A is A-flat. Then Téa/Aa is A,-flat by [IV.7.5]
and therefore B, is the trivial deformation of By = B/maB = O¢(s),p, by Lemma
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(IV.7.4). Since this is true for every a we conclude that the family C — S is formally
locally trivial at p.

Conversely, assume that C — S is formally locally trivial at p. Then B, =
By Qi A, for all o and Téa/Aa is Ay-flat by Lemma (IV.7.4). But by [IV.7.5] we
have

Téa/Aa = Té/A XB Ba = Té/A Ra Aa

and from the local criterion of flatness we deduce that T /A= TY(C/S,Oc), is
A-flat. g-e.d.

Proof of Theorem (IV.7.3)

Consider the universal family H C IP? x ¥, of plane curves of degree d and let
{W;} be the flattening stratification of T. %L /5a Let W = W, be a stratum containing

a k-rational point s € ¥, parametrizing a reduced curve H(s) having § nodes and
no other singularity, and let H' C IP?2 x W be the induced family of degree d curves.
By Lemma (IV.7.5) we have

T%l’/W % Tq]_'t/zd ® O’HI

and therefore, by construction, T, sw is flat over W. Moreover, since H' C P2xWwW
is a regular embedding of codimension 1, T, w8 of the form Oy for some closed
subscheme V' C IP? x W. By applying Lemma (IV.7.5) again we deduce

Ov(s) = Toryw ® k 2= Ty

which is a reduced scheme of length ¢ supported at Sing(?(s)). This implies that
V — W is etale at the 0 points of V(s).Therefore there is an open neighborhood U
of s € W such that V(U) — U is etale of degree §. If u € U is a k-rational point
then #(u) is a curve such that T,il(u) ~ V(u), hence H(u) has § singular points

P1,---,ps and no other singularity, such that Tép. = k. From Proposition (11.4.6)
J

it follows that #(u) is a é-nodal curve. Therefore by applying Lemma (IV.7.6) we

see that the family H'(U) — U is an element of Vg’O(U ).

Putting together all these open sets we obtain a locally closed subset U; C W;
such that the induced family H] C IP? x U; defines an element of Vg’o(Ui). Now let

and let H C IP2 x V3 be the induced family. If C C IP? x S is an element of V°(S)
for an algebraic scheme S then by the universal property of |O(d)| we obtain a unique
morphism S — ¥, inducing the given family by pullback. By Lemma (IV.7.6) and
the defining property of the flattening stratification such morphism factors through
V9. Thus (V3,H) represents the functor VS’O. g.e.d.

We now consider the local properties of the Severi varieties.
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(IV.7.7) PROPOSITION Let C C IP? be a reduced curve having degree d, §
nodes and k ordinary cusps and no other singularity. Let [C] € V = Vg"i be the
point parametrizing C'. Then there is a natural identification:

Ti)V = H°(C, N p2)

and H'(C, Ng, p2) is an obstruction space for Oy (c).

Proof
Tic1V is the subspace of Tjg1Xq = H®(C, O¢(d)) corresponding to locally trivial
first order deformations, and these are the elements of H°(C, N/ / p2) by the very
definition of Ng,p.. From the proof of Proposition (I1.3.3) it is obvious that ob-
structions to deforming locally trivial deformations lie in the space H'(C, Nj, / P2)-
g.e.d.

According to the classical terminology, we call Vg’” reqular at a point [C] if
H'(C, N / p2) = 0; otherwise Vg’” is called superabundant at [C]. An irreducible

component W of Vg’“ is called regular (resp. superabundant) if it is regular (resp.
superabundant) on an open subset. Vg’” is called regular if all its components are
regular; otherwise it is called superabundant. From (IV.7.7) and from example
(IV.7.1)(iii) it follows that if a component W of Vg"’" is regular then it is generically
nonsingular of dimension 3d + g — 1 — k, where g is the geometric genus of C, i.e.
of pure codimension § + 2k in X4.

(IV.7.8) COROLLARY If k < 3d then Vg’”, if non-empty, is regular at every
point. In particular Vg is regular at every point, in particular has pure dimension

d+2
3d+g—1:( ; )—1—5

provided § < (g)

Proof

The first part follows from Proposition (IV.7.7) and from Example (IV.7.1)(iii).
The condition § < (‘21) comes from the fact that (g) is the maximum possible number
of double points for a plane curve of degree d and it is attained by nodal unions of
d lines. q-e.d.

