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Appendix

In this Appendix we have collected some standard technical tools in
the form in which they are used in the book. For some of them the reader
could refer to Eisenbud(1995) and to Hartshorne(1977) as well.
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A.1. DIFFERENTIALS

Let A — B be a ring homomorphism. As usual, we will denote by Qp/4
the module of differentials of B over A, and by dp/a : B — 1,4 the canonical
A-derivation. Recall that

QB/A = I/I2

where I = ker(B®4 B £+ B) is the natural map, and for each b € B
dp/a(b) =b®1—-1®5b
is called the differential of b. We have a natural isomorphism of B-modules
Der4 (B, M) = Homp(Qp/4, M)

Note that the exact sequence

[A.1.1] 0— Qp/a— (B®aB)/I? %5 B —0
where 1/ is induced by p, is an A-extension of B. The ring
Pgp/a = (B®a B)/I”

is called the algebra of principal parts of B over A. The A-extension [A.1.1] is trivial
because we have splittings:
Al, Ag :B— PB/A

defined by A1(b) = b® 1, A2(b) = 1 ® b; note that dg/4 = Ay — A2. We will consider
Pp/4 as a B-algebra via A;.
The following are some fundamental properties of the modules of differentials:

(A.1.1) PROPOSITION
() If

o~ — 0

are ring homomorphisms, then:

Qp/a®a A =Qpg, a4
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(ii) If A — B is a ring homomorphism and A C B is a multiplicative system,
then:

Qa-1p/a 2 A7Qp/0

(iii) Let K — L be a finitely generated extension of fields. Then
dimp, (Qr,/x) > trdeg(L/K)

and equality holds if and only if L is separably generated over K. In particular
Qr/x = (0) if and only if K C L is a finite algebraic separable extension.

Proof
See Eisenbud(1995).

We have two standard exact sequences.

(A.1.2) THEOREM (Relative cotangent sequence) Given ring homomorphisms
ALB % c
there is an exact sequence of C-modules:
[A.1.2] Qp/a®8C 2 Qoja — Qo — 0
where the maps are given by:

a(dpya(b) ® c) = cdoya(g(d)); Bldcya(r)) =dg/p(r) beB, ceC

Proof
See Eisenbud(1995), prop. 16.2.

When B — C is surjective we have Q¢/p = (0) and the next theorem describes
ker(a).

(A.1.3) THEOREM (Conormal sequence) Let
AL B2

be ring homomorphisms with g surjective, and let J = ker(g), so that C = B/J.
Then:
(i) We have an exact sequence

[A.1.3] J/J? 25 Qpa @5 C 25 Qcys — 0
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where § is the C-linear map defined by 6(Z) = dp,4(z) ® 1.
(ii) There is an isomorphism

QByi2ya®myr2) C=Qpa®pC

In other words the conormal sequence [A.1.3] depends only on the first infinitesimal
neighborhood of Spec(C) in Spec(B).

(iii) The map § is a split injection if and only if there is a map of A-algebras
C — B/J? splitting the projection B/J? — C.

Proof
(i) see e.g. Eisenbud(1995), prop. 16.3.

(ii) Comparing the exact sequence [A.1.3] with the analogous sequence associ-
ated to A — B/J? — C we get a commutative diagram:

J/J? = Qp/a®pC — Qg4 —0

| } |
J/J2 — Q(B/J2)/A®(B/J2)C — QC’/A —0

and the vertical arrow, which is induced by B — B/J?, must be an isomorphism.

(iii) By (ii) we may assume that J2 = 0, i.e. that 0 = J — B — C — 0
is an A-extension. Assume that § : J — Qp/4 ®p C is a split injection, and let
o :Qp/a ®p C — J be a splitting. Then the composition

BL_)QB/A@BCL)J

is an A-derivation. It follows that 1 — od : B — B is an A-homomorphism such
that (1 — od)(J) = 0 and therefore it induces an A-homomorphism C' — B which
splits g.

Conversely assume that g : B — C has a section 7 : C — B. Then we have a

derivation
D:B—=J &) QC/A

given by D(b) = (b — (19)(b),dc/a(g(b))). One easily checks that D induces an
isomorphism Qp,4 ®p C = J & {2c/ 4, thus proving the assertion. g.e.d.

As an application of (A.1.3) we have the following:
(A.1.4) PROPOSITION Let K be a field and (B, m) a local K-algebra with
residue field B/m = K'. Then the map
§:m/m?* — Qp/k @ K’

in the exact sequence [A.1.2] relative to K — B — K' is injective if and only if
K C K' is a separable field extension.
In particular, if B/m = K then

§:m/m? — Qp/k ®p K
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is an isomorphism. Therefore

dlm(B) < dimK(QB/K Xp K)

Proof
See Eisenbud(1995), cor. 16.13. The last assertion follows from the conormal se-
quence relative to K — B — K. q-e.d.

The following Theorem describes the module of differentials for regular local
rings.

(A.1.5) THEOREM Assume that K is a field and B is a local noetherian
K-algebra with residue field B/m = K. If Qg g is a free B-module of rank equal
to dim(B) then B is a regular local ring. If K is perfect (e.g. algebraically closed)
and B is e.f.t. over K then the converse is also true.

Proof
Assume first that Qp/k is free of rank equal to dim(B). Then dimg(m/m?) =
dim(B) by (A.1.6), so B is a regular local ring.

Assume conversely that K is perfect and that B is a regular local ring, e.f.t.
over K. Then we have

dimg (Qp/x ®p K) = dimg (m/m?) = dim(B)
Let L be the quotient field of B. Then, by (A.1.1)(iii), we have
Qp/k ®p L=/
and
dimp, (2 k) = trdeg(L/K) = dim(B)

because L is separably algebraic over K, since K is perfect. Therefore we have

Since B is e.f.t. over K, {2p/k is a finitely generated B-module, and from Lemma
(A.2.7) it follows that it is free of rank equal to dim(B). g.e.d.

In particular we have the following:

(A.1.6) COROLLARY Let k be an algebraically closed field, and let B be an
integral k-algebra of finite type. Then B is a regular ring if and only if Qp/, is a
projective B-module of rank equal to dim(B).

Proof
Both conditions are satisfied if and only if they are satisfied after localizing at the
maximal ideals of B. For every maximal ideal m C B the local ring B,, is a k-
algebra e.f.t. with residue field k. By (A.1.5) B,, is a regular local ring if and only
if Qp, . /k = (2B/k)m is free of rank equal to dim(B). The conclusion follows. g.e.d.
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(A.1.7) PROPOSITION  If the ring homomorphism A — B is e.f.t. then Qp /4
is a B-module of finite type.

If in particular B = STYA[Xy, ..., X,,] for some multiplicative system S, then
Qp/a is a free B-module of rank n with basis {dp/a(X1),...,d/a(Xn)}

Proof
The last assertion is elementary (see Eisenbud(1995)). To prove the first, let B =

(S~tP)/J, where P = A[Xy,...,X,] and S C P is a multiplicative system. Then
(2,4 is a quotient of Q2g-1p,4 ®g-1p B, by the conormal sequence. g.e.d.

(A.1.8) REMARK If A and B are only assumed to be noetherian then Qp /4 is
not necessarily a B-module of finite type even if A is a field. An example is given
by QQ[[X]]/Q (see [EGA] ch. Ory, n. 20.7.16).

(A.1.9) EXAMPLES
(i) Assume that B = ST A[Xq,..., X,,] for some multiplicative system S. Then
Der4 (B, B) = Homp(2g,4, B) is a free module of rank n with basis

0 0
{axl""’axn}

which is the dual of the basis

{dB/a(X1),...,dp/a(Xn)}

[é)

of Qp/a, and where 53— : B — B is the partial A-derivation with respect to Xj.

oX;
Let Y1,...,Y, € BJbe such that the jacobian determinant
0Y;
d t( : )
“\ox;

is a unit in B. Then
{dB/A(Yl)a ceey dB/A(Yn)}

is another basis of 2p,4 and we have:

aX; 9X;
dpja(X;) = a—deB/A(Yl) +ot 5y dpya(Ya)
Dually:
0 oY1 0 Y, 0
A4 _ . 9 O
[A.14] 90X, ~ ox,0v. T ox, ov,

The proof of these statements is straightforward.

