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1. Introduction

Almost all the mathematical work of C. Segre has been collected in four
volumes published by Unione Matematica Italiana between the 1950’s and
the 1960’s. The ordering of the material is not chronological, but obeys
some criterion of homogeneity decided by the Editors. In particular the first
volume collects those papers considered by them as the most characteristic
and important. This is confirmed by F. Severi in the Preface to volume I [8].
This is a short but intense contribution in which he explains carefully the
originality of Segre’s work. In his energetic and colourful style Severi is gen-
erous in giving praises to his master, as well as disapproval to unmentioned
addressees. One example will suffice here. On p. VII Severi writes:

Quando i concetti hanno vissuto quasi un secolo è difficile per chi
li possiede d’imaginare lo sforzo che i pionieri dovettero compiere
per impadronirsene. Occorre all’uopo sobbarcarsi ad una fatica di
ricostruzione critica, alla quale oggi si dà scarsissimo peso, essendo
diffuso il vezzo di ridurre quasi a zero la bibliografia e la prospettiva
storica, le quali evidentemente costano molto lavoro di consultazione,
di comparazione e di riflessione, che pur sarebbe sempre onesto ed
utile di compiere!

It is interesting to compare Severi’s view with today’s perception of Segre’s
legacy. It is true that what was called the hyperspatial method (“il metodo
iperspaziale”) in algebraic geometry is so natural and obvious today that it
does not even deserve to be called a “method”. It is less obvious to recall
that Segre pionereed the study of vector bundles on algebraic curves and of
rational ruled varieties. It is worth observing how important and fashionable
these varieties are today, since they play a central and yet not completely
disclosed role in all those investigations dealing with equations and syzygies
of projective varieties. Perhaps they represent today the most effective sign
of Segre’s impact.

It is also interesting to read from Severi that one of the main goals, if not
achievements, of the early geometers, including Brill and Noether, was to
geometrize algebra rather than considering geometry as a part of algebra.
This clear cut statement is somehow disputable today, when we have such
a ramified and complex interaction of algebraic geometry with algebra in a
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wide sense. Perhaps Segre himself would agree to a compromise, after seeing
the astonishing interplay between equations, syzygies and geometry that are
being discovered today.

In this note I want to focus on the hyperspatial method and to explain
how the theory of algebraic curves was conceived from this point of view.
In 1873 the epoch making memoir [2] of Brill and Noether had appeared;
here they introduced the notion of linear series and used plane curves to give
a rigorous foundation to the theory. After the early work of Veronese and
Bertini, the possibility of interpreting the theory of linear series on a curve as
the geometry of curves in a projective space of arbitrary dimension gradually
emerged with C. Segre. One of the outcomes of this hyperspatial point of
view was finally a projective proof of the Riemann-Roch theorem, which
used as main tools the geometry of ruled varieties and some enumerative
formulas, originally due to Chasles and Zeuthen, to replace what in Brill
and Noether was represented by the so-called “Fundamentalsatz” Af +Bϕ.
This project of Segre is explained in detail in [6] and was brought to a final
form by Castelnuovo in [3], where he used a formula of Schubert’s as the only
enumerative tool. The proof includes the definition of the canonical series,
of the genus, and the deduction of the Riemann-Roch formula, including
the duality statement in its numerical form, i.e. the identification of the
index of speciality as the vector space dimension of the residual series. Even
the proof of the enumerative formula was given from scratch. Here I will
reproduce the elegant one given by Enriques in [4], but it can be also found
for example in [7].

For the convenience of the reader I will recount the entire story from the
beginning, using the modern language of sheaves and cohomology. Despite
the apparently technical language, nothing besides elementary projective
geometry will be used.

2. The canonical linear series and the genus

We will denote by C a projective irreducible and nonsingular curve defined
over C. Let D =

∑
nipi ∈ Div(C) be a divisor on C.

A vector subspace V ⊂ H0(C,O(D)) of dimension r+ 1 ≥ 1 defines a set
of effective divisors linearly equivalent to D

|V | = {div(σ) : σ ∈ V, σ 6= 0}

which is canonically identified with the projective space P(V ); we call |V |
the linear series defined by V , of degree n = deg(D) and dimension r. If
V = H0(C,O(D)) then |V | will be denoted by |D| and called the complete
linear series associated to D: it is the set of all effective divisors which
are linearly equivalent to D. For an invertible sheaf L we will write |L| to
denote the complete linear series |H0(C,L)|. If ∆ is an effective divisor and
V ⊂ H0(L) we let

V (−∆) = V ∩H0(L(−∆))
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Similarly, V (∆) ⊂ H0(L(∆)) denotes the image of V under H0(L) −→
H0(L(∆)). The symbol grn is a synonimous for “linear series of dimension r
and degree n”.

