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On Treibich-Verdier curves
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Abstract: We survey some properties of a class of curves ly-
ing on certain elliptic ruled surfaces, studied by A. Treibich and
J.L. Verdier in connection with elliptic solitons and KP equations.
In particular we discuss their Brill-Noether generality, proved by
A. Treibich, and we show that they are limits of hyperplane sec-
tions of K3 surfaces.
Keywords: Projective curve, Brill-Noether theory, ruled surface,
K3 surface.

1. Introduction

This largely expository note is devoted to the description of some properties
of a class of algebraic curves studied by A. Treibich and J.L. Verdier in con-
nection with elliptic solitons and KP equations. We call them Treibich-Verdier
curves (shortly TV-curves) in what follows. The topic is wide and covers the
singular case as well, but we only focus on some aspects related with Brill-
Noether theory and K3 surfaces. In [T3] Treibich showed that TV-curves
are Brill-Noether general. Since then for some time they have been the most
concrete known class of curves with such property, and only recently a new
similar class has been discovered, namely the Du Val curves, which are even
Petri-general (see [ABFS]). From the moduli point of view TV-curves are very
special, being ramified covers of elliptic curves, constructed inside an elliptic
ruled surface; they owe their Brill-Noether generality to a specific relation,
called “tangentiality”, between the elliptic curve and the Abel-Jacobi image
of the curve itself (see Prop. 3.4). The proof given in [T3] is quite ingenious,
combining tangentiality with a formula of Fay’s and elementary properties of
the jacobian. We reproduce it in outline in § 4. In the final § 5, the only novel
part of this note, we prove that TV-curves of any genus g ≥ 3 are limits of
hyperplane sections of K3 surfaces. This is done by showing that the elliptic
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2454 Edoardo Sernesi

ruled surface containing them can be realized birationally as a surface in P
g

whose hyperplane sections are canonical models of TV-curves, and that such
surface can be smoothed in P

g, thus producing K3 surfaces whose hyperplane
sections specialize to any given TV-curve (Theorem 5.2).

A few interesting questions remain unanswered. Firstly, one would like to
know whether TV-curves are Petri general: Treibich’s proof of Brill-Noether
generality apparently cannot be adapted to give informations on the Petri
map. Another question concerns the corank of the Wahl map. Corollary 5.3
shows that the Wahl map ΦΓg of a TV-curve Γg of any genus g ≥ 3 is not
surjective, but it does not compute its corank. It would be interesting to carry
out such computation, in view of the fact that there are no known examples
of Brill-Noether general curves of genus g ≥ 13 whose Wahl map has corank
strictly larger than one (compare [CDS], Question 2.14). In fact corank (ΦΓg)
is related with the extendability of the surfaces Sg, a property which seems
difficult to detect. Moreover, if one knew that ΦΓg has corank equal to one
then it would follow that TV-curves are not hyperplane sections of K3 surfaces
but just limits of such (compare [AB], where this question is discussed).

We work over C, the field of complex numbers.
The structure of the paper is the following. In §2 we collect some standard

computations that are needed in the rest of the paper. §3 is devoted to the
property of tangentiality and to its consequences for TV-curves. In §4 we
outline Treibich’s proof of the Brill-Noether generality, and in the final §5 we
discuss the relation between TV-curves and K3 surfaces.

2. Some computations

We fix a projective nonsingular curve E of genus one, and a point q ∈ E as
the origin. We let

(1) 0 −→ OE −→ E −→ OE −→ 0

be the unique non-split extension in Ext1(OE ,OE), X = P(E) and π : X −→
E the projection. Moreover we let E0 ⊂ X be the minimal section, of self-
intersection E2

0 = 0, f = π−1(q) and p = E0∩f . Note that OX(E0) = OX(1),
KX = OX(−2E0) and χ(OX) = 0.