(ii) Let K be a field and let B = K[X,Y]/(XY), where X,Y are indetermi-
nates. Then, since Qgx,y)/x ® B = BdX & BdY, using the conormal sequence we

deduce that
BdX & BdY

Qp/x &
B/K = (YdX & XdY)
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It follows that the element YdX = —XdY is killed by the maximal ideal (X,Y)
and therefore it generates a torsion submodule

The quotient is

Qp/xk  BdX ® BdY _ N
T = WX Xav) = K[X]dX ® K[Y]dY = (X,Y)

where the last isomorphism is given by f(X)dX @ g(Y)dY — f(X)X +¢(Y)Y.

(iii) Let K be a field and let B = K[t, X,Y]/(f) where ¢, X,Y are indetermi-
nates and f = XY +¢. Then arguing as before we see that

0 _ BdX ® BdY
BIKI = (YdX @ XdY)

The element YdX = —XdY is not killed by any b € B; therefore Qp /[y is torsion
free of rank one.

(iv) Let k be a field and let k[e] := k[t]/(t?), where we have denoted by € the
class of t mod (#?). Then the conormal sequence of k — k[t] — k[e] is

%)/ (") = gk Ok kle] = Qpegyn — 0
and the middle term is isomorphic to k[e]. The first map acts as

2 = 2
B3 - 0
Therefore

0 | kde if char(k) # 2;
klel/k = kle]de if char(k) = 2

and d : kle] — Qpq/k acts as d(a + €8) = fde.
An obvious generalization of the above computation shows that if A = k[t]/(t"),
n > 2 and char(k) = 0 or char(k) > n then
Qask = A/(E)
(v) Assume char(k) = 0. Let
0—-(t)—-R -R—0

be a small extension in A. Then the conormal sequence

n:0—>(t)i>QR,/k®R/R—>QR/k—>O
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is exact also on the left. To prove it note that ¢ is given by the following composition:

dgs
0: (t)CR, R—/>k QRI/k —)QR/k
I
QR’/k/tQR’/k

But dt := dp//,(t) # 0 because t ¢ k and dt ¢ tQp /5 because (t) is a principal
ideal and char(k) = 0.

(vi) If B € ob(A*) then t} := mp/m% and tp := (mp/m%)V are the (Zariski)
cotangent space respectively tangent space of B. We have mp/m% = Qp/x ®pk by
Prop. (A.1.6), and therefore

Dery (B, k) = Homp(Q2p/x, k) = Homyk (25/x ®5 k, k) = (mp/m%p)Y
Moreover there is a natural identification

Dery (B, k) = Homg_414(B, k[e])

which we leave to the reader to verify.
If 4 : A — B is a homomorphism in A4*, the induced homomorphism

dpY :ma/mA — mp/m%
is the codifferential of p, while its transpose
du:tp — ta

is the differential of u. We define the relative cotangent space of B over A to be

té/,\ := coker(du") = mp/(m% + mpB)
and the relative tangent space of B over A as its dual:

tp/a = ker(dp) = [mp/(mp + mAB)]V
From the exact sequence

QA/k Rpr B — QB/k — QB/A — 0
tensored by k we deduce an identification t}/? JAT /A ®p k and therefore
tp/an = Homp(Q2p/a, k) = Derp(B, k) = Homp_q14(B, k[¢])

where the A-algebra structure on kle] is defined by the composition A — k — k[e]
(the last equality is straightforward to verify).
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If f: X — Y is a morphism of schemes, we denote by Qﬁf y the sheaf of
relative differentials, or the relative cotangent sheaf, on X. It satisfies

1 —
QX/Y,a: = Qox,m/OY,f(z)

for all z € X. If f : Spec(B) — Spec(A) is a morphism of affine schemes then

Qépec(B)/Spec(A) = (QB/A)N

We denote by
Tx/y = Hom(Q}(/Y, OX)

the sheaf of relative derivations, or the relative tangent sheaf of f.

We will write Q% and Tx instead of Q% sspect) A04 Tx/spec(i) Tespectively;
they are the cotangent sheaf and the tangent sheaf of X, respectively (cotangent
and tangent bundles if locally free).

If X is algebraic and = € X is closed then, by (A.1.6):

mx g

Ok, 9k(z) =
T m%{

L

is the cotangent space of X at z, and

v
T, X :=Tx,®k(z) = (m‘;x) = Deryk (Ox s, k)
mX,w

is the Zariski tangent space of X at x.
Let S be a scheme and
X5y

a morphisms of S-schemes. The induced homomorphism of sheaves on X:
Q*Q%f/s — Q%c/s
is called the relative codifferential of g. The dual homomorphism:
Tx/s — Hom(g*Q%//S, Ox)

is the relative differential of g. When S = Spec(k) we have g*Q} — Q% , which is
the codifferential of g, while its dual

dg : Tx — Hom(g*Qy, Ox)
is the differential of g. Note that if Q3 /s 18 locally free then

Hom(¢*Qy/s, Ox) = g*Hom(Qy /5, Oy) = g*Ty;s
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but in general the first and the second sheaf are different.
Given f : Y — S and a closed embedding 7 : X C Y, we have an exact sequence
of sheaves on X:

[A.1.5] I/T? = i*Qy g = Qx/s = 0

where Z C Oy is the ideal sheaf of X in Y. [A.1.5] is called the relative conormal
sequence. When S = Spec(k) we obtain the conormal sequence

T/T? - i*Qy — Q% — 0

(A.1.10) EXAMPLES: In the following examples we will describe the global
vector fields on the given schemes by exhibiting their restrictions to an affine open
set. All will be done by explicit computation.

(i) H°(Tp1) can be described explicitely as follows. Consider IP! = Uy U Uy
where Uy = Spec(k[¢]) and U; = Spec(k[n]) with n = £~ on Uy N U;. We have

o 00 10
o0~ anoe~ paE T S o
on Uy NU;. Let § € H*(Tpp1); then
0 0 k
v =90 5 9(6) € kg
and 5
v, = h(n)a—77 h(n) € kn]
On Uy N U; we have
O _ 3y _ 1320
9O) 5 = k)5 = —hEDE S,

and therefore g(£) = —h(£71)&2. Tt follows that g(€) = ag + a1€ + a262 and h(n) =
—(aon? + a1n + az), with ag, a1, as € k. In particular H%(Tjp1) = k3.

Moreover H!(Tp1) = 0 if 4 > 1. For i > 2 it is obvious. Let § € H(Tp1)
be represented by a Chech 1-cocycle defined by 81 € T'(Uy N Uy, Tpp1). It can be

written as
n

o1 = Z a;&*

i=—m

Letting 6, = Y., ' a;n~* and 6y = — Y1, a;& we obtain:

for = 01— 09
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50 {0o1} is a coboundary.

(i) We want to describe H%(Ta1xp1). Let Al x IP =V, U V; where
Vo = A' x Uy = Spec[z, £])

Vi = A' x U; = Spec|z,7])
and n = ¢! on Vo NV = Spec(k|[z, &, £71]). We have

o %0 10 a0
on  9moE  n?oE " O
on VoNVi. Let 0 € HO(TA1XP1); then
0 0
0|Vo = g(z, 5)& + h(za g)a_é- g(zag)a h(Z,f) € k[za 5]
O = v(zm) o+ x(zm) o (). x(z ) € Kz
[vi = Y& 7 92 X\% 1N 877 Y%, 1) X%, 7 zy1

On VN Vi we have:
9(2,6) = (2,67

and therefore g(z,&) = g(z) is constant with respect to £&. Moreover

0 0

h(z7£)8_§ = X(Za 77)8—?7 = _X(za§_1)§2

0
¢
and therefore

h(z,€) = —x(z,¢ ¢

It follows that h(z,€) = a(z) + b(2)€ + c(2)€2, with a(z),b(z2),c(z) € k[z]. In
conclusion every 6 € H(Ta1 4 p1) restricts to Vg as a vector field of the form

A.1.6] O = 9(2) 5 + (a(2) + b(a)E + ()€ 5

with ¢(2),a(z),b(2),c(z) € k[z], and conversely every such vector field is the re-
striction of a global section of Th1yp1. As in example (i) we also deduce that
Hi(Tp1p1) =0if > 1.