Let |V | be a base-point-free (shortly bpf) g1n and let JV be its jacobian
divisor, namely the ramification divisor of the corresponding morphism ϕV :
C −→ P1.

Proposition 2.1. (i) If |D| is a bpf grn, r ≥ 2, then the jacobian divisors
of all the bpf g1n’s contained in it are linearly equivalent.

(ii) If |D| is a bpf grn and |E| is a bpf gsm then

|JD+E | = |JD + 2E| = |JE + 2D|
where JD, JE , JD+E are the jacobian divisors of bpf pencils arbitrarily chosen
in |D|, |E|, |D + E| respectively.

Proof. (i) It suffices to prove it for any two bpf pencils contained in a g2n.
Let Γ ⊂ P2 be the image of C under the g2n. The two pencils are cut on Γ
by the lines through two points P,Q ∈ P2 \ Γ. Each of them corresponds to
a line in the dual plane P2∨, that cuts the dual curve Γ∨ in a divisor whose
pullback on C is the corresponding jacobian divisor: then they are linearly
equivalent.

(ii) By choosing a base-point-free g1n in |D| and a base-point-free g1m in
|E| we can use them to define a birational morphism C −→ P1 × P1. By
embedding P1× P1 as a quadric Q ⊂ P3 and then projecting from a general
O ∈ Q we can map C birationally to a plane curve Γ of degree n+m with
two ordinary multiple points A,B, of multiplicity n and m respectively. The
pencil of lines through A (respectively B) cuts on Γ the g1m (respectively the
g1n). Consider the dual curve Γ∨ ⊂ P2∨. Then the lines of P2∨ cut on Γ∨

divisors of |JD+E |. Consider in particular the line r corresponding to the
pencil through A. It cuts the divisor JE + 2D′, where D′ is the divisor
corresponding on C to the branches of Γ at A, because r must be tangent
to Γ∨ along D′; by construction D′ ∈ |D|. Similarly the line s of P2∨

corresponding to the pencil of lines through B cuts the divisor JD + 2E′,
where E′ ∈ |E| is the divisor corresponding on C to the branches of Γ at B.
Therefore JE + 2D′, JD + 2E′ ∈ |JD+E | and this concludes the proof. �

From the proposition it follows that the jacobian divisors of the bpf pencils
contained in |D| belong to the same complete linear series |JD| which is called
the jacobian series of |D|. Moreover part (ii) of the proposition implies
that for every bpf linear series |D| the linear equivalence class |JD − 2D|
is independent of |D|. It is called the canonical series and denoted by |K|.
One defines the genus g = g(C) by the identity

(1) deg(K) = 2g − 2

It is not obvious that g is an integer, i.e. that JD has even degree: this will be
shown in a moment. Of course this definition agrees with the topological one,
thanks to Hurwitz formula, but the approach taken here is purely algebraic.
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In modern terms, if ϕV : C −→ P1 is the morphism defined by |V |, the
ramification divisor is the degeneracy divisor of the induced homomorphism
TC −→ ϕ∗V TP1 , and therefore it has degree

ν = deg(ϕ∗V TP1)− deg(TC) = 2n+ 2(g − 1)

and this of course agrees with (1).
The next step is to take as a birational model of C a plane curve Γ of

degree n with δ nodes and no other singularities and to compute the genus
using the g1n defined by the pencil of lines through a general point O ∈ P2.
Now the degree ν of the branch divisor equals the degree of the dual curve,
and this is computed by the first Plucker formula which gives:

ν = n(n− 1)− 2δ

and this is an even number. Therefore we obtain:

(2) g =

(
n− 1

2

)
− δ

This is the so-called Clebsch formula. The jacobian divisor of the g1n defined
by the pencil of lines through a general point O ∈ P2 is cut on Γ by the
polar curve ΓO of Γ with respect to O. More precisely, ΓO passes through the
nodes with multiplicity one, and cuts elsewhere on Γ the jacobian divisor.
ΓO is a particular adjoint curve (of degree n− 1). Therefore the adjoints of
degree n− 3 cut on Γ canonical divisors. It follows that

dim(|K|+ 1) ≥
(
n− 1

2

)
− δ = g

i.e. |K| is a gg−1+α2g−2 , with α ≥ 0. We will prove that α = 0 (Corollary 4.3).
If the irreducible plane curve Γ of degree n has ordinary multiple points

of multiplicities m1, . . . ,mδ respectively, then an argument similar to the
case of nodes involving the polar curves gives the following generalization of
the Clebsch formula:

(3) g =

(
n− 1

2

)
−

δ∑
1

(
mi

2

)
We can now prove the following:

Theorem 2.2 (Riemann-Roch, weak form). If |D| is a complete grn then
r ≥ n− g.

Proof. Take a plane model Γ ⊂ P2 of C having degree m and δ nodes and
no other singularities. The adjoint curves of degree d ≥ m cut on C a linear
series grdmd

with md = md− 2δ and

rd ≥
(
d+ 2

2

)
− δ −

(
d−m

2

)
− 1 = md − g

The given grn can be obtained as the series cut on C by the adjoints of
a sufficiently high degree d passing through a suitable fixed divisor F of
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degree k. But then n = md − k and r ≥ rd − k. Comparing with the
previous inequality we get r ≥ n− g. �

3. An application of a formula of Schubert’s

Consider the symmetric product Cn, namely the quotient of the cartesian
product Cn of C by itself n times modulo the action of the symmetric group
σn permuting the factors. It is well known and elementary that Cn is a
nonsingular n-dimensional projective variety that can be set-theoretically
identified with the set of all effective divisors of degree n on C. Let

Dn = {(D,x) : x ∈ Supp(D)} ⊂ Cn × C

Then Dn is a divisor such that

Dn|{D}×C = D

for every D ∈ Cn. We will call Dn the universal (or tautological) divisor on
Cn × C. Let

Cn Cn × C
p //qnoo C

be the projections. Given an invertible sheaf A on C such that deg(A) ≥ n,
the n-th secant bundle of A (on Cn) is EA = qn∗(p

∗A|Dn
); it is a vector

bundle of rank n on Cn. Given U ⊂ H0(A) of dim(U) = `+ 1 ≥ 2, we have
a natural evaluation map:

eU,n : U ⊗OCn −→ EA

If 0 ≤ s ≤ n we let V s
n (U) ⊂ Cn denote the subscheme defined by the

condition rank(eU,n) ≤ s. It is supported on the divisors D ∈ Cn which
impose ≤ s conditions to |U |. By general facts about determinantal varieties
we know that every component of V s

n (U) has codimension ≤ (`+1−s)(n−s).
In some cases equality holds.

Proposition 3.1. (i) Assume that U ⊂ H0(A) generates A, i.e. that |U | is
a base-point-free g`deg(A). Then V `

`+1(U) ⊂ C`+1 is a divisor.

(ii) Assume that dim(U) = 2 and U generates A, i.e. that |U | is a base-
point-free pencil. Then V 1

n (U) is a curve for every 1 ≤ n ≤ deg(A).

Proof. Left to the reader. �

The following is the key enumerative result we will use:

Theorem 3.2 (Schubert [5]). Suppose that V ⊂ H0(L) defines a grn, r ≥ 1,
and W ⊂ H0(M) defines a g1m on C, with m ≥ r + 1. Let g be the genus of
C. Then the number of effective D ∈ Cr+1 that are simultaneously contained
in a divisor of the grn and in a divisor of the g1m is:

(4) Zr,n;m =

(
m− 1

r

)
(n− r)−

(
m− 2

r − 1

)
g
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Here each D counted by the formula must be taken with an appropriate
multiplicity, which is one when D is reduced and contained in unique re-
duced divisors of |V | and of |W |. In modern terms Zr,n;m is the intersection
multiplicity of V 1

r+1(W ) with V r
r+1(V ) in Cr+1. The proof of this theorem

will be given in §5. The following observation is the key step for the proof
of the Riemann-Roch Theorem.

Proposition 3.3 (Castelnuovo [3]). Suppose that V ⊂ H0(L) defines a grn,
r ≥ 1, and W ⊂ H0(M) defines a g1m on C. If n − r < g and m ≤ r + 1
then every divisor of |W | is contained in a divisor of |V | (shortly |W | is
contained in |V |). Moreover the divisors of |W | impose ≤ m− 1 conditions
to |V |.