EXAMPLE If £ > 3d then VS’F” can be superabundant. The following clas-
sical example is due to B. Segre (see Segre(1929a) and Zariski(1971), p. 220).
Consider plane curves of the following type:

C: [f2m($7y)]3 + [f3m(x7y)]2 =0

where fo,(z,y) and fs,,(z,y) are general polynomials of the indicated degrees, and
m > 2. Then d = deg(C) = 6m, § = 0 and s = 6m? because the only singularities
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of C' are the points of intersection of the curves fs,, = 0 and f3,,, = 0 and clearly
they are cusps. C' is irreducible of geometric genus

—1
g:<6m2 )—Gm2

The dimension of the family of curves C is

R:= <2m2+ 2) + <3m2+ 2) 1= %(13m +2)(m+1)

which is larger than

rz%—2m:6m2+9m

Infact R —r = (m; 1). Therefore Vg;,?mz is superabundant at all points [C].

Let’s compute h'(C, NG, p2)- By the analysis of example (IV.7.1)(iii) we know
that h!(C, N, / p2) equals the index of speciality ¢ of the linear system cut on the
normalization C of C' by the curves of degree 6m passing through the cusps and
tangent there to the cuspidal tangents. It is an easy computation (see Zariski(1971)
p. 220 for details) that

t=R—r

The conclusion is that each [C] is a nonsingular point of a superbundant component
of V§£m2 of dimension R.

For a modern treatment of this example see Tannenbaum(1984). It is more
difficult to construct obstructed points of Vg’“; see Note 1 below.

NOTES

1. The Severi varieties Vg’” may have a complicated structure. If there
are too many cusps then in general a [C] € Vg’“ satisfies H'(C, N, /p2) 7

(0) and in fact Vg’” can be singular at such a [C]. To decide whether
this effectively happens has been a long standing classical problem (see
Zariski(1971), ch. VIII, where a discussion of this topic is given). The first
published example of a singular point of a Severi variety is in Wahl(1974):
it is a plane irreducible curve of degree 104 with 3636 nodes and 900 cusps.
For other examples see Luengo(1987) and Guffroy(2003).

2. An important classical problem, known as the “Severi problem”, has
been to decide about the irreducibility of the open set of Vg parametrizing
irreducible nodal curves. This problem has been solved affermatively in
Harris(1986) and, independently, in Ran(1986) and Treger(1988). See also

Loeser(1987). It is known that the open set of Vg’” parametrizing irreducible
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curves is reducible in general if K > 0. For examples see Segre(1929b) (such
examples are also reported in Zariski(1971)).

3. (** to be expanded **) Corollary (IV.7.8) does not say anything
about the non-emptyness of Vg’”. For nodal curves Severi claimed the fol-
lowing:

For each 0 < § < (g) there exist plane curves of degree d having exactly
0 nodes and no other singularities, i.e. Vg #0. If0<§ < (dgl) then
there exist irreducible plane curves of degree d having exactly 6 nodes and
no other singularities.

This statement and generalizations have been reconsidered in Tannen-
baum(1980), Fulton(1983). A similar statement for curves with nodes and
ordinary cusps has been made in Segre(1929a), but apparently it has not
been reconsidered from a modern point of view.

4. Corollary (IV.7.8) should be compared with Theorem (I11.6.7). In-
fact the two results can be shown to be closely related because they give
two different descriptions of the local structure of families of plane nodal
curves. The clue is given by Lemma (I11.6.6).

5. The proof of Theorem (IV.7.6) can be easily modified to prove the
existence of universal families of curves with nodes and cusps (generalized
Severi varieties) on a projective nonsingular surface Y. In such a proof one
replaces ¥4 by HilbY and uses the existence and the universal property of
Hilb".

Such generalized Severi varieties behave in a way relatively similar to
the Vg’”’s as long as Y has Kodaira dimension < 0 (see Lange-Sernesi(2002),
Tannenbaum(1980)). On surfaces of general type the situation changes
radically. On such a surface Y the generalized Severi varieties are in general
superabundant even when x = 0 and it is not clear in which range of ¢
they are not empty. A systematic study of them has started relatively
recently. We refer the reader to Chiantini-Sernesi(1997), Greuel-Lossen-
Shustin(1997), Chiantini-Ciliberto(1999), Flamini(2001), Flamini(2002) for
details.
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