In a similar way one describes H 0(T( A\{o})x 1) by showing that the image of
the restriction

H(Tian oy xpr) = H(T(ar\(oy)xvi)
consists of the vector fields of the form [A.1.6] with g(2), a(2),b(2),c(2) € k[z, 27 1].

(iii) We now consider, for a given integer m > 0, the rational ruled surface

F,, =P(Opi(m)® Op:)
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Let 7 : F,, — IP' be the projection. Then F},, can be represented as
F,=rm"*U)ur}U") = (U x P")u (U x IP")

where U = Spec(k|z]), U’ = Spec(k[z’]) and 2’ = z=! on U N U’. We consider the
affine open sets
Vo = Spec(k[z,&]) c U x IP!

Vo = Spec(k[Z',¢']) c U’ x IP?
where on Vo N V§ = Spec(k[z, 271, £]) = Spec(k[2/, 21, £']) we have:

ZI — Z_l, 5/ — Zmé-
Therefore we have:
f)
2= 224 mz§8
[A.1.7] ‘95 9z _ 35
e’ — 2" 5¢

We will describe a typical element § € H°(Tr, ) by describing its restriction to the
open sets Vy and Vj. We have, by example (ii) above:

O, = 9(2) 5 + (0(2) + b(a)E + ()€ 5

with g(z),a(z),b(z),c(z) € k[z] and similarly

Oy = P& + (@) + BEE + (%)

with p(2'), a(2'), B(z'),v(Z") € k[z]. Imposing their equality on Vo N V{ and using
[A.1.7] we obtain the following conditions:

" alenn
[A-1.8 bz) = Blz")+ ple~Yme
()= (=)

We distinguish the cases m = 0 and m > 0. If m = 0 [A.1.8] give:

g9(2) = go+ g1z + g222
al\z) = a
b((Zg = b 90a91792,a,b,66 k

c(z)= ¢
In case m > 0 we have:

9(2) = go+ g1z + g22°
z)= 0

= b—mz(g1 + g22)

= ct+cCcrz+--+cpz

907917927b7607"'acm Ek

m

S
—~~ A~

N
N— N
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Since the restriction H°(TF,,) — H°(Ty,) is injective and we have described its
image, we can conclude:

k6

km+5

HO(TFO)
H'(TF,,)

111

In particular F,, and F,, are not isomorphic if m # n. (note that Fy & IP* x IP! is
not isomorphic to Fy & Bl(1,g,0)IP?).
Since, by the calculations of the previous example (ii)

[A.1.9] W (Tyxpr) = B (Tyxpr) = B (Twroyxpr) =0, i>1
we deduce that:
Hl(TFm) = HO(T(UmUl)xﬂn)/HO(TUXPl) + HO(TUIXPI)

An easy computation based on [A.1.8] shows that, for m > 1, H'(TF,,) consists of
the classes, modulo H°(Tyxp1) + H°(Ty w1 ), of the vector fields

0
(blz + -+ bm_lzm_1)8_§

In particular
H'(Tp,,) = k™"

It also follows from [A.1.9] that

H*(Tf,,) = (0)

NOTES

1. In IP! x IP? with bihomogeneous coordinates (x,y; u, v, w) consider
the hypersurface ¥,,, m > 0, defined by the equation:

"y —y"u =0

Prove that ¥, = F,,, and that the structure morphism = : F,, — IP! is
induced by the projection IP! x IP? — IP'. (Solution: see Andreotti(1957)).

2. Let X — Y be a morphism of algebraic schemes. Prove that there
is an exact sequence

[A.1.10] 0= Q%/y = Px/y = Ox =0

which globalizes [A.1.1]. Pk y 18 called the sheaf of principal parts of X
over Y, denoted by Pk if Y = Spec(k).
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Let X = IP(V) for a finite dimensional k-vector space V. Then the
exact sequence [A.1.10] is the dual of the Euler sequence; in particular

P;D(V) = OP(V)(—l) VY

Therefore [A.1.10] is a generalization of the Euler sequence to any X — Y.

3. Consider IP = IP(V) for a finite dimensional k-vector space V and
the incidence relation:

[A.1.11] I={(z,H):z € H} CIPx IPY
Consider the twisted and dualized Euler sequence:
0= Qpany(1) = Opw) @ VY = Opw)(1) = 0
From its definition it follows that I = P(Q}P(V) (1)) and IPxIPY = IP(Opv)®

VV) and the inclusion in [A.1.11] is induced by the first homomorphism in
the above sequence.
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A.2. FLATNESS

The algebraic notion of flatness, first introduced in Serre(1955-56), is the basic
technical tool for the study of families of algebraic varieties and schemes. In this
section we will overview the main algebraic results needed.

A module M over a ring A is A-flat (or flat over A, or simply flat) if the
functor N — M ®4 N from the category of A-modules into itself is exact. Since
this functor is always right exact, the flatness means that it takes monomorphisms
into monomorphisms. An A-algebra B is flat over A if B is flat as an A-module.

The A-module M is said to be faithfully flat if for every sequence of A-modules
N' — N — N" the sequence

M®ANI—>M®AN—>M®AN”

is exact if and only if the original sequence is exact. Obviously, if M is faithfully
flat then it is flat. In a similar way we give the notion of faithfully flat A-algebra.
It is straightforward to check that if A — B is a local homomorphism of local rings,
then a B-module of finite type is faithfully A-flat if and only if it is flat and nonzero.

Recall that the flatness of an A-module M is equivalent to any of the following
conditions:

1) Tor;(M,N) =
2) Tor;(M,N) = (0
3 TOTl(M,N): 0

( (0) for all ¢ > 0 and for every A-module N.
(2)
(3)
(4) Tory (M, A/I) = (0) for every ideal I C A.
(5)
(6)

(0) for every A-module N.
(0) for every finitely generated A-module N.
5) I ®4 M — M is injective for every ideal I C A.
6) I ®4 M — IM is an isomorphism for every ideal I C A.
(A.2.1) EXAMPLE. Let k£ be a ring, u,v indeterminates and f : k[u,uv] —
k[u,v] the inclusion. Then

klu,uv]

(uv)

is injective. Tensoring by Qiry. wu1k|t, v] we obtain:
g [u,uv]

klu,v] + klu,v]
(w)  (uv)
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which is not injective. Therefore f is not flat.
We list without proof a few basic properties of flat modules:
(I) M is A-flat if and only if M, is A,-flat for every prime ideal p.
(IT) Every projective module is flat.

(ITT) Assume M is finitely generated. Then M is flat if and only if it is projec-
tive; if A is local then M is flat if and only if it is free.

(IV) If S C A is a multiplicative subset then Ag is A-flat.
(V) A direct sum M = @;c; M; is flat if and only if all M;’s are flat.

(VI) Let
0-M —>M-—->M"—>0

be an exact sequence of A-modules with M" flat. Then M is flat if and only if M’
is flat.

(VII) Base change: if M is A-flat and f : A — B is a ring homomorphism,
then M ® 4 B is B-flat.

(VIII) Transitivity: if B is a flat A-algebra and N is a flat B-module, then N
is A-flat.

(IX) If A is a noetherian ring and I is an ideal, the I-adic completion Ais a
flat A-algebra. If I is contained in the Jacobson radical of A then A is a faithfully
flat A-algebra.

(X) If B is an A-algebra and if there exists a B-module M which is faithfully
flat, then the morphism Spec(B) — Spec(A) is surjective.