Lemma 2.1. Let SaE be the a-th symmetric power of E, a ≥ 1. Then:

(i) SaE is indecomposable, h0(E, SaE) = 1 = h1(E, SaE) and SaE ∼= SaE∨.
(ii) For every k ≥ 1 we have h0(E, SaE(kq)) = k(a+1), h1(E, SaE(kq)) =

0
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Proof. (i) By induction on a. For a = 1 the claim is clear because the
exact sequence (1) being non-split, has non-zero coboundary as well as its
dual. Therefore E ∼= F2 (in the notations of [A]), the unique, up to isomor-
phism, indecomposable vector bundle of rank two and degree zero such that
H0(E, E) �= 0. Assume a ≥ 2. Then, by loc. cit., Theorem 9, SaE ∼= Fa+1, the
unique, up to isomorphism, indecomposable vector bundle of rank a+ 1 with
H0(E, SaE) �= 0. From (1) we deduce a non-split exact sequence:

(2) 0 −→ Sa−1E −→ SaE −→ OE −→ 0

corresponding to a generator of H1(E, Sa−1E). It shows that hi(E, SaE) = 1,
i = 0, 1. Moreover SaE ∼= SaE∨ by the case a = 1 just proved (or by loc. cit.,
Corollary 1).

(ii) We give the proof only in the case k = 1: in the other cases it is
similar. By induction on a. From the exact sequence:

(3) 0 −→ OE(q) −→ E(q) −→ OE(q) −→ 0

we deduce that h0(E, E(q)) = 2 and h1(E, E(q)) = 0, and this takes care of
the case a = 1. Now assume a ≥ 2. From (3) we deduce the exact sequence

(4) 0 −→ Sa−1E(q) −→ SaE(q) −→ OE(q) −→ 0

By the inductive hypothesis we have h0(E, Sa−1E(q)
= a and h1(E, Sa−1E(q) = 0. Then the cohomology sequence of (4) proves
the induction step and the Lemma.

Lemma 2.2. Let g ≥ 1. Then:

(i) h0(X,OX(gE0)) = h1(X,OX(gE0)) = 1, h2(X,OX(gE0)) = 0.
(ii) h0(X,OX(gE0 + f)) = g + 1,

h1(X,OX(gE0 + f)) = h2(X,OX(gE0 + f)) = 0.
(iii) The base locus of the linear system |gE0 + f | is {p}.
(iv) The general Γ ∈ |gE0 + f | is a nonsingular connected curve of genus g.
(v) Every nonsingular Γ ∈ |gE0 + f | satisfies OΓ(Γ) = ωΓ(2p) and the

image of the restriction map:

H0(X,OX(Γ)) −→ H0(Γ, ωΓ(2p))

defines the linear system |ωΓ| + 2p.
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Proof. (i) From the Leray spectral sequence we get:

hi(X,OX(gE0)) = hi(E, SgE)

Then we conclude by Lemma 2.1(i).
(ii) From the Leray spectral sequence we get:

H i(X,OX(gE0 + f)) = H i(E, SgE(q))

Then we conclude by Lemma 2.1(ii).
(iii) Since (gE0 + f) ∩ E0 = p, certainly the base locus Bs(|gE0 + f |)

contains p. Consider the exact sequence

(5) 0 −→ OX(gE0) −→ OX(gE0 + f) −→ Of (gE0 + f) −→ 0

Lemma 2.1(i) and Leray spectral sequence imply that

h1(X,OX(gE0)) = h1(E, SgE) = 1

and Lemma 2.1(ii) gives H1(X,OX(gE0 + f)) = 0. Therefore we see that the
map

H0(X,OX(gE0 + f)) −→ H0(f,Of (gE0 + f))
has corank one: thus |gE0 +f | has p as a simple base point on f ; in particular
the general Γ ∈ |gE0 + f | is not tangent to f . Let now f ′ = π−1(q′), q′ �= q,
be another fibre. The exact sequence

0 −→ OX((g−1)E0+f−f ′) −→ OX(gE0+f−f ′) −→ OE0(gE0+f−f ′) −→ 0

and induction show that

(6) H0(X,OX(gE0 + f − f ′)) = H1(X,OX(gE0 + f − f ′)) = 0

for all g ≥ 1. Therefore from the following exact sequence:

0 −→ OX(gE0 + f − f ′) −→ OX(gE0 + f) −→ Of ′(gE0 + f) −→ 0

we deduce that the restriction map

H0(X,OX(gE0 + f)) −→ H0(f ′,Of ′(gE0 + f))

is surjective. Therefore |gE0 +f | has no base points on f ′. This concludes the
proof of (iii).
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(iv) Since (gE0 + f) · E0 = 1, we see that Γ intersects E0 at p with
multiplicity one, thus Γ is nonsingular at p and it is nonsingular elsewhere by
Bertini. Moreover by adjunction we get:

2g(Γ) − 2 = ((g − 2)E0 + f) · (gE0 + f) = 2g − 2

and g(Γ) = g.
(v) We have

OΓ(Γ) = OΓ(Γ − 2E0) ⊗OΓ(2E0) = ωΓ ⊗OΓ(2p) = ωΓ(2p)

The last assertion follows easily by looking at the following diagram:

0 OX OX(Γ) ωΓ(2p) 0

0 OX(−E0)

E0

OX((g − 1)E0 + f)

E0

ωΓ(p)

p

0

Remark 2.3. From Lemma 2.2 it follows that all curves of |Γ| have a fixed
tangent at p along a direction trasversal to both E0 and f .

Definition 2.4. Let g ≥ 1. A Treibich-Verdier curve (shortly a TV-curve)
of genus g is a smooth curve Γg ∈ |gE0 + f |.

Next we investigate some remarkable properties of TV-curves.

3. Tangentiality

3.1. Let ϕ : (C, p) −→ (D, q) be a finite morphism of projective smooth con-
nected pointed curves of positive genera, and let Jac(C) and Jac(D) be their
jacobian varieties, parametrizing isomorphism classes of invertible sheaves of
degree zero. Then we have the following homomorphisms:

1. ϕ∗ : Jac(D) −→ Jac(C), L 
→ ϕ∗L.
2. The norm map

Nm(ϕ) : Jac(C) −→ Jac(D), M 
→ det(ϕ∗M) ⊗ det(ϕ∗OC)−1

3. The Abel maps

Abp : C −→ Jac(C), x 
→ OC(x− p)

and
Abq : D −→ Jac(D), y 
→ OD(y − q)
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4. The composition

ιϕ := ϕ∗ · Abq : D −→ Jac(C)

It is etale onto its image, since Nm(ϕ) · ϕ∗ is multiplication by deg(ϕ).

Definition 3.2 ([T1], Def. 1.6). ϕ is called a tangential cover if ιϕ(D) is
tangent to Abp(C) at 0 ∈ Jac(C).

In [T1, TV1, TV2] various properties of tangential covers are studied,
even in the singular case, mainly in the case when D has genus one. We will
only recall what we need for the study of TV-curves.

3.3. We go back to the notations introduced in the previous sections. We fix
g ≥ 3 and a TV-curve of genus g, which for short we denote by Γ. We denote
by

πΓ := π|Γ : (Γ, p) −→ (E, q)
the degree g cover of pointed curves obtained by restricting π : X −→ E to Γ.
Then Abq(α) = OE(α− q) and

ιπ : E −→ Jac(Γ), α 
→ π∗
Γ(α) ⊗ π∗

Γ(q)−1

By 4 this map is etale onto its image; it is an embedding if and only if πΓ
does not factorize via a cyclic etale cover h : E′ −→ E ([BL], Prop. 11.4.3).
The following is a fundamental property of πΓ:

Proposition 3.4 ([TV2], Cor. 3.10). πΓ is a tangential cover.

Proof. The non-zero element η ∈ H1(E,OE) corresponding to the exten-
sion (1) generates the tangent space T0Jac(E). The pullback of η by πΓ

π∗
Γ(η) : 0 −→ OΓ −→ π∗

ΓE −→ OΓ −→ 0

identifies dιπ(η) ∈ T0Jac(Γ) = H1(Γ,OΓ) as the image of the coboundary
map:

∂ : H0(Γ,OΓ) −→ H1(Γ,OΓ)
We must show that dιπ(η) is tangent to Abp(Γ), i.e. that dιπ(η) generates
T0Abp(Γ). Firstly observe that dιπ(η) �= 0, by 4. It is classical and well known
(compare [ACGH]) that T0Abp(Γ) is the kernel of the map

H1(Γ,OΓ) −→ H1(Γ,OΓ(p))

induced by multiplication with a non-zero section σp ∈ H0(Γ,OΓ(p)). Observe
that on the surface X we have a canonical quotient π∗E −→ OX(C0) = OX(1)
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On Treibich-Verdier curves 2459

which restricts on Γ to a quotient ζ : π∗
ΓE −→ OΓ(p). Consider the following

diagram:
π∗

Γ(η) : 0 OΓ

σp

π∗
ΓE

ζ

OΓ 0

0 OΓ(p) E ′ OΓ 0

where the second row is the extension obtained as the pushout of π∗
Γ(η) un-

der σp. Taking cohomology and chasing the diagram we see that the existence
of ζ implies that

dιπ(η) ∈ ker[H1(Γ,OΓ)
σp

H1(Γ,OΓ(p))]

which is precisely what had to be proven.

