LECTURES ON THE BIRATIONAL
GEOMETRY OF M ,*

E. SERNESI

1 Unirationality vs. uniruledness

My lectures will be devoted to the birational geometry of M,, the moduli
space of stable curves of genus g, which is a projective variety obtained as a
compactification of My, the quasi-projective moduli variety, or moduli space,
of complex projective nonsingular curves of genus ¢g. Stable curves are certain
types of singular curves of arithmetic genus g (we don’t need to define them)
which are added as new elements to obtain M.

Recall that M, is a normal irreducible projective variety of dimension 3g — 3
if g > 2. Moreover it has a universal property: for each family f :C — S of
stable curves of genus ¢ the map ¢; : S — M, sending a point s € S to the
isomorphism class [f~!(s)] of its fibre, is a morphism. 1), is the functorial
morphism defined by f.

If a family f: C — S is such that the functorial morphism v : S — M, is
dominant, then we say that f is a family with general moduli, and that the
family contains the general curve of genus g, or a curve with general moduli.
We know the following to be true:

rational for 0 < g <6 ([11],]12],[13],[22],[23])
unirational for 7 < g < 14 (Severi,[18],[3],[24])
7 is rationally connected for g =15 ([2])
g of k-dim = —oo if g =16 ([4])
of k-dim > 2 if g =23 ([6])
of general type if g > 22 ([10],9],[5],[7])
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Nothing is known for 17 < g < 21.

When ¢ > 22 we have precise information about the Kodaira dimension.
This is a fundamental invariant in the birational classification of algebraic
varieties, and its computation in the case of M, is a very deep result. Un-
fortunately it does not seem to be easy to translate this information into a
geometrical condition concerning families of curves of genus g.

The properties of rationality and unirationality of M, have a geometrical
meaning in terms of families of curves. The unirationality of M is equivalent
to the existence of a family of nonsingular curves of genus g with general
moduli parametrized by a nonsingular and rational variety (which can be
assumed to have dimension 3g — 3). Rationality means that such a family
can be found which parametrizes general curves of genus g in a 1-1 way, i.e.
such that 1; is birational (in particular dim(S) = 3¢ — 3 if g > 2).

Example 1.1 Every non-hyperelliptic curve of genus 3 can be realized as
a plane nonsingular quartic. All such curves are parametrized by an open
set S of the projective space IP(H®(Op2(4)) = IP' of plane quartics. Since
S is rational and since non-hyperelliptic curves of genus 3 correspond to an
open dense subset of Ms, this gives an easy proof of the fact that Mj is
unirational. The rationality of M3 is much more difficult to detect (see [13]).
Plane irreducible quintics with two nodes have genus 4 and are parametrized
by a locally closed irreducible and nonsingular subvariety S of IP(H%(Op2(5))
of codimension two (a special example of a Severi variety). Since the Brill-
Noether number p(4,2,5) = 1 is nonnegative it follows from Brill-Noether
theory that S parametrizes the general curve of genus 4. Moreover S is
rational because it is an open subset of the total space of a projective bundle
over a dense open subset of the second symmetric product (IP?)?) of IP?:
the fibre over p; + po is the linear system of quintics singular at p; and ps.
Therefore M, is unirational.

If we try to repeat the same argument for g = 5 using plane quintics with
one node we still find a rationally parametrized family, but the curves it
parametrizes are special because p(5,2,5) = —1. If we want a family with
general moduli in genus 5 we have to consider plane sextics with 5 nodes.
In this case p(5,2,6) = 2 so that we obtain general curves of genus 5 in this
family, again by Brill-Noether theory. Moreover for every general 5-tuple of
points {p1, ..., ps} the linear system of plane quintics singular at {py,...,ps}
is non-empty. It follows again that S is rational, because fibered over an open
subset of (IP?)®) with fibres linear systems, and M3 is unirational.



This method works well until genus 10 and it is essentially how Severi proved
the unirationality of M, for all ¢ < 10. We refer to [1] for a modern discussion
of his proof.