The following result is frequently used:

(A.2.2) PROPOSITION If A is an artinian local ring with residue field k the
following are equivalent for an A-module M :
(i) M is free
(ii)) M is flat
(iii)  Tori (M, k) = (0)
Proof
(i) = (i3) = (i7) are clear.
(7i1) = (i7). Let N be a finitely generated A-module and let

N:NOD"‘DNTL:(O)
be a composition series for N such that

N;i/Nit1 =2k
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for i = 0,...,n — 1. Using the Tor exact sequences from the hypothesis (iii) we
deduce that Tor; (M, N) = (0) and the flatness of M follows from (3).

Let’s now prove (it) = (i). Let {e;};es be a system of elements of M which
induces a basis of M ®4 k over k. The system {e;} defines a homomorphism
f : A7 — M which induces an isomorphism k7 — M ®,4 k. From the following
Lemma it follows that f is an isomorphism, and therefore M is free. g-e.d.

(A.2.3) LEMMA Let R be aring, I an ideal and f : F — G a homomorphism
of R-modules with G flat. Assume that one of the following conditions is satisfied:

(a) I is nilpotent.

(b) R is noetherian, I is contained in the Jacobson radical of R and F and G

are finitely generated.

If the induced homomorphism F/IF — G/IG is an isomorphism, then f is an
isomorphism.

Proof
Let K = coker(f). Tensoring the exact sequence

F—-G—-K-—=Q0

with R/I we get K/IK = 0: from Nakayama’s lemma (which holds in either of the
hypothesis (a) and (b)) it follows that K = 0, and therefore F' is surjective. Letting
H = ker(f) we deduce an exact sequence

0— H/IH — F/IF - G/IG — 0

using the flatness of G. By Nakayama again we deduce H = 0 and the conclusion
follows. g.e.d.

The following is a basic criterion of flatness.

(A.2.4) LOCAL CRITERION OF FLATNESS Suppose that ¢ : A — B is a
local homomorphism of local noetherian rings, and let k = A/my be the residue
field of A. If M is a finitely generated B-module, then the following conditions are
equivalent:

(i) M is A-flat

(ii) Tor(M, k) = 0.

(iii) M ® 4 (A/m'}) is flat over A/m; for every integer n > 1.
(iv) M @4 (A/m") is free over A/m" for every integer n > 1.

Proof
(1) = (47) is obvious.

(73) = (i) see Eisenbud(1995), Th. 6.8, p. 167.

(i) = (4i7) is obvious.

(#41) = (1) It suffices to show that for every inclusion N’ — N of A-modules of
finite type we have an inclusion M ® 4 N' =+ M ® 4 N. For this purpose it suffices
to show that the kernel of this last map is contained in

K, :=ker[M @4 N' - M ®4 (N'/N'nmN)]
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for all n, because [,, K, = (0). We have a commutative diagram with exact rows:

0— K, = M@sN — MQsN'/NNmyN) —0

1 \J
M®@sN — M ®a (N/m"yN) — 0

The last vertical arrow coincides with the map obtained from the injection
N'/N'nm% N — N/my N

after tensoring over A/m” with the A/m"-flat module M ® 4 (A/m",), and therefore
it is injective. The conclusion follows from the above diagram.
(74i) < (iv) follows from Proposition (A.2.2) because A/m7 is artinian. g¢.e.d.

For a more general version of the local criterion we refer to [SGA1], exp. IV.

(A.2.5) COROLLARY Suppose that ¢ : A — B is a local homomorphism of
local noetherian rings, let k = A/m4 be the residue field of A, M, N two finitely
generated B-modules, and suppose that N is A-flat. Let uw : M — N be a B-
homomorphism. Then the following are equivalent:

(i) u is injective and coker(u) is A-flat.

(i)u®l: M®Fk— N Qk is injective.

Proof
(i) = (ii). Let G = Coker(u). Tensoring by k the exact sequence

0-M-“5N—-G—=0
by k we obtain the exact sequence:
Tor} (G, k) > M@k B3 N@sk—> G4k — 0

Since G is A-flat we have Tor{ (G, k) = 0, and it follows that u ® 1 is injective.
(ii) = (i). Factor u® 1 as

M@sk-5Tmw) @ik 25 Noak
Then « is an isomorphism and S is injective. Tensoring by k the exact sequence
[A.2.1] 0—>Im(u) > N—>G—0
we obtain the exact sequence:
Tor{! (N, k) — Tord (G, k) — Im(u) ®4 k Ly N@ak—G®ak—0

Since N is A-flat we have Torf(N ,k) = 0; from the injectivity of 8 we deduce
Tor(G, k) = 0 and from (A.2.4) it follows that G is A-flat. Applying (VI) to the
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exact sequence [A.2.1] we deduce that Im(u) is A-flat as well. Consider the exact
sequence:
0 — ker(u) - M — Im(u) — 0

and tensor by k. We obtain the exact sequence:
0— ker(u) @4k - M @4k — Im(u) ®4 k — 0

Since « is an isomorphism we deduce that ker(u) ® 4 k£ = 0, and therefore ker(u) = 0
by Nakayama’s lemma. g-e.d.

A related result is the following:

(A.2.6) LEMMA Let B be a local ring with residue field K, and letd : G — F
be a homomorphism of finitely generated B-modules, with F' free. Then d is split

injective if and only if d®p K : G @ K — F ®p K is injective. In such a case also
G is free.

Proof
d is split injective if and only if coker(d) is free and d is injective. If this last
condition is satisfied then clearly d ® g K is injective.

Conversely, assume that d @ g K is injective, and factor d as

G — Im(d) —» F

We see that
GRpK — Im(d)®pK is bijective

Im(d)@p K — FRpK is injective
From the exact sequence
0 — Im(d) —» F — coker(d) — 0
we get
0 — Tory (coker(d), K) — Im(d) s K - F @ K
so Tory (coker(d), K) = (0) and this implies that coker(d) is free. From the above
exact sequence we deduce that Im(d) is free as well, so that
0 — ker(d) - G — Im(d) — 0
is split exact. Recalling that G ® p K = Im(d) ® p K we deduce that ker(d) @ p K =
(0), hence ker(d) = (0) by Nakayama. g.e.d.

For the reader’s convenience we include the proof of the following well known
Lemma:

(A.2.7) LEMMA Let (B,m) be a noetherian local integral domain, with
residue field K and quotient field L. If M is a finitely generated B-module and
if

dimK(M XB K) = dlmL(M XB L) =r
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then M is free of rank r.

Proof
Let mq,...,m, € M be such that their images in M ® g K = M /mM form a basis.
Then they define a homomorphism ¢ : B — M and we have an exact sequence:

0ooN-o>B" 5L M->5Q—0

where N and @ are kernel and cokernel of ¢. Since tensoring with K we get
K™ 25 M/mM — Q/mQ — 0

and ¢ is surjective, we get QQ/m@Q = (0) and from Nakayama’s lemma it follows
that @ = (0): hence ¢ is surjective. Now we tensor the above exact sequence with
L, which is flat over B (by (IV)), and we obtain the exact sequence:

05 N@plL—L" 5 MepgL—0
Since M @p L = L™ and ¢ is surjective, it follows that N @ g L = ker(¢) = (0).
Therefore N is a torsion module. But N C B" and therefore N = (0). g.e.d.
We have the following useful criterion:
(A.2.8) LEMMA Let A — A’ be a small extension in A, and let g : A — R
be a homomorphism of k-algebras. Let Ry = R ® 4 k. Then g is flat if and only if
keI‘(R — R®a AI) = Ry

and the homomorphism g' : A -+ R® 4 A’ induced by g is flat.

Proof
Assume that g is flat. Then since R® 4 (¢) = R® 4k = Ry and Tor (R, A’) = 0,
from the exact sequence

[A.2.2] 0 — Tori'(R,A") 2 R®4 () > R—- R4 A" =0

we deduce that the first condition is satisfied. The flatness of ¢’ is obvious.

Assume conversely that the conditions of the Lemma are satisfied. Then the
sequence [A.2.2] implies that Tor (R, A’) = 0. If A’ = k the conclusion follows
from (A.2.2). If not, from the exact sequence

0—>ma A 5k—0

one gets the exact sequence:

Tor(R,A") — Tor(R,k) % R®ima — A — R®sk — 0

| | |
0 R @4 ma R ®a k
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From the flatness of R’ over A" we deduce that & = 0, hence Tor‘l4 (R,k) =0, and
we conclude by (A.2.2). g.e.d.

