Università degli Studi di Roma Tre Corso di Laurea in Matematica - a.a. 2012/2013 GE220 - Topologia Appello C

Cognome e nome	Identificativo
Esercizio 0. Il candidato risolva le seguenti questioni.	

(i) Si ponga $X := \{1, 2, 3, 4\}, Y := \{1, 2, 3\}$, e si munisca l'insieme X della topologia $\mathcal{T} := \{\emptyset, X, \{1, 3\}, \{2, 4\}\}$. Considerata la funzione $f : X \longrightarrow Y$ definita ponendo f(1) = f(2) := 2, f(3) = f(4) := 1, si determini la più fine topologia su Y fra quelle

che rendono f continua.

(ii) Si munisca l'insieme I :=]0,1] della topologia indotta da quella euclidea di \mathbf{R} . Si determini una relazione di equivalenza \mathcal{R} su I in modo che I/\mathcal{R} sia omeomorfo a \mathbf{S}^1 .

(iii) Si dimostri che ogni spazio secondo numerabile è separabile.

(iv) Si dica se ogni bigezione continua $S^1 \longrightarrow S^1$ è necessariamente un omeomorfismo (S^1 ha la topologia di sottospazio indotta dalla topologia euclidea di \mathbb{R}^2).

Esercizio 1. Sia X un insieme, $x_0 \in X$ un elemento fissato, si ponga

$$\mathcal{T} := \{X\} \cup \{U \subseteq X : x_0 \notin U\},\$$

e si dia per buono che $\mathcal T$ è una topologia su X..

- (i) Si descriva la chiusura, rispetto alla topologia \mathcal{T} , di ogni sottoinsieme di X.
- (ii) Si discuta connessione e compattezza di X.
- (iii) Si discutano connessione e compattezza del sottospazio $X \{x_0\}$ di (X, \mathcal{T}) .
- (iv) Si dica se in (X, \mathcal{T}) vale il teorema di unicità del limite, e si dica se (X, \mathcal{T}) è T_1 e/o di Hausdorff.
- (v) Sia adesso $x_1 \in X$ un punto distinto da x_0 e sia $\mathcal{T}' := \{X\} \cup \{U \subseteq X : x_1 \notin U\}$. Si dica se gli spazi topologici $(X, \mathcal{T}), (X, \mathcal{T}')$ sono omeomorfi e, in tale caso, si determini esplicitamente un omeomorfismo $(X, \mathcal{T}) \longrightarrow (X, \mathcal{T}')$.

Esercizio 2. Si ponga

$$Z = \{(x, y) \in \mathbf{R}^2 : -2 + \cos x \le y \le 2 + \cos x\}.$$

Si calcoli $\pi_1(Z,(0,0))$. Si dica se Z è contraibile motivando la risposta.