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Introduction 

In  this paper  we study families of projective curves with good properties from 
the point of view of moduli.  Our  main  goal is to investigate, for given r, n, g, 
the existence of a smooth irreducible open  subset  V of the Hilbert  scheme of 
IP r parametr iz ing irreducible (and non-s ingular  if r >  3) curves of degree n and 
genus  g having " the  expected n u m b e r  of modul i" .  This means  that the image 
of the na tu ra l  functorial  morph i sm 

~: V - ~  

of V into the modul i  space of curves of genus g has d imens ion  (i.e. " n u m b e r  of 
modul i")  equal  to the expected d imension,  which is 

m i n ( 3 g -  3, 3g - -  3 + p(g, r, n)) 
where 

p(g, r, n ) = g - ( r  + 1 ) ( g -  n + r )  

is the Bri l l -Noether  number .  This expression for the expected n u m b e r  of 
modul i  is the obvious  pos tu la t ion  which comes from the well k n o w n  in- 
terpretat ion,  in te rms of maps  between vector bundles,  of the existence of 
special divisors on a curve (cfr. 1-14] and I-9]). 
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Of course when 
p(g,r,n)>O 

a family V has the expected number of moduli 

3g - 3 = dim J/g 

precisely when every sufficiently general curve of genus g belongs to it, i.e. 
when the family has general moduli. 

When 
p(g, r, n) < 0  

it follows from the results of [9] that every family V does not have general 
moduli (i.e. it has special modul 0. In this case the number -p(g ,r ,  n) expresses 
the expected codimension of re(V) in ~/g. 

Our results are quite complete for plane curves. In w we prove in fact the 
following result (see Theorem (4.2) for a more precise statement). 

Theorem. For all n and g such that 

n - 2 < g < ( n 2 1  ), n_>5 

there is an irreducible component of ~t~,,g, the family of plane irreducible nodal 
curves of degree n and genus g, having the expected number of moduli. 

When 

i.e. in the range 
p(g, 2, n)>0, 

n - 2 < g < 3 n / 2 - 3  

this result is well known (cfr. [9] and [1]). 
It was also known classically, although expressed in a different way, for g 

= ( n 2 1 ) ,  i.e. in the case of smooth plane curves (see w for more details on 

this). 
Our result has been proved independently by M.R.M. Coppens in the range 

2 n - e < g < ( n 2  1 ) =  

(cfr. [3]). A priori for some n,g there might be another component of ~,,g not 
having the expected number of moduli, besides the one we prove to exist. The 
existence of such a component would of course imply that ~/~,,g is reducible: to 
decide whether this is so or not is a long standing open problem. 

In w 6 we prove the following existence theorem for families of curves in 1P r, 
r>3 .  

Theorem. For all n, g such that 

(.) n - r < g <  = , n>_r+l_ 
r - 1  
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there is an open set V of an irreducible component of the Hilbert scheme of IP r 
which parametrizes smooth irreducible curves of degree n and genus g and has the 
expected number of moduli. Moreover if F is a curve parametrized by a point of 
V then F is embedded in lP" by a complete linear system ]D[, its normal bundle N r 
satisfies 

HI(F, Nr)=O 

and the natural map 

~o(D): H~ r | H~ (g(K r - D))~ H~ (P(Kr)) 

where K r is a canonical divisor, has maximal rank. 

This result is improved in w 7 for curves in IP 3. We prove that for r = 3 the 
same conclusions of the above theorem hold for all n,g such that 

(**) n -3<=g<=3n-18 .  

These results are not the best possible: inequalities (.) and (**) depend on 
the method of proof and probably they can be improved. 

Let W~(C) denote the closed subscheme of the jacobian of the curve C 
which parametrizes invertible sheaves of degree n with at least r + 1 linearly 
independent sections. 

It is known that if C is a general curve of genus g, W/(C) is reduced and 
irreducible of dimension p(g, r, n) when 

p(g,r,n)>O 

and Wf(C) consists of finitely many points when 

p(g,r,n)=O 

(cfr. [-9] and [5]). An immediate consequence of our previous theorem is the 
following 

Corollary. Let r >= 3. I f  

p(g,r,n)>O 

and C is a general curve of genus g, the set of L~ Wf(C) which are very ample is 
open and dense in W~,(C). I f  

p(g,r,n)=O 

and C is a general curve of genus g, there is at least one very ample Le  W,~(C). 