N T
Flatness in terms of generators and relations.

Let P be a noetherian k-algebra, J C P an ideal. Let A bein A, Py = PRk A,
and J C P4 an ideal such that (P4/J)®4k & P/J. We want to find the conditions
J has to satisfy so that P4/J is A-flat.

We have the following

(A.2.9) THEOREM Let
y: PPN P P/J—=0

be a presentation of P/.J as a P-module. Then the following conditions are equiv-
alent for an ideal J C Py:

(i) P4/J is A-flat and (P4/J)®4 k = P/J.

(ii) There is an exact sequence

IM: P} - PY Py —Py/T—0

such that Ilp =11 @4k (= II/mull).
(iii) There is a complex

Im: Py % PY 5Py — Py/J—0

which is exact except possibly at PY, such that Ty =1 ®4 k.

Proof
(#4) = (7). We have:

Tors (Pa/J,k) = Hi (I ® k) = Hy(Il,) = (0)

From (A.2.2) it follows that P4/J is A-flat. Moreover (ii) implies that (P4/J) ®4
k= P/J.

(i) = (ii). Choose a P4-homomorphism p : PY — J which makes the follow-
ing diagram commute:
p: PY — J
\J \J
po: PN — J

where pg is the surjective homomorphism defined by the presentation IIy. From the
flatness of P4 /J it follows that Tori'(P4/J, k) = (0); hence the exact sequence

0— Torf(P4/3,k) — IRk — P4k — (P4/IJ) @4k —0

I I
P P/J
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implies that J ® k = J. It follows that p ® 4 k = pg and therefore
coker(p) ® 4 k = coker(pg) = (0)

so that coker(p) = (0) by Nakayama’s lemma. Hence p is surjective.
Now consider the exact sequence

0 — ker(p) = PY —J =0

and the associated Tor sequence:

[A.2.3] Tori' (J,k) — ker(p)/mker(p) = PN — J =0

From the flatness of P4/J and from the exact sequence
0—>J—> Py — Ps/J—0

we have Tor (J, k) = Tory (P4/J,k) = (0). Therefore from [A.2.3] we see that
ker(p)/m aker(p) = ker(po)

Arguing as before we can find a surjective homomorphism ¢ : P} — ker(p) which
makes the following diagram commutative:

P L ker(p)
1 1
P —  ker(po)

(73) = (447) is obvious.
(ii1) = (i) If IL is not exact at P} then we can add finitely many generators
of the kernel of PAV — P4 to obtain an exact sequence

I : PY 25PN 5 Py Pay/T 0
Then IT" ® 4 k has the form:
P"'@PN%P%P/JAO

Since
Im(p ® k) C Im(¢’ ® k) C ker[PY — P]

we see that Im(¢’ ® k) = ker[PY — P] and therefore II' ® 4 k is exact. Now (i)
follows from (A.2.2). g.e.d.
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(A.2.10) COROLLARY Assume that J = (f1,..., fn) C P and that
J=(F,...,Fy) C Pa
with f; = F; (modmaPa),j =1,...,N. Then every relation among f1, ..., fn lifts

to a relation among Fy, ..., Fy if and only if P4 /J is A-flat and (P4 /J)®ak = P/J.

Proof
The condition that the F};’s reduce to the f;’s modulo m P4 implies that the exact
sequence

PY X Py 5 Pa/I >0

reduces to

[A.2.4] PN LppPriso

when tensored by ® 4k. Complete [A.2.4] to a presentation IIy of P/J. The con-
dition that every relation among f1,..., fx lifts to a relation among Fy,..., Fiy is
a restatement of condition (iii) of (A.2.9). Therefore the conclusion follows from
theorem (A.2.9). g-e.d.

(A.2.11) EXAMPLE

Let A be in A. Suppose that fi1,..., fy € P form a regular sequence, and let
Fi,...,Fn € P4 be any liftings of fq,..., fn, i.e. such that f; = F; (mod mPj,),
j=1,...,N. Then J = (F},...,Fn) C P4 defines a flat family of deformations of
X = Spec(P/J), where J = (f1,..., fn)-

Infact every relation among fi,..., fx is a linear combination of the trivial
ones

’l‘ij:(0,...,fj,...,—fi,...,0) 1<i1<j<N

and these can be lifted to the corresponding trivial relations
Rij = (0,...,Fj,...,—Fi,...,0)

among Fi,..., F. Applying Corollary (A.2.5) it is easy to show that Fi,..., Fy
form a regular sequence.

NOTES

1. In the proof of Theorem (A.2.9) the condition that A is artinian
has only been used in the proof of (i) = (i) in order to apply Nakayama’s
Lemma. In particular the implications (i7) = (i), (44¢) = (i) and (i) =
(7i7) hold for any A € ob(A*). Using the local criterion of flatness it is easy
to verify that the implication (i) = (i7) (and therefore the equivalence of
the three conditions) holds as well if A is in A.
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A.3. RELATIVE COMPLETE INTERSECTION MORPHISMS

Regular embeddings

If X CY is a closed embedding of schemes and 7 = Tx,y C Oy is the ideal
sheaf of X in Y, then Z/Z? is a sheaf of Ox-modules in a natural way, called the
conormal sheaf of X in Y. Its dual

Nxy = Homo, (Z/I?,0x) = Homo, (T, Ox)

is called the normal sheafof X inY. Nx/y (resp. Z/Z?) is called the normal bundle
(resp. the conormal bundle) of X in Y if it is locally free.

An embedding of schemes j : X C Y is a regular embedding of codimension
n at the point x € X if j(z) has an affine open neighborhood U in Y such that
XNU C U is aregular embedding of codimension n. If this happens at every point
of X we say that j is a reqular embedding of codimension n. In this case Z/Z? and
Nx/y are both locally free of rank n. If for example X and Y are both nonsingular
then X C Y is a regular embedding. An open embedding is regular of codimension
0. The set of points of X where an embedding j : X C Y is embedding is open.

A ring B is called a complete intersection if Spec(B) can be regularly embedded
in Spec(R) where R is a regular ring.

A scheme X is a local complete intersection (l.c.i.) if every local ring Ox , is a
complete intersection ring.

A nonsingular scheme X, i.e. a scheme all of whose local rings are regular, is
an example of a l.c.i. scheme. If X C Y is a regular embedding and Y is a l.c.i.
scheme, then X is a l.c.i. scheme.

If we have a flag of embeddings of schemes X C Y C Z and Zy C Zx C Oz
are the ideal sheaves of X and Y, we have the exact sequence

[A.3.1] 0—=Zy - Ix - Ix/;y =0

where Zx/y C Oy is the ideal sheaf of X in Y. After tensoring by ®0,Ox we
obtain an exact sequence of coherent O x-modules:

Iy a IX IX/Y
[A.3.2] — ®0x — =& — —0
7 % Ixyy

Its dual is the sequence:

[A33] O—)NX/Y _>NX/Z —)Ny/z®0){
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(A.3.1) LEMMA
(i))If f: X CY and g : Y C Z are regular embeddings of codimensions m and n
rspectively, then gf : X — Z is a regular embedding of codimension m + n.
(ii) If the embeddings f and g are both regular then we have exact sequences of
locally free sheaves on X:

A a I T
[A.3.4] 0—>—}2/®(9X—>—‘§—> ;(/Y—>O
Iy Ix  Ixyy
[A35] 0—)Nx/y —)Nx/z —)Nyyz@@X — 0

Proof
(i) left to the reader (see Grothendieck(1967), Prop. 19.1.5(iii)).
(ii)  All sheaves in [A.3.4] are locally free because they are conormal bundles
of regular embeddings. Since Im(«) is a torsion free sheaf of the same rank of
(Zy /TZ) ® Ox, it follows that o must be injective. The sequence [A.3.5] is exact
because Extg, (IX/y/Ii-/Y, Ox) =0. g.e.d.