There is another birational notion, namely uniruledness, which has an inter-
pretation in terms of families. I will give a negative formulation of it:

Proposition 1.2 The following conditions are equivalent:
1. M, is not uniruled.

2. A general curve of genus g cannot occur in a non-trivial linear system
in any non-ruled surface.

Proof. Uniruledness means that given a general curve C' of genus g, there
is a non-constant morphism ¢ : P! —— M, whose image contains [C]. If

such a 1) exists then we can pullback to an open subset of IP! the universal
family of curves of genus g, which is defined over an open set of M, containing
[C] because C' has no automorphisms. We obtain a family of curves of genus
g parametrized by an affine rational curve and then we can embed the total
space in a projective surface X extending the family to one over IP!. This
gives a linear pencil of curves in X containing C' among its members.
Conversely, if a general curve C' of genus g moves in a surface X in a
non-trivial linear system, then, after blowing-up the base points, we can
assume that there is a morphism f : X — IP! with C as a fibre. Let
Yy Pt —— M, be the induced map. If M, is not uniruled then ¢; is
constant. In other words, the fibration f is isotrivial. By the structure
theorem about such fibrations, there is a nonsingular curve I' and a finite
group G acting on both C' and I such that there is a birational isomorphism

X-->(CxI)/G
and a commutative diagram:

X--=(CxI)/G

P

P'——T1/G



where the right vertical arrow is the projection. But since C' is general, it
has no non-trivial automorphisms, and therefore G acts trivially on C': thus
X is birational to C' x (I'/G). O

As a corollary of what is known about k-dim(M ;) we obtain:

Corollary 1.3 A general curve of genus g > 22 cannot occur in a non-trivial
linear system in any non-ruled surface.

This can be viewed as a result belonging to the theory of algebraic sur-
faces. It would be interesting to have a direct proof of it which does not
use any information about k-dim(M,) and which, hopefully, gives some new
insight into the open cases 17 < g < 21. In these lectures we will explore
this point of view.

Note that the difference between unirationality and uniruledness is that in
the first case one can parametrize almost all curves of genus ¢g simultaneously
by a rational variety, while in the second case almost all curves of genus g are
fibres of a one-parameter family parametrized by P!, but all these families

cannot in general be obtained as restrictions of a single larger rational family.

2 Fibrations

A rational curve containing a general point [C] € M, can be represented by
a surface fibered over a curve having C' among its fibres. For this reason we
will study such fibrations. Let’s introduce some terminology.

By a fibration we mean a surjective morphism

f:X—S8

with connected fibres and nonsingular general fibre from a projective non-
singular surface to a projective nonsingular connected curve. We will denote
by

g = the genus of the general fibre. We will always assume g > 2.
b= the genus of S.
A fibration is called:

- relatively minimal if there are no (—1)-curves contained in any of its

fibres.



- semustable if it is relatively minimal and every fibre has at most nodes
as singularities.

- 4sotrivial if all its nonsingular fibres are mutually isomorphic; equiva-
lently, if two general nonsingular fibres of f are mutually isomorphic
(the equivalence of the two formulations follows from the separatedness
of M,).

We have an exact sequence
0— frfwg — QY — Qﬁf/s — 0 (1)

(which is exact on the left because the first homomorphism is injective on a
dense open set and f*wg is locally free). Note that Q% /s 1s torsion free rank-
one but not locally free if f has singular fibres. In particular it is different
from the relative dualizing sheaf

wx/s = wx ® frwg!

which is invertible.
If we dualize the sequence (1) we obtain the exact sequence:

0—=Txs—Tx — fTg— N —0 (2)
where we have denoted
Tx/s = HomoX(Qﬁ(/S,(’)X)

and
N = Brth, (s, Ox) Q

The sequence (2) shows, in particular, that N is the normal sheaf of f, and
also the first relative cotangent sheaf T’ /s of f. In particular, N s supported
on the set of singular points of the fibres of f.