The map ιπ defines an action of E on Jac(Γ). Then, for any d, the map
ιπ induces an action of E on Picd(Γ), the variety of isomorphism classes of
invertible sheaves of degree d, by restricting to ιπ(E) the action of Jac(Γ).
We focus on the case d = g − 1. For each ξ ∈ Picg−1(Γ) we denote by

Orbξ : E −→ Picg−1(Γ), α 
→ ξ ⊗ ιπ(α) = ξ ⊗ π∗
Γ(α) ⊗ π∗

Γ(q)−1

Then Orbξ(E) is the orbit of ξ by the action of E on Picg−1(Γ). The following
is an immediate consequence of Proposition 3.4:

Corollary 3.5. Orbξ(E) is tangent to Abp(Γ) + ξ at ξ.

Let
Θ := {ξ ∈ Picg−1(Γ) : h0(Γ, ξ) ≥ 1}

be the canonical theta divisor. The following result is fundamental in the
study of TV-curves.

Proposition 3.6 ([TV1]). (i) For each ξ ∈ Picg−1(Γ) the orbit Orbξ(E)
is not contained in Θ, in particular the pullback Orb∗

ξ(Θ) is an effective
divisor on E.

(ii) Let ξ ∈ Θ and let r+1 = h0(Γ, ξ). Then the intersection multiplicity of
Orb(E) with Θ at ξ is

(7) multξ(Orb(E),Θ) = r + 1 +
r+1∑
i=1

(mi + ni)

where the integers m1, . . . ,mr+1, n1, . . . , nr+1 are defined by the follow-
ing identities:

h0(Γ, ξ(−mip)) = r+1− i+1 = h0(Γ, ωΓξ
−1(−nip)), i = 1, . . . , r+1
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(iii) Orb∗
ξ(Θ) has degree g for all ξ ∈ Picg−1(Γ).

(iv) the morphism
I : Picg−1(Γ) −→ E(g), ξ 
→ Orb∗

ξ(Θ)

is finite (where E(g) denotes the g-th symmetric product of E).

Proof. (i) Let T = T0(Abp(Γ)), the tangent space at 0 ∈ Jac(Γ) of the Abel
image of Γ. Let G(Γ, p) ⊂ Jac(Γ) be the 1-parameters subgroup generated
by any 0 �= v ∈ T . By [F], Th. 1.2, the orbit ξ · G(Γ, p) is not contained in
Θ, for any ξ ∈ Picg−1(Γ). Since πΓ is tangential, we have T = T0(ιπ(E)) and
therefore G(Γ, p) = ιπ(E). Thus Orbξ(E) = ξ ·G(Γ, p) is not contained in Θ
for all ξ ∈ Picg−1(Γ).

(ii) Since G(Γ, p) = ιπ(E) the multiplicity multξ(Orb(E),Θ) coincides
with the number N appearing in the statement of [F], Th. 1.2, i.e. with the
right hand side of (7).

(iii) deg(Orb∗
ξ(Θ)) does not depend on ξ; therefore it suffices to prove (iii)

for just one choice of ξ: we take ξ = (g − 1)p. Let’s write ε = OE(α − q) ∈
Jac(E). Since ξ⊗ ιπ(α) = ξ⊗π∗

Γε, we have α ∈ Supp
(
Orb∗

ξ(Θ)
)

if and only if

(8) H0(E, πΓ∗ξ(ε)) = H0(Γ, ξ ⊗ π∗
Γε) > 0

Consider the exact sequence on X:

0 −→ OX(−E0 − f) −→ OX((g − 1)E0) −→ OΓ((g − 1)p) −→ 0

taking direct images we get

πΓ∗ξ ∼= π∗OX((g − 1)E0) = Sg−1E

Since

H0(E, Sg−1E(ε)) =
{

1, ε = 0
0, ε �= 0

we see that h0(Γ, ξ) = 1 and Supp
(
Orb∗

ξ(Θ)
)

= {q}. We now apply (7).
The integers appearing in (7) are r = 0 and m1 = g − 1, n1 = 0, because
p /∈ Supp(ωΓξ

−1), since ωΓξ
−1 = f · Γ − p. Therefore we obtain

multξ(Orbξ(E),Θ) = 1 + (g − 1 + 0) = g

and this proves that Orb∗
ξ(Θ) = gq.