(A.3.2) PROPOSITION Let j : X C Y be an embedding of algebraic schemes,
with X reduced and Y nonsingular. Consider the conormal sequence

[A.3.6] T/72 25 Qb x = Q% = 0

(where T C Oy is the ideal sheaf of X ) Then:
(i) The homomorphism § is injective on the open set where j is a regular embedding.
(ii) If X and Y are nonsingular then the dual sequence

[A37] 0—>Tx —)Ty|X —)NX/Y — 0

i1s exact.

Proof
(i) It suffices to show that § is injective under the assumption that j is a regular
embedding. Since X is regularly embedded in Y the conormal sheaf Z/Z? is locally
free of rank equal to the codimension of X. At every nonsingular point z € X we
have that Q% , is free of rank equal to dim(X), so that

dim(Y) < tk(Qy|x ,) = 1k(Z,/Z7) + rk(Q% ) = dim(Y)

Therefore the sequence [A.3.6] is exact at every nonsingular point z € X. Since X
is reduced this happens on a dense open subset so that ker(d) is a torsion subsheaf
of T/T?; it follows that ker(d) = 0 because Z/Z? is locally free.

(i) Under the stated hypothesis j is a regular embedding and Q% is locally
free, so we have Ext!(Q%,Ox) = 0 and the exactness of [A.3.7] follows. g.e.d.
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* * * * * Xk
Relative complete intersection morphisms

We now introduce a natural class of morphisms which generalize smooth mor-
phisms and behave well with respect to differentials and base change.

(A.3.3) DEFINITION A flat morphism of finite type f : X — S is called a
relative complete intersection (r.c.i.) morphism at the point z € X if there is an
open neighborhood U of x such that the restriction of f to U can be obtained as a
composition

v-Lv-%s

where j is a regular embedding and g is smooth. If f is a r.c.i. morphism at every
point we call it a r.c.i. morphism, and we call X a complete intersection over S.

This Definition is equivalent to Def. 19.3.6 of Ch. IV of [EGA]; the equiva-
lence is proved in Berthelot(1971), prop. 1.4. Note that in case S = Spec(k) the
morphism f is a r.c.i. if and only if X is a l.c.i. of finite type.

Before discussing the main properties of this notion we need two Lemmas:

(A.3.4) LEMMA Let A — B be a ring homomorphism, M a B-module
and f1,...,fn an M-regular sequence of elements of B. Assume that for each
¢t = 1,...,n the module M/(Z;;ll fiM) is A-flat. Then, for every ring homo-
morphism A — A', letting B = B4 A', M' = M ®4 A, and fl = fi ®1

(1 <14 < n), the sequence fi,..., f, of elements of B’ is M'-regular and the mod-
ules M'/(Z;;ll fjM') are A’-flat.
Proof

Consider the exact sequence:

0> M5 M- M/fiM -0

Since M/ f1 M is A-flat, the sequence:

0 Mes A LS Mo A = (M/iM)®4 A" — 0

is exact, and therefore f{ is not a zero-divisor for M'. Let M; = M/ (Z;zl fiM),
le = MI/(Z;=1 f;M’), then we have MZI == Mz ®a AI, Mi+1 = Mi/fi—i—lMi;
Mj , = M/ f{ M. Replacing M and f; by M; and f;;1 in the above argument,
one deduces that f; ; is not a zero-divisor for M;, thereby proving the first assertion
by induction. The last assertion follows from I.1.(VII). g.e.d.

(A.3.5) LEMMA Let A — B be a local homomorphism of noetherian local
rings, M a B-module of finite type, flat over A, and f1,..., f, Emp. For1 <i<n
let g; be the image of f; in B a k, where k = A/m 4 is the residue field of A. Then
the following conditions are equivalent: A
(i) f1,--., fn is an M-regular sequence, and M, = M/(Z;Zl [iM) is A-flat for all
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1<i<n.
(ii) g1,-..,9n is an (M ®4 k)-regular sequence.

Proof
(i) = (ii) follows from (A.3.4) applied to A" = k.

(ii) = (i) Applying Corollary (I.1.6), from the injectivity of g1 : M ®4 k —
M ®4 k we deduce that f, : M — M is injective and that M; = M/ f1 M is A-flat.
Proceeding by induction on ¢, assume M; flat over A. Since g;4+1 : M;®@ a4k — M;Q4k
is injective from (I.1.6) again we deduce that f; 11 : M; — M; is injective and that
M; 4 is A-flat. g.e.d.

In the next Proposition some general properties of r.c.i. morphisms are proved.

(A.3.6) PROPOSITION
(i) An open embedding is a r.c.i. morphism. A smooth morphism of finite type is
a r.c.i. morphism.
(i) If f : X — S is a r.c.i. morphism and h : S — S is a morphism, then the
morphism f': X xg 8" — S’ induced by f after base change is a r.c.i. morphism.

Proof
(1) is an immediate consequence of the definition and (ii) follows easily from Lemma
(A.3.4). g.e.d.

From (A.3.6)(ii) it follows in particular that if f : X — S is a r.c.i. morphism
then X, is a l.c.i. for every k-rational point s € S.
The next result gives a useful characterization of r.c.i. morphisms.

(A.3.7) PROPOSITION  Let

X SN Y
[A.3.8] N S /g
S

be a commutative diagram of morphisms of algebraic schemes, where f is flat, g is
smooth and j is an embedding. Then the following conditions are equivalent for a
k-rational point x € X:

(i) f is a r.c.i. morphism at x.

(ii) Letting s = f(z), the fibre X, is a Lc.i. at x.

(iii) j is a regular embedding at .

Proof
(i) = (ii) follows from (A.3.6)(ii) and (iii) = (i) is obvious.

(ii) = (iii) From (ii) it follows that the embedding js : X5 C Y; is regular at
z. Let Z C Oy be the ideal sheaf of X. Tensoring the exact sequence

0—=+Z—=0y —-0x—0
by — ®o k we obtain the sequence

0-ZT®o; k— 0y, - 0x, =0
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which is exact because f is flat. Therefore Z @o, k is the ideal sheaf of j(X;) in
Y. Consider a sequence fi, ..., f, of sections of Z in an open neighborhood of j(z)
which induce a basis of Z;()/(msZj@) + If(z)) as a Oy,j(z)/(msOy,jz) + Lj))-
module. Then the images fi ® 1 = g1,..., fn, ® 1 = g,, are generating sections of
7Z ®o, k in an open neighborhood of j(z) in Y, which form a regular sequence in
j(z). From Nakayama’s Lemma it follows that fi,..., f, generate Z in an open
neighborhood of j(z) in Y. From Lemma (A.3.5) it follows that fi,..., f, form a
regular sequence in j(z) and therefore (iii) holds.

(iii) = (i) is true by definition. g.e.d.

(A.3.8) COROLLARY Under the hypothesis of Proposition (A.3.7), the locus
of points x € X such that f is a r.c.i. at x is open. If f is proper then the locus of
points s € S such that X, is a l.c.i. is open.

Proof
The last assertion follows from the first because a proper map is closed. The first
assertion can be proved using characterization (A.3.7)(iii) of r.c.i. morphism and
the fact that the locus where an embedding is regular is open. q-e.d.

(A.3.9) THEOREM Let

x L v
NS odg
S

be a commutative diagram of morphisms of schemes, with f a r.c.i., j an immersion
and g smooth. Let J C Oy be the ideal sheaf of j(X). Then if X is reduced the

relative conormal sequence
0—=T/T* = " Qys = Qx5 = 0

is exact and J /J? is locally free.

Proof
From the equivalence (%) < (4¢%) in Proposition (A.3.7) it follows that j is a regular
embedding and therefore J/J? is locally free. The proof of exactness follows the
same lines of the proof of Proposition (A.3.2) and is left to the reader. g.e.d.