Moreover T'x/s is an invertible sheaf because it is a second syzygy of the
Ox-module N.

We we will need the first part of the following classical result:

Theorem 2.1 (Arakelov, Serrano) If f is a non-isotrivial fibration then
h(X,Tx/s) = 0= h(X,Tx) (4)
If moreover f is relatively minimal then we also have:

(X, Tx/s) =0 (5)



Proof. of (4). f is non-isotrivial if and only if f,7x = 0 (Serrano). Since

f*TX/S C f*TX
we also have f.Tx/s = 0 if f is non-isotrivial. Thus (4) is a consequence of
the Leray spectral sequence. O

Denoting by Ext} the first derived functor of f,Hom, we are interested in
the sheaf Ext}(Qﬁ( /5: O x) because its cohomology describes the deformation
theory of f.

Lemma 2.2 For any fibration f : X — S there is an exact sequence of
sheaves on S':

0 —>R1f*TX/S ﬂ)Eﬂft}c(Q}X/s,Ox)ﬂ) f*E:Et}((Q}(/57(9X) — 0

|
fN

(6)

Proof. (6) is the sequence associated to the local-to-global spectral se-
quence for Fuxt;. O

Proposition 2.3 If the fibration f is non-isotrivial then we have:
X(Exty(Qx,s, Ox)) = 1x(Ox) — 2Kx +2(b—1)(g — 1) (7)
In particular, if S = P then:
VB2t (05, 0x)) = 11x(Ox) — 2K — 2(g — 1)
Proof. Since the fibres of f are 1-dimensional we have
R*f.Tx/s =0

Moreover f,Ext*(Q /s, Ox) = 0 because Ext*(Q g, Ox) = 0 by the exact
sequence (1). Therefore, using the local-to-global spectral sequence for Ext
we deduce that

R'f.N = Ext3(Q /5, Ox) = 0

where the last equality is true because the fibres of f are 1-dimensional. This
gives:

X(flN) = x(N)
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Moreover, since f is non-isotrivial, from (4) and the Leray spectral sequence
we get
X(R' f.Tx;s) = —x(Txss)

We now use the exact sequence (6) and we deduce that

X(Batp(Qy)s,Ox)) = x(f.N) + x(R"' f.Tx/s)
X(NV) = x(Tx/s)
X(f*Ts) = x(Tx) (by (2))

Using Riemann-Roch one computes that:

X("(Ts)) = x(Ox) +2(b = 1)(g — 1)
X(Tx) 2K% — 10y(Ox)

and by substitution one gets (7). O

3 Free fibrations

In order to check whether there exists a rational curve containing a general
point of M, one might naively try to construct directly a non-isotrivial ra-
tional fibration containing a general curve of genus g among its fibres. This
turns out to be hopeless, simply because general curves are virtually impos-
sible to produce in practise. This is related with the complexity of M,: in
order to produce a general curve one should describe it in some way, for ex-
ample by equations whose coefficients should vary in a suitable way, and this
would give an explicit parametrization of M,, which is exactly what we are
unable to do. For remarks and further discussion about this point we refer
the reader to [17].

We will try another approach. Starting from any rational fibration, we will
apply deformation theory techniques to check whether it can be deformed
to another one which parametrizes a general curve of genus g. We give the
following definition.

Definition 3.1 Let f : X — IP' be a non-isotrivial rational fibration. We
say that the fibres of f have general moduli if there is a family of deformations



of f:

P' x {v}—P' xV

parametrized by a nonsingular connected pointed algebraic scheme (V,v) such
that F' is a family of curves of genus g with surjective Kodaira-Spencer map
at every point of a non-empty open subset of IP* x {v}.

From the definition it follows that if the fibres of f have general moduli
then, up to taking a general deformation of f, we may assume that a general
fibre C' of f is a general curve of genus g. We obtain in this way that
the general curve C' of genus g moves in a non-trivial linear system on the
algebraic surface X, and therefore M, is uniruled. Therefore, in order to
have information about the uniruledness of M, using this definition we need
a criterion to check whether the fibres of a given rational fibration have
general moduli.