This result has already been proved by Eisenbud and Harris in [4] in a 
more general form using completely different techniques. 

To describe our methods of proof let's suppose r > 3  and let's fix n,g 
satisfying (,). The existence of the family V claimed in the above theorem 
follows, by standard deformation theory and semicontinuity theorems, if we 
can construct just one curve F c I P  r of degree n and genus g having the 
properties stated in the theorem. 
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This construction is done in two steps. 
The first step consists in proving that if F exists, H cIP" is a general 

hyperplane and 7 is a rational normal curve belonging to H such that 7c~F 
consists of r + 1 points, then the reducible curve 

F' =Fw?, 

as a curve of degree n + r -  1 and arithmetic genus g + r, also has the properties 
stated in the theorem. A delicate point here is to prove that the map #0 for F' 
has maximal rank (Prop. 2.3). This gives a sort of inductive construction 
provided we can prove that F' can be flatly smoothed in IP'; in fact the 
properties that F' shares with F (HI(F ', Nr,)=0, completeness of the embedding 
linear system ]D'[ and po(D') of maximal rank) are locally preserved under flat 
deformations. 

To prove that F' can be flatly smoothed in IP r is the second ingredient of 
the proof. This is accomplished by 

a) giving a smoothability criterion for nodal curves; this involves a na- 
turally defined subbundle of the normal bundle (see Prop. (1.6)); 

b) checking that the criterion is satisfied by certain reducible curves having 
a rational component (see Theorem (5.2) for a precise statement), among them 
by F'. 

The inequalities (.) and (**) depend on the starting step of the inductive 
construction. 

The result on plane curves is proved using a similar method. 
We work in the category of schemes over r the field of complex numbers. 

We will only consider Cartier divisors; if A is a divisor on a scheme Y, [A] will 
denote the complete linear system associated to A. If .~ is an algebraic sheaf 
on Y we will often write 

H'(.~), h'(.~), H'(A), h'(A) 

instead of Hi(Y, .~), dim HI(Y, .~), Hi(y, (9(A)), dim HI(Y, (9(A)) respectively. A set 
of n>=r+ 1 distinct points in IP r will be said to be in general position if no r +  1 
of them lie in a hyperplane. A nondegenerate curve in lP r is a curve which is 
not contained in a hyperplane. 

I wish to thank C. Peskine for showing me how to start the induction in 
Theorem (7.1) and Ph. Ellia for pointing out some incorrect statements in the 
first version of this paper. I am grateful to the Mathematical Institute of the 
University of Warwick for its hospitality during the preparation of part of this 
work. 

w 1. General i t ies  on famil ies  of  curves in IP r 

We shall very briefly recall Severi's theory of plarre curves with nodes. 
Inside the projective space IP(n) of dimension n(n+ 3)/2 parametrizing all 

plane curves of degree n > 3  there is, for each 0 < g < / n [ - 1 ] , a l o c a l l y - -  closed 
\ z ! 
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functorially defined subscheme ~..,~; it parametrizes all irreducible curves of 
degree n having 

nodes (i.e. ordinary double points) and no other singularities. 
If X is such a curve, consider the functor of Artin rings 

Hx(A)= {divisors XA~IP ~ fiat over A and inducing X c l P  2 on the closed fibre} 
for each Artin local ~-algebra A, and the subfunctor 

H'x(A)= {XAclP ~ locally trivial over A}. 

These functors are easily seen to be prorepresented by the complete local 
rings C~(,),p(x ) and g,~,,~,p(x) respectively, where p(X)elP(n) is the closed point 
parametrizing X. 

Denoting by T~ the first cotangent sheaf of X (cfr. [16]) there is a natural 
surjective morphism 

(g x(n)-~ Tx 1 

whose kernel we denote by N~. 
The tangent and obstruction spaces of H x are respectively the 0-th and first 

cohomology groups of the sheaf N x. One easily computes that 

h~ hi(N)) =0. 

It follows that ~ ,g  is smooth of dimension 3 n + g - 1  at the point para- 
metrizing X. 