NOTES

1. An algebraic scheme can have different embeddings in IP", i.e. by
means of non-isomorphic invertible sheaves, but with same normal sheaf.
An example is given by a projective nonsingular curve C' of genus 1, and
by the embeddings in IP3 given by two non isomorphic invertible sheaves
Liand L of degree 4 such that L2 = L2. Then C is embedded as a nonsin-
gular complete intersection of two quadrics by both sheaves, and the normal
bundles are L? @ L? = L2 & L3.
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2. Let S be a scheme, and X,Y smooth over S. Prove that every
closed S-embedding X C Y is regular. In particular every section of a
smooth morphism f:Y — S is a regular embedding of codimension equal
to the relative dimension of f.

3. Let f: X — S be a morphism of finite type and s € S a k-rational
point. Let ms C Og s be the maximal ideal and 7 = Zy,) the ideal sheaf of
the fibre X (s) of f over s. Prove that we have a surjective homomorphism

ms
W ®k O)((s) — I/I2

S

and an injection:
Nxyyx CTs,s Qx Ox(s)

If f is flat then they are isomorphisms; in particular, if f is flat then Ny (4)/x
is free.

Zad
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A.4. FUNCTORIAL LANGUAGE

Let C be a category. A covariant (resp. contravariant) functor F' from C to
(sets) is said to be representable if there is an object X in C such that F' is isomorphic
to the functor

[A.4.1] Y — Hom(X,Y)

(resp. Y — Hom(Y,X)). We will denote by hx a functor of the form [A.4.1].
The representable functors are a full subcategory, isomorphic to C° (resp. to C in
the contravariant case), of the category Funct(C, (sets)) of covariant functors (resp.
Funct(C®, (sets)) of contravariant functors) from C to (sets).

To fix ideas let’s consider covariant functors. In order to investigate conditions
for the representability of a given functor F' it is convenient to study functorial
morphisms hx — F. Such morphisms turn out to be easy to describe, thanks to
the elementary:

(A.4.1) LEMMA (Yoneda) Let F :C — (sets) be a covariant functor. For each
object X in C there is a canonical bijection:

Hom(hx,F) <+« F(X)
) = P(X)(1x)

Let’s mention, on passing, that functorial morphisms F' — hx are more in-
teresting, but they are much harder to control. They are related to the notion of
“coarse moduli space”.

We may consider couples of the form (X, &), where X is an object of C and
¢ € F(X). Yoneda’s Lemma implies that to give such a couple is equivalent to
giving a morphism of functors hx — F; if this morphism is an isomorphism then
(X, &) is called a universal couple, and & a universal element, for F. The existence
of a universal couple is equivalent to the representability of F'.

The couples for F' are the objects of a category in which a morphism (X,§) —
(Y, n) between two couples is by definition a morphism f : X — Y in C such that
F(f)(&) =n. We denote this category by Ir. A morphism f : (X,£) — (Y,n) in Ip
corresponds to a commutative diagram of morphisms of functors:

hx — F
tf
hy
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We have an obvious “forgetful functor”
Ip — C

The fibres of this functor are precisely the sets F'(X), which are embedded as
subcategories of Ir by & — (X, §).

(recall that, given a functor G : C — D, the fibre G™1(D) of G over an object D
of D is a subcategory of C, consisting of all objects C such that G(C) = D and of
all morphisms f such that G(f) = 1p. A set can be viewed as a category whose
objects are its elements and the only morphisms are the identity morphisms).

(A.4.2) LEMMA The functor F is representable if and only if the category I
has an initial object (X, ). If this is the case, (X, ) is a universal couple for F.

The proof is immediate. Note that, since an initial object is unique up to
isomorphism, it follows that a representable functor has a unique universal couple,
up to isomorphism.

* * * * * %k

Let I and D be two categories. Given an object A of D, the constant functor
ca : I — D is defined as ca(i) = A for each object i of I and ca(f) = 14 for
each morphism f in I. Note that c4 is both covariant and contravariant. Every
morphism « : A — B in D induces an obvious morphism of functors ¢, : c4 — cp.
Consider a covariant functor ® : I — D. An inductive limit of ® is an object A
of D and a functorial morphism A : & — c4 such that for every other morphism
i : ® — cp there is a morphism o : A — B such that p = cyA.

(0] i) CA
Npodca

CB

From the definition it follows that an inductive limit of @, if it exists, is unique up
to unique isomorphism, and is denoted

lim ®
%

In practice an inductive limit is an object A of D such that there is a morphism
®(i) — A for each 7 € Ob(I) with the condition that the diagram

(1) - A
Le(f)
®(j)

is commutative for each morphism f : 72 — j in I; moreover these data must have a
universal property.

Dually one has the notion of projective limit of a covariant functor ® : I — D: it
is an object A of D and a morphism 7 : ¢4 — ® such that for every other morphism



L. DETTIEST 4904

p:cp — ® there is a morphism 3 : B — A such that p = wcg. The projective limit
of @, if it exists, is denoted

lim ®

“—

The above notions can be defined without changes replacing the covariant functor
® by a contravariant one. We will write ®; for ®(i), for each object i of I, and
sometimes

lim®; (resp. lim®;) instead of lm® (resp. lim ®)
— — — —

(A.4.3) EXAMPLE Let J be a partially ordered set. We define a category
Ord(J) as follows. The objects of Ord(J) are the elements of J; for any 4, j € J the
set Homo,q( (4, j) consists of one element if i < j and is () otherwise. A covariant
(resp. contravariant) functor ® : Ord(J) — D is called an inductive system (resp. a
projective system) in D indexed by J; in case D =(sets), we obtain the usual notions
of inductive (projective) system and of inductive (projective) limit.

If I is a set and ® : I — D is a functor, where D is a category with arbitrary

coproducts, then
lim ® = ]_[ P,
Similarly, if D has products then

lim @ = Hq%-
(3

(A.4.4) PROPOSITION The inductive limit and projective limit exist for
every functor ® : I — (sets) from any category I.

Proof
We take

lim ® = H@i/R

where R is the equivalence relation generated by pair (z,y), z € ®; and y € ¥,
such that there exists ¢ : i — j with ®(x) = y. Similarly for the projective limit.
g.e.d.

(A.4.5) EXAMPLE: Let F : C — (sets) be a covariant functor, and let Ir be
the category of couples for F'. Then we have a contravariant functor

d : Ip — Funct(C, (sets))

which sends a couple (X, &) to the functor hx : C — (sets), and a morphism
[ (X,€) — (Y,n) to the functorial morphism hy : hy — hx induced by f. By
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construction there is a morphism ® — cp. This morphism makes F' the inductive
limit of the functor ® (the proof is an easy exercise). We will write:

F =lim hx
= (X.)

(A.4.6) DEFINITION A category I is filtered if
(a) for every pair of objects i,j in I there exists an object k in I and morphisms:

1
j = k
(b) each pair of morphisms i 3 J has a coequalizer i = 7 — k.
The category I is cofiltered if the dual category I° is filtered.
Assume from now on that C is a category with products and fibered products.
(A.4.7) DEFINITION A covariant functor F : C — (sets) is called left exact
if F(BxC)=F(B)x F(C) and F(B x4 C) = F(B) xp(4) F(C) for each diagram

C

1
B — A

in C (i.e. F commutes with finite products and finite fibered products).

Every representable functor is left exact by definition of product and fibered
product.

(A.4.8) LEMMA Let I be a filtered category and ® : I — Funct(C, (sets)) a
covariant functor. Then, for each diagram in C:

there is a bijection:

li_r)n Qi (B) X1im &;(A) li_r)n ?,(C) = li_x)n[q)i(B) Xa,(4) $i(C)]

The proof of this Lemma is straightforward and we omit it. The following re-
sult, which will be needed in §I11.2, is a useful characterization of left exact functors.

(A.4.9) PROPOSITION A covariant functor F' : C — (sets) is left exact if and
only if the category Ip is cofiltered.
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Proof
Assume that I is cofiltered. Applying Lemma (A.4.8) to the functor ® of Example
(A.4.5), we see that the inductive limit F' = lim x ¢) hx is left exact because each
functor hx is left exact.