Suppose given a rational fibration

f: X— P!

whose general fibre has genus g. We have:

39—3

Ext}(Qﬁg/]pl, OX) = @ OPI (CLz)
i=1

for some integers a;. We call f free if it is non-isotrivial and a; > 0 for all i.
The reason why are we considering free fibrations is because, using general
deformation-theoretic techniques one can prove the following:

Theorem 3.2 Assume that f : X — IP' is a non-isotrivial rational fibration
whose fibres have general moduli. Then f is free.

The proof is straightforward and we omit it. We will try to apply this
theorem in a negative way, looking for an upper bound on ¢ for the existence
of free rational fibrations with fibres of genus ¢g. If we find such an upper
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bound go, then we have proved that M, is not uniruled for g > go. In order
to carry out this strategy we need numerical criteria for the freeness of a
fibration.

Lemma 3.3 Suppose given a rational fibration
i X—=P!
whose general fibre has genus g. There is a homomorphism:
Ky Tpr — Extp () p1, Ox))
which is injective if and only if f is non-isotrivial.
Proof. The exact sequence (1) induces an exact sequence on IP':
0— f.Tx — Tpr —5 Ext}(Qﬁ(/]phOX)

We have f,Tx = 0 if and only if f is non-isotrivial, and this proves the
assertion. O

Proposition 3.4 Suppose that f : X — IP' is a rational fibration. If f is
free then we have:

1x(Ox) = 2K% > 5(g — 1) +2 (8)
Proof. By Lemma 3.3 we have a; > 2 for some ¢. Therefore, since
HY (Exty(Qy/p1,0x)) =0
we have
11x(Ox) — 2K% — 2(g — 1) = H*(Eat;(Qx/5, Ox)) > 3g — 1

O

Let Y be a projective nonsingular surface, and let C' C Y be a projective
nonsingular connected curve of genus ¢ such that

dim(|C]) > 1



Consider a linear pencil A contained in |C| whose general member is nonsin-
gular and let 0 : X — Y be the blow-up at its base points (including the
infinitely near ones). We obtain a rational fibration

f: X — P!

obtained by composing ¢ with the rational map Y — - > Jp! defined by A.
We will call f the fibration defined by the pencil A. If moreover the curve C
is general then the fibres of the fibration f have general moduli and therefore
f is free.

By expressing the invariants appearing in (8) in terms of Y and by some
little extra work one can prove the following result:

Theorem 3.5 Let'Y be a projective nonsingular surface. Assume that C C
Y is a general projective nonsingular connected curve of genus g and that

dim(|C|) > 1

Then:
1x(Oy) = 2K +2C% > 5(g — 1) + h°(Oy (0)) 9)

If moreover h°(Ky — C) = 0 then
10x(Oy) = 2K7 > 4(g — 1) = C* (10)
Note that
10x(Oy) — 2Ky = —x(Ty) = W' (Ty) — h*(Ty) — h*(Ty)

If h%(Ty) = 0 ( which means that Y has no infinitesimal automorphisms) this
is the expected number of moduli of Y. Therefore inequality (10) roughly says
that if the surface Y has no infinitesimal automorphisms (e.g. it is of general
type) and contains a curve of genus g with general moduli moving in a non-
trivial linear system then it must have sufficiently many moduli.

Examples 3.6 (i) Let Y = IP%2. Then
10x(Op2) — 2K%; = —8

If C C Y has degree d then C? = d?, 4(g — 1) = 2d(d — 3) and (10) gives
d < 4. This is the well known bound on d for a plane nonsingular curve of
degree d to have general moduli.
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(ii) Let Y be a K3-surface. Then
10x(Oy) — 2K3 =20

If C C Y has genus g then C? = 2(¢g — 1) and (10) implies ¢ < 11. This
bound is sharp because a general curve of genus 11 can be embedded in a
K3-surface [15], but this is not possible in genus g > 12, as it can be shown
by an elementary count of parameters [14]. In fact a curve of genus g moves
in a g-dimensional linear system on a K3-surface Y; on the other hand Y
depends on 19 moduli. Therefore the locus in M, spanned by C' when it
varies in |C| and Y varies cannot exceed g + 19. In order to have

g+19>3g—3

it must therefore be g < 11.