(iv) Consider gq ∈ E(g). If ξ ∈ I−1(gq) then Orbξ(E) ∩ Θ = {ξ} and
multξ(Orbξ(E),Θ) = g. Then ξ = (g − 1)p. In particular I−1(gq) is finite,
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On Treibich-Verdier curves 2461

thus I is generically quasi-finite, and therefore surjective. Consider the Stein
factorization of I:

Picg−1(Γ)

φ

I
E(g)

Z

ψ

where ψ is finite and φ is birational with connected fibres. If I is not finite
then φ has a positive dimensional fibre F ⊂ Picg−1(Γ). This implies that
F contains a rational curve, and this is impossible, because Picg−1(Γ) is an
abelian variety.

4. Brill-Noether generality

Let C be a projective nonsingular irreducible curve of genus g ≥ 3. Given
integers r, d ≥ 0 there is a well defined closed subscheme W r

d (C) ⊂ Picd(C)
defined set-theoretically by:

W r
d (C) = {L ∈ Picd(C) : h0(C,L) ≥ r + 1}

(see [ACGH] for details). Let

ρ(g, r, d) = g − (r + 1)(g − d + r)

be the Brill-Noether number. It is a classical result ([K, KL]) that if ρ(g, r, d) ≥
0 then W r

d (C) �= ∅ and dim(W r
d (C)) ≥ ρ(g, r, d) on every curve of genus g.

Recall the following

Definition 4.1. The curve C is Brill-Noether general if for every r, d as
above we have:

• dim(W r
d (C)) = ρ(g, r, d) if ρ(g, r, d) ≥ 0

• W r
d (C) = ∅ if ρ(g, r, d) < 0.

From Griffiths-Harris [GH] we know that Brill-Noether general curves of
any genus exist. Nevertheless it is notoriously difficult to produce concrete
examples of such curves. By a result of Lazarsfeld [L] we know that Brill-
Noether general curves can be found in certain linear systems on K3 surfaces.
More explicit Brill-Noether general curves of any genus, the so-called Du Val
curves, have been constructed in [ABFS]. It turns out that TV-curves also
enjoy such property. In fact we have the following:

Theorem 4.2 ([T3]). All TV-curves are Brill-Noether general.
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Proof. We must show that W r
d (Γ) = ∅ if ρ := ρ(g, r, d) < 0 and that

dim(W r
d (Γ)) = ρ if ρ ≥ 0. Let L ∈ W r

d (Γ) be such that h0(Γ,L) = r + 1.
Since

ρ(g, r, d) = ρ(g, g − d + r − 1, 2g − 2 − d)

we may assume that d ≤ g − 1. Let

ξ = L((g − 1 − d)p) ∈ Picg−1(Γ)

We will apply formula (7) to ξ. We have:

h0(Γ, ξ) = r + 1 + s

for some s ≥ 0. Then we have the following obvious lower estimates:

(a) mj ≥ j − 1 if j = 1, . . . , s,
(b) ms+k ≥ (g − 1 − d) + k − 1 if k = 1, . . . , r + 1.
(c) ni ≥ i− 1 for every i = 1, . . . r + 1 + s.

Substituting in (7) we get:

multξ(Orbξ(E),Θ) ≥ (r + 1 + s) + 1
2s(s− 1) + (r + 1)(g − 1 − d)

+ 1
2r(r + 1) + 1

2(r + s)(r + s + 1)

≥ (r + 1)(g − d + r)

We cannot have (r + 1)(g − d + r) > g because otherwise Orbξ(E) ⊂ Θ,
contradicting Proposition 3.6(i). Therefore ρ(g, r, d) ≥ 0. Moreover, since

multξ(Orbξ(E),Θ) ≥ (r + 1)(g − d + r) = g − ρ

we have
I((g − 1 − d)p + W r

d (Γ)) ⊂ (g − ρ)q + E(ρ)

From Proposition 3.6(iv) we deduce that dim(W r
d (Γ)) ≤ dim(E(ρ)) = ρ(g, r, d).