Proof. Assume first that m = r+ 1. The assumptions imply that Zr,n;r+1 <
0. This can only happen if V 1

r+1(W ) ⊂ V r
r+1(V ) because V 1

r+1(W ) = |W | ∼=
P1 is irreducible. Since V 1

r+1(W ) consists of all divisors in |W |, the first part
of the proposition is true. Moreover it is clear that all divisors of |W | impose
at most r = m− 1 conditions to |V |.

Assume now that m < r+ 1 and fix an arbitrary F ∈ Cr+1−m. Then, the
linear series F + |W | is a g1r+1, and F + |W | = V 1

r+1(F + |W |) ⊂ Cr+1. Since
we again have Zr,n;r+1 < 0, we conclude as before that F + |W | ⊂ V r

r+1(V )

because it is isomorphic to P1, hence it is irreducible. Moreover, since F+|W |
imposes at most r consitions to |V | and F is arbitrary, it follows that |W |
imposes ≤ m− 1 conditions to |V |. �

Remark 3.4. The proof can be easily modified to show that the same
conclusion holds if W ⊂ H0(M) is a gsm, with s ≥ 2.

Corollary 3.5. Suppose |V | is a grn and |W | a gsm on C. Assume that
n− r < g and m− s+ 1 ≤ r + 1. Then |W | is contained in |V |. Moreover
|W | imposes at most m− s conditions to |V |.

Proof. We may assume that s ≥ 2. Let H be a general divisor of |W |. We
have to show that it is contained in a divisor of |V |. For every choice of an
effective divisor G < H of degree m−s+1, the series |G| is a g1+εm−s+1, ε ≥ 0,
and by Proposition 3.3 and Remark 3.4, it imposes m− s− δ conditions to
|V |, for some δ ≥ 0. Choose G so that δ is minimum and let x ∈ Supp(G)
be such that G − x imposes the same number m − s − δ of conditions to
|V |: such an x exists because G does not impose independent conditions to
|V |. By the choices made, for every y ∈ Supp(H −G), the divisor G−x+ y
imposes at most m−s−δ conditions to |V |. This implies that every D ∈ |V |
containing G also contains y, and therefore there is a D ∈ |V | containing G
and all y ∈ Supp(H −G). Thus H is contained in D. The last assertion is
clear. �

Remark 3.6. This proof is essentially the same given in [6], n. 71, in [3]
and in [7], p. 293-294.
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Observe that using the enumerative formula (4) we have deduced an in-
clusion of linear series, i.e. a functional relation, from a numerical condition.
Now we can easily proceed to the proof of the Riemann-Roch Theorem.

4. The Theorem of Riemann-Roch

Definition 4.1. A divisor D (or a complete linear series |D|) is called
special If |D| is contained in the canonical series |K|.

We have the following

Corollary 4.2. Assume g ≥ 2. If D is an effective divisor such that
dim(|D|) > deg(D) − g then |D| is special and imposes at most deg(D) −
dim(|D|) conditions to |K|.

Proof. Suppose that |D| is a grn. We may assume r ≥ 1 because otherwise
n < g and the conclusion is obvious. Applying Corollary 3.5 with the
grn and the gsm replaced by |K| and |D| respectively the conclusion follows
immediately. �

Corollary 4.3. |K| is a gg−12g−2 and it is the only gg−12g−2 on C.

Proof. The first assertion is clearly true if g = 0, 1. Assume g ≥ 2 and as-
sume by contradiction that dim(|K|) ≥ g. Then the same proof of Corollary
4.2 applies to the linear series |D| of dimension deg(D) − g. This would
imply the absurd fact that all linear series are special because, by Theorem
2.2, every D satisfies dim(|D|) ≥ deg(D) − g. The uniqueness follows from

Corollary 4.2 applied to any other gg−12g−2. �

Theorem 4.4 (Riemann-Roch). If |D| is a complete grn on C then

r = n− g + i

where i = H0(K −D) = dim(|K −D|) + 1.