4 Nodal curves on surfaces of low Kodaira
dimension

The examples 3.6 involve minimal surfaces. If we want to investigate the
(non)-uniruledness of M, we cannot restrict to this case. On the other hand
if we allow Y to be just any surface then we loose control on the left hand side
of (10), because each blow-up increases 10x(Oy) — 2K% by 2, so that (10)
becomes less and less significant. A good compromise can be to consider nodal
curves on minimal surfaces. They correspond to nonsingular curves on non-
minimal surfaces where the number of blow-ups necessary to desingularize the
curve can be kept under control. As an example we can prove the following
result:

Theorem 4.1 Let C C IP? be an irreducible curve of degree d having § nodes
P, ..., ps and no other singularities. Let

be the geometric genus of C. Assume that there exists a linear pencil of
curves of degree d singular at p1,...,ps and that the normalization D of C
has general moduli. Then g < 9.

11



Proof. Let 7 :Y — JP2 be the blow-up of IP? at p,...,ps. Then the
proper transform D C Y of C' is its normalization and we have:

D? = d? — 40, 10x(Oy) — 2Ky = —8+26,  4(g—1) =2d(d—3) — 46
Therefore (10) gives:
—8+ 25 > 2d(d — 3) — 45 — (d* — 49)

which is equivalent to 26 > d?> — 6d + 8. Using the fact that D? > 0 we
obtain:
0<d®>—46 < —d*+12d — 16

which implies d < 10. An elementary well known case-by-case analysis shows
that there are no nodal irreducible curves of degree 9 or 10 having general
moduli and moving in a pencil, and that in degree 8 the highest genus of
such a curve is 9, corresponding to § = 12 (see [1] for details). O

Example 4.2 If C C IP? is an irreducible quintic with two nodes p;, p, then
g = 4 and we know (Example 1.1) that D has general moduli. Therefore a
general pencil of quintic curves singular at p;, po defines a free fibration and
inequality (10) must hold. In fact D* =25 — 8 = 17, 10x(Oy) — 2K% = —
and

—4>-5=4(9—1) - D?

If we consider a quintic C' C IP? with one node (g = 5) then we obtain
10x(Oy) — 2K2 = —6 < —5 = 4(g — 1) — D?

i.e. (10) does not hold, compatibly with the fact that D is not a general
curve (Example 1.1). But (10) holds for sextics with five nodes (of genus 5)
as the reader can easily check.

Another result which follows from a similar analysis is the following:

Theorem 4.3 Let Y be a minimal surface of geometric genus p, and with
k-dim(Y') > 0, and let C C Y be an irreducible curve of geometric genus
g > 3 having nodes py,...,ps and no other singularities. Assume that:

(1) C is contained in a linear pencil A whose general member is an irreducible
curve with nodes at py,...,ps and no other singularities.

12



(i1) The normalization D of C' is a general nonsingular curve of genus g.
(iii) h°(Ky — C) = 0.

Then
g <1+5x(0Oy)— K}%

In particular

6 ifp,=0
g<{1l ifp,=1
16 ifp, =2

Proof. Let 7 ——=Y be the blow-up at py,...,ps; we may assume that
the proper transform of A defines a free fibration. Since Y is not ruled we
have D? < 2g — 2 — 2§. Therefore (10) gives:

2(g—1) <4(g—1) — D*—25 < 10x(0z) — 2K; — 26 = 10x(Oy) — 2K5

and we obtain the stated inequalities. O

Remarks 4.4 The bounds of Theorem 4.3 are not sharp if the surface Y is
irregular. For example, in the case of an abelian surface Y, a more accurate
computation would give the bound g < 1.