Conversely assume that F is left exact. Let (X, &), (Y,n) € Ob(Ir); we must

find
(ZiC) - (X,§)
(Y;n)

Take (Z,¢) = (X x Y, (£,1)). Now consider (X,¢) — (Y,7) coming from ¢, :
X — Y. We have

Consider the diagram:
X % XxY

1 Ty
K - X

where I'y = (1x,¢) and 'y, = (1x,%) and K = X Xxxy X. Since F is left exact
F(K)=F(X) XF(XXY) F(X)

and there is x € F(K) corresponding to (¢, €):

¢ M (e

1 T F(Ty)
x — ¢
Then (K, x) is the equalizer of ¢ and . Therefore Iy is cofiltered. g.e.d.

Let I be a category. A full subcategory J of I is cofinal if for each i € Ob(I)
there is a morphism f : i — j for some j € Ob(J). It follows immediately from the
definitions that if ® : I — D is a covariant functor and ®; : J — D is its restriction,
then

Im® =1lim®;
— —

* * * * * ok

Let Z be a scheme. In this subsection we will consider contravariant functors
defined on (schemes/Z). All we will say holds, with obvious modifications, for
functors defined on (algschemes/Z), the full subcategory of algebraic Z-schemes. A
contravariant functor

F : (schemes/Z)° — (sets)
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defines on every Z-scheme S a presheaf of sets:
Uw— F(U)

for all open sets U C S. F is called a sheaf (more precisely a sheaf in the Zariski
topology) if it defines a sheaf on every scheme; namely if for all Z-schemes S and
for all open coverings {U;} of S the following is an exact sequence of sets:

£(s) = [[rw) 7 [[Fwinuy)

i,J

The most important sheaves are the representable functors, i.e. functors isomorphic
to one of the form:
S +— Homg (S, X)

for some Z-scheme X.

If F is a sheaf then F' is determined by its restriction to the category of affine
schemes. Infact, if S is any Z-scheme we can consider an affine open cover {U;}.
For any 4, j we take an affine open cover {V; ; .} of U; N U;; composing the map

Fy)_ [TFwinu;)

(2]

with the inclusions F(U; NU;) — ], F(Vi,j,a) We obtain the exact sequence:

F(S) = [[20) 7 [ F(Vise)

7’7.77a

which shows that F'(S) is determined by its values on affine schemes.

It is very important to have conditions, easy to verify in practice, for a con-
travariant functor F' : (schemes/Z) — (sets) to be representable. Certainly a nec-
essary condition is that F' is a sheaf. Another necessary condition is the following.

Recall that a subfunctor G of F' is said to be an open (resp. closed) subfunctor
if for every scheme S and for every morphism of functors

Hom(—,S) — F

the fibered product Hom(—, S) x p G, which is a subfunctor of Hom(—, S), is rep-
resented by an open (resp. closed) subscheme of S. A family of open subfunctors
{G;} of F is a covering of F if for every Z-scheme S and for every morphism of
functors Hom(—, S) — F' the family {Hom(—,S) xg G;} of subschemes of S is an
open covering of S.

An obvious example is obtained considering an open (resp. closed) subscheme
X' of a Z-scheme X: correspondingly we obtain an open (resp. closed) subfunctor
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Hom(—, X') of Hom(—, X). An open cover {X;} of X defines a cover of Hom(—, X)
by open subfunctors.

Therefore a second obvious necessary condition for a functor F' to be repre-
sentable is that it can be covered by representable open subfunctors. We will now
show that these two necessary conditions are also sufficient.

(A.4.10) PROPOSITION Let
F : (schemes/Z)° — (sets)

be a contravariant functor. Suppose that:

(i) F is a sheaf;

(ii) F admits a covering by representable open subfunctors F;.
Then F' is representable.

Proof
Letting F;; = F; xg Fj, by (ii) the projections F;; — F; correspond to open
embedding of schemes X;; — X;. Therefore the F;’s patch together to form a
representable functor Hom(—, X), where X is the scheme obtained by patching the
X,’s together along the X;;’s. By (i), ¥ and Hom(—, X) are isomorphic. g.e.d.

NOTES

1. For more on representable functors in algebraic geometry the reader
may consult Murre(1965) and Vistoli(2003).
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algebra
etale, 16
formally etale, 16
formally smooth, 16
of dual numbers, 11
of principal parts, 222
rigid, 43
smooth, 16
algebraization, 139
Atiyah extension, 55
blow-up, 149
Brill-Nother number, 67
bundle,
grassmannian 205
projective, 205
tautological, 179
codifferential, 228, 229
cofiltered category, 253
cofinal subcategory, 254
conormal sequence, 223, 230

sheaf, 244
couple
formal, 93

universal, 250

curve, 133, 134, 248
negatively embedded, 63
obstructed, 197

cusp, 71, 148

deformation
algebraic, 137
algebraizable, 139
first order, 40, 58, 90
formal, 92, 116, 137
formally universal, semiuniversal, versal, 137
infinitesimal, 90
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isotrivial, 140

local, 137

obstructed/unobstructed, 49

of a closed subscheme, 58

of a morphism, 65, 147

of an invertible sheaf, 53

of a polarization, 252

with general moduli, 138

universal, semiuniversal, versal, 117
differential, 92, 222, 228, 229
Eagon-Northcott complex, 82
element

formal, 92

universal, 250

universal formal, 93

semiuniversal, versal formal, 95
elementary transformation, 202
etale neighborhood, 25
extension of algebras, 10

trivial, 10

small, 11

versal, 11
extension of schemes, 35
family
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effectively parametrized, 138

isotrivial, 140

locally trivial, 41

of deformations (local, infinitesimal, first order), 40

trivial, 40
product, 40
regular /superabundant, 218
universal, 174

filtered category, 253

functor
automorphism, 131
forgetful, 251
Grassmann, 177
Hilbert, 174
locally trivial moduli, 110
local Hilbert, 114
local moduli, 110
local relative Hilbert, 123, 124
of Artin rings, 90
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prorepresentable, 90
Quot, 188
representable, 250, 255
smooth, 94
unobstructed, 99
grassmannian, 178
henselization, 26
hypersurface, 175
incidence relation, 180, 234
initial object, 251
jacobian criterion of smoothness, 21
Kodaira-Spencer
class, 47
correspondence, 46
map, 50, 127
Koszul
complex, 196
relations, 75
limit
inductive, 251
projective, 251
map
characteristic, 60, 64, 93, 187
classifying, 174
module
faithfully flat, 235
first cotangent, 15
flat 235,
of differentials, 222
second cotangent, 76
moduli
general, 138
number of, 114
morphism
relative complete intersection (r.c.i.), 246
forgetful, 120, 142
non-degenerate, 144
Plicker, 179
rigid, 67
unobstructed, 143
node, 71, 74
obstruction
space, 28, 99
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Petri map, 67

pullback, 13
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quotient
singularity, 87
universal, 191

ramification divisor, 146

regular embedding, 244
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codifferential /differential, 229
complete intersection, 246
conormal sequence, 230
cotangent sequence, 223
cotangent sheaf, 229
cotangent/tangent space 228

ribbon, 35

ring
algebraic local, 26
complete intersection, 244
obstructed, 28
henselian, 26

scheme
complete intersection, 59, 196
Hilbert, 174, 186
local complete intersection (l.c.i.), 244
obstructed, unobstructed, 49, 199

of morphisms, of automorphisms, of isomorphisms, 209

Quot, 191
relative Hilbert, 191
rigid, 40
Severi, 214
vanishing, 167
Schlessinger’s Theorem, 103
sheaf, 255
(b), 158
conormal, 244
cotangent/tangent, 229
equisingular normal, 147, 211
m-regular, 154
normal, 144, 244
first cotangent, 36
of first order principal parts, 55, 233
second cotangent, 77
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singularity,
quotient, 87
rational, 88
stratification, 165
defined by a sheaf, 166
flattening, 167
subscheme,
obstructed /unobstructed, 63
rigid, 58
subvariety
stable, 123
surface, 50, 57, 125
abelian, 126
K3, 57, 121, 122, 127, 197
rational ruled, 41, 124, 135, 231, 141, 233
tacnode, 71
universal
element, 250
property, 179
subbundle, 179

PRV