But we also have dim(W r
d (Γ)) ≥ ρ(g, r, d), and therefore we must have equal-

ity.

Remark 4.3. In [FT], Theorem 4, the authors prove that a general TV-
curve satisfies the 1-pointed Brill-Noether theorem, a slightly stronger notion
than Brill-Noether generality. Their proof is by degeneration, thus completely
different from Treibich’s proof of Theorem 4.2.
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On Treibich-Verdier curves 2463

Remark 4.4. It is interesting to observe the analogy between the series of
TV-curves of genus g on X and the series of Du Val curves of genus g on the
blow-up S of P2 at nine general points [ABFS]: for a given g the curves of both
classes are Brill-Noether general and move in a g-dimensional linear system
with one base point. In fact Du Val curves are even Petri-general. It is not
known whether TV-curves are Petri general, and the proof of Theorem 4.2
does not seem to generalize to prove such stronger property.

5. Embedding X birationally in P
g with canonical TV-curves

of genus g as hyperplane sections

We now fix g ≥ 3 and we let Γg ∈ |gE0 +f | be a general TV-curve of genus g.
We blow-up X at the base point p of |gE0 + f |. We obtain

σ : X ′ −→ X

with σ−1(p) =: e′. We let

E′ := σ∗(E0) − e′, f ′ := σ∗(f) − e′, Γ′
g := σ∗(Γg) − e′ ∼ gE′ + f ′ + ge′

be the proper transforms of E0, f and Γg respectively. The intersection num-
bers are:

E′2 = e′2 = f ′2 = −1, E′ · e′ = e′ · f ′ = 1
E′ · f ′ = 0, Γ′

g · E′ = 0, Γ′2
g = 2g − 1

Moreover Γ′
g · f ′ = 0 because Γg is not tangent to f (see Remark 2.3).

We also have KX′ = −2E′ − e′. Moreover OΓ′
g
(Γ′

g) = ωΓ′
g
(p′(g)), where

p′(g) := e′ ∩ Γ′
g is the point corresponding to the common tangent line at p

of all the curves of |Γg| (Remark 2.3). Therefore the linear system |Γ′
g| has a

base point at p′(g).
Let ν : Yg −→ X ′ be the blow-up at p′(g), e = ν−1(p′(g)) the exceptional

curve, and
E = ν∗E′, e = ν∗e′ − e, Γg = ν∗Γ′

g − e.

Then KYg = −2E − e, Γg ·KYg = 0, OΓg
(Γg) = ωΓg

.

Proposition 5.1. (i) The linear system |Γg| is base point free and has di-
mension

dim(|Γg|) = h0(Y,OYg(Γg)) − 1 = g
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(ii) Let Sg := ϕΓg
(Yg) ⊂ P

g be the image of Yg by the linear system |Γg|.
Then Sg is a normal surface whose hyperplane sections are canonically
embedded TV-curves of genus g. Sg has a unique Gorenstein singular
point of geometric genus two and ωSg = OSg .

Proof. (i) Since Γg = ν∗(Γ′
g) − e, we have, by Leray spectral sequence:

h0(Yg,OYg(Γg)) = h0(X ′, Ip′(g)(Γ′
g)) = h0(X ′,OX′(Γ′

g))

Similarly
h0(X ′,OX′(Γ′

g)) = h0(X,OX(Γg)) = g + 1

By the Riemann-Roch theorem on Yg we get χ(OYg(Γg)) = g−1 and therefore
h1(Yg,OYg(Γg)) = 2. From the exact sequence:

0 −→ OYg −→ OYg(Γg) −→ ωΓg
−→ 0

we see that the characteristic linear system of |Γg| is the complete canonical
system on Γg. This proves (i).