Proof. By Corollary 4.2

i− 1 = dim(|K −D|) ≥ g − 1− (n− r)

i.e. i = g − n + r + ε, for some ε ≥ 0. By applying the same argument to
|K −D| we obtain:

r = dim(|D|) = g − 1− (2g − 2− n− i+ 1) + ε′

for some ε′ ≥ 0. By adding the two estimates we obtain:

i+ r = (g − n+ r + ε) + (−g + n+ i+ ε′) = r + i+ ε+ ε′

which gives ε+ ε′ = 0. But then ε = ε′ = 0. �
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5. Schubert’s formula

In this section we will prove Theorem 3.2. The formula (4) has been
proved again by Castelnuovo in [3], n. 8. A modern version of it can
be found in [1], p. 345. The proof given in [1] uses modern intersection
theory, including Porteous formula and intersection theory on the symmetric
product. Here we will reproduce the elegant simple proof given by Enriques
in [4].

If r = 1 we want to count the number Z1,n;m of pairs of points that are
simultaneously contained in a divisor of a given g1n and a given g1m. Let
us assume first that both pencils are bpf and let us make the simplifying
assumption that their common pairs consist of distinct points and have
disjoint supports. Then they define a morphism ϕ : C −→ P1 × P1 whose
image is a curve of bidegree (n,m) having Z1,n;m nodes. Identifying P1×P1

with a nonsingular quadric Q ⊂ P3 and projecting from a general point of
Q the curve C is mapped birationally to a plane irreducible curve of degree
n+m having an ordinary m-fold point, an ordinary n-fold point and Z1,n;m

further nodes. By applying (3) we therefore have:

g =

(
n+m

2

)
−
(
n

2

)
−
(
m

2

)
− Z1,n;m

which gives

(5) Z1,n;m = (n− 1)(m− 1)− g

and this is precisely (4) for r = 1. Now assume that |V | is a g1m with a fixed
point P . Then it has in common with the g1n the Z1,n;m−1 pairs common to
the g1n and |V (−P )|, plus the pairs consisting of P and any point different
from P of the divisor of the g1n that contains P . Therefore we have again

Z1,n;m−1 + n− 1 = Z1,n;m

common pairs. By iterating this argument one takes care of pairs of pencils
with any number of base points.

Let us now consider a grn and a g1m, both bpf. Let us add a point P to the
grn as a fixed point and denote by grn +P the grn+1 thereby obtained. Let us
assume that P has been chosen not in any of the (r + 1)-tuples common to
the grn and the g1m. Then the number of (r + 1)-tuples common to grn + P
and to the g1m are counted as follows. There are Zr,n;m of them that are

those common to the grn and the g1m. Then there are
(
m−1
r

)
that consist of

P plus any r points of the unique divisor of the g1m containing P (and are
therefore contained in a unique divisor of the grn). Hence grn +P and the g1m
have

Zr,n+1;m = Zr,n;m +

(
m− 1

r

)
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(r + 1)-tuples in common. By iterating we obtain:

(6) Zr,n+h;m = Zr,n;m + h

(
m− 1

r

)
as the number of (r + 1)-tuples common to grn + P1 + · · ·+ Ph and the g1m,
where P1, . . . , Ph ∈ C are subject to the same condition as P was.

Now we compute the number of (r + 1)-tuples that are simultaneously
contained in a divisor of the grn and in a divisor of the g1m as follows. Denote
by |W | the grn and consider a bpf pencil |V | contained in it. Let r|V | be the
grrn which is the minimal sum of |V | with itself r times; equivalently r|V |
is the pullback of the composition of ϕV : C −→ P1 with the r-th Veronese
embedding of P1 in Pr. Also consider the series |W | + D1 + · · · + Dr−1,
where D1, . . . , Dr−1 ∈ |W | are general divisors. Then |W |+D1 + · · ·+Dr−1
is another grrn. Since both r|V | and |W | + D1 + · · · + Dr−1 are contained
in the same complete series |(r − 1)W | we may assume that they have the
same number of (r + 1)-tuples in common with the g1m. 1

The number of (r + 1)-tuples common to |W |+D1 + · · ·+Dr−1 and the
g1m is given by the formula (6) with h = (r − 1)n. On the other hand the
(r+ 1)-tuples common to r|V | and to the g1m are all obtained by choosing a
pair Q1 +Q2 common to |V | and to the g1m plus any r− 1 of the remaining
points of the unique divisor of the g1m that contains Q1+Q2. Therefore they
are in number of

Z1,n;m ·
(
m− 2

r − 1

)
After recalling (5) and comparing with (6) with h = (r − 1)n we obtain:

Zr,n;m + (r − 1)n

(
m− 1

r

)
= [(n− 1)(m− 1)− g]

(
m− 2

r − 1

)
and this is clearly equivalent to (4). �
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