In [15] and [16] it is proved that a general nonsingular curve of genus g can be
embedded in a K3 surface if and only if g < 11 and g # 10. In particular the
bound of Theorem 4.3 is sharp for K3 surfaces. In [8] it is shown that even
a general curve of genus 10 can be birationally embedded in a K3 surface
provided one allows it to have one node (hence arithmetic genus 11).

The following theorem covers the remaining cases of non-ruled elliptic
surfaces:

Theorem 4.5 Let Y be a non-ruled and non-rational minimal elliptic sur-
face of geometric genus p,, ™ Y — B the elliptic fibration onto a nonsingular
connected curve B. Let C' C'Y be an irreducible curve of geometric genus
g > 3 having nodes py,...,ps and no other singularities. Assume that:

(1) C is contained in a linear pencil A whose general member is an irreducible
curve with nodes at py,...,ps and no other singularities.

(1) The normalization D of C' is a general nonsingular curve of genus g.
Then g < 16.

For the proof we refer to [20]. It uses special properties of elliptic surfaces.
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5 Curves on surfaces of general type

We now turn to the more difficult case of surfaces of general type. Here the
situation is not as clear, and we do not have general results yet. Therefore
we will only state the results which seem more remarkable to us. We will
state them only for nonsingular curves on minimal surfaces, but they are
valid more generally for nodal curves on minimal surfaces. Our main result
is the following:

Theorem 5.1 Let Y be a minimal surface of general type. Assume that

C CY is a nonsingular irreducible curve of genus g > 3 with general moduls.
Then

(i) If dim(|C|) > 2 and K& > 3x(Oy) — 10 then g < 19.
(ii) If dim(|C|) > 2 and K¢ > 4x(Oy) — 16 then g < 15.
(iii) If dim(|C|) =1, |Ky — C| =0 and K > 4x(Oy) — 16 then g < 19.

The proof of this theorem uses again the inequality (10) combined with
the inequalities satisfied by x(Oy) and KZ. A new ingredient with respect
to the cases analized before is the use of the Clifford index of the curve C.
For the complete proof we refer to [20]. The bound g < 19 suggests that M,
could be non-uniruled for g > 20.

An immediate but noticeable special case is the following:

Corollary 5.2 Let Y be a minimal surface of general type such that the
canonical map is birational onto its image. Suppose that C CY is a nonsin-
gular curve of genus g > 3 with general moduli and such that dim(|C|) > 2.
Then g < 19.

Proof. Y satisfies K& > 3x(Oy) — 10 (Castelnuovo inequality). Then we
are in case (i) of Theorem 5.1. 0

One case not considered by these results is that of curves on minimal
surfaces Y such that K2 < 3x(Oy) — 10. This case turns out to be easy
to treat because the canonical map is 2:1 onto a rational surface and one
can reduce to a previous case proving that g < 9 if C' C Y has genus g and
general moduli.

The cases which seem to be more difficult to handle are complete linear
pencils. The above results in this case are still unsatisfactory and perhaps
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they hide the highest difficulties. Unfortunately, as we already remarked, it
is difficult to produce explicit examples of curves with general moduli, and
even more difficult to find them on surfaces of general type such that they
move in a non-trivial linear system.

One of the few known examples is given in [2]. The authors show that a
general curve C' of genus 15 can be embedded as a non-degenerate nonsingular
curve in IP%, lying in a nonsingular canonical surface Y C IP% which is
a complete intersection of 4 quadrics, and such that dim(|C|) = 2 on Y.
Therefore, by Theorem 3.2, a general pencil in |C| defines a free rational
fibration. The relevant numbers are in this case:

d=C?=09, K{ =16, x(Oy) =8

We find:
10x(Oy) — 2K} =48 > 47 =4(g— 1) —d

as it must be, because of the existence of a free rational fibration of genus
15.
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