(ii) An easy computation based on the exact sequences:

0

OYg(E)

0 OYg(E + e) OYg(−KYg) OE(−KYg) −→ 0

Oe(E + e)

0

shows that h0(Yg,OYg(−KYg)) = 1. Let 2E+e = E+J be the unique element
of | −KYg |. Since Γg · J = 0 and J is connected, the linear system |Γg| con-
tract J to a normal singular point zg ∈ Sg and Sg is a surface with canonical
curve sections. Therefore Sg is arithmetically Gorenstein, hence normal. It is
evident, by construction, that the members of |Γg| are TV-curves. According
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to [U1], Theorem 2, ωSg = OSg . Consider the exact sequence coming from the
Leray spectral sequence:

H1(Sg,OSg)→H1(Yg,OYg)→H0(Sg, R
1ϕ∗OYg)→H2(Sg,OSg)→H2(Yg,OYg)

Since H1(Sg,OSg) = 0 and H2(Yg,OYg) = H0(Yg, KYg) = 0 we deduce that:

h0(Sg, R
1ϕ∗OYg) = h1(Yg,OYg) + h2(Sg,OSg) = 2

and therefore zg has geometric genus pg(zg) = 2. According to [U1], Theo-
rem 1, zg is the unique singular point of Sg.

Of course the surface Sg ⊂ P
g described above appears explicitly in the

classification of normal surfaces with canonical hyperplane sections, given in
[E] and in [U1]. Next we are interested in deciding whether Sg is a limit of
K3 surfaces, i.e if it is smoothable in P

g, a question considered in [ABS]. Our
result is the following

Theorem 5.2. For a given g ≥ 3 let Sg ⊂ P
g be the surface constructed

in Proposition 5.1. Then Sg is smoothable in P
g. Precisely there is a pointed

affine nonsingular curve (Δ, 0) and a flat family of projective surfaces f :
Sg −→ Δ with Sg ⊂ Δ × P

g and f induced by the projection, such that
Sg(0) = Sg and Sg(t) ⊂ P

g is a nonsingular K3 surface of degree 2g−2. Con-
sequently every nonsingular hyperplane section of Sg is a limit of hyperplane
sections of K3 surfaces.

Proof. On the surface X ′, the blow-up of X at p, consider any point p′ ∈
e′ \ {E′ ∩ e′, f ′ ∩ e′}, and let ν : Yp′ −→ X ′ be the blow-up of X ′ at p′.
Moreover let e ⊂ Yp′ be the exceptional curve, E = ν∗E′, e = ν∗e′ − e. The
intersection matrix (

E
2

E · e
e · E e2

)
=

(
−1 1
1 −2

)

is negative definite. Therefore the curve E + e can be contracted in Yp′ [G].
The resulting complex analytic surface Sp′ has an isolated singularity zp′ .
Thus we obtain a flat family of surface singularities

{zp′ : p′ ∈ e′ \ {E′ ∩ e′, f ′ ∩ e′}}

If p′ = p′(g) we get zp′ = zg. In particular, if p′ = p′(3) then Sp′ = S3 is a
quartic surface in P

3. Then zp′ = z3 is a hypersurface singularity, hence it
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is smoothable and unobstructed.1 It follows that all the zp′ ’s are smoothable
singularities. In particular zg is smoothable for all g ≥ 3. By [ABS], Th. 10.3,
we deduce that all the surfaces Sg are globally smoothable in P

g. Note that
H2(Sg, TSg) = 0 can be proved exactly as in [ABS], Lemma 10.1.

Finally observe that, since the linear systems |OSg(1)| and |OSg(t)(1)| have
the same dimension g, all curves of |OSg(1)| extend to the general fibre of the
smoothing family.

We conclude with a corollary concerning the Wahl map of TV-curves.
Recall that the Wahl map of a projective nonsingular curve C of genus g ≥ 3
is a natural linear map

ΦC :
2∧
H0(C, ωC) −→ H0(C, ω3

C)

which extends linearly the application sending a bivector u∧v to (a section of
H0(C, ω3

C) vanishing on) the ramification divisor of the pencil 〈u, v〉 ⊂ |ωC |.
For details on ΦC we refer the reader to [W].

Corollary 5.3. All TV-curves of genus g ≥ 3 are limits of hyperplane sec-
tions of K3 surfaces and have non-surjective Wahl map.

Proof. The first part is a restatement of Theorem 5.2. It is well known that
hyperplane sections of K3 surfaces have non-surjective Wahl map [W, BM].
Then TV-curves, being limits of curves with non-surjective Wahl map, have
non-surjective Wahl map as well, by semicontinuity.
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