~/~n,g is called the family of plane irreducible nodal curves of degree n and 
genus g. 

It should be noted that 

3 n + g - l = n ( n + 3 ) / 2 - 6 ;  

in other words ~ ,g  has codimension 6 in IP(n). 
Suppose that X' is a possibly reducible nodal curve of degree n with 6 '>6  

nodes. Let I be a set of 6 nodes of X' and consider the subfunctor of H x, : 

H~,(A)= {X'Aclp2LX'A is locally trivial at all PeI}. 

This is the functor of infinitesimal deformations of X' in IP 2 which preserve 
the selected 5 nodes; it defines locally a closed subscheme of IP(n) which is 
again smooth and of dimension 3 n + g - 1  and parametrizes a family of nodal 
curves. 

For dimension reasons a general element X" of this family has precisely 6 
nodes, and no other singularities, which specialize to the chosen 6 nodes of X'; 
it also follows easily that X" is irreducible if and only if X ' \ I  is connected. In 
this case the set I defines a local branch of the closure ~ ,g  at the point 
parametrizing X'. It follows that all the branches defined in this way meet 
transversely there. 
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An easy consequence of this theory is that there exist irreducible nodal 
curves of degree n and genus g for all 

0-<g-<-( n - 1  ) -  2 

i.e. ~ , , ~ b  for all such n and g. 
In the following we will freely use the notations and the results we have 

just introduced; for more details the reader is referred to [22] and [23]. 
Unfortunately for curves in a projective space of higher dimension there is 

not a theory analogous to Severi's theory of plane nodal curves. We will prove 
some properties of deformations of nodal curves in IW, r >  3, which will be 
needed in the sequel. 

Let  X c IP', r > 3, be a connected reduced curve of degree n with only nodes 
as singularities, let Sing (X) be its set of double points, and 

be the desingularization of X. 
We denote by 

and 

go: C-- ,X 

g ( X )  = 1 - Z ( • x )  

g ( C )  = 1 - z(tpc) 

the arithmetic genus of X and C respectively; it is 

g ( X ) = g ( C ) + 6  

where 6 is the number of double points of X. 
Denote by D the pullback on C of a general hyperplane section divisor on 

X and by K any canonical divisor on C. Let J x  c (get be the ideal sheaf of X 
and 

N x: = Hom ( ix ,  ~Ox) 

the normal bundle of  X; it is a locally free sheaf of rank r - 1  on X. Let 
moreover 

T x = H o m  (f/L,  (Px) 
and 

Tc = q) * T x . 

On C we have the exact sequence 

(1.1) 0~(9c( -- K ) ~  Tc--* N ~ O  

where N~ is a locally free sheaf of rank r -  1, the normal bundle of the map q). 
We also have an exact sequence on X 

(1.2) O~Ox-- .  r x - . n x ~  r~--.O 
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where 
Ox: = Horn (O1, (9x) 

and where Tx ~ is the cotangent sheaf of X. This is a torsion sheaf supported on 
Sing(X) with 

for each PeSing (X) (cfr. [16]). 
For  each non empty subset I _ S i n g ( X )  we will denote by T~I I the restric- 

tion of T 1 to I extended by zero on X, and by 

N~ : = ker ( Nx ~ Txll,). 

We will shortly denote N~ ng(x) by N x. For  every inclusion 

4 # J ~_I ~_Sing (X) 

we have inclusions 
Nx~NI~_NJx~_N x 

and with an abuse of notations we may view N x as being Nx ~. 
Denote by ]II the number of elements of I. 

(1.3) Lemma.  For each I~_Sing(X) we have 

z(N~) = z(n, g(X)) - I I I  
and 

z(N~) = z(n, g(c)) 
where 

z(n, g)' .=(r + 1 ) n - ( r -  3)(1 -g ) .  

Proof. From the exact sequence (1.1) and from "Euler sequence" 

O--,(gc---,(9(D)" + I---~ Tc--.O 

we deduce the assertion for z(N~). 
Since for each non empty I _  Sing (X) we have an exact sequence 

O~ NI ~ N x ~  T)I, ~O 

it suffices to prove the remaining assertion of the lemma for I = ~b. 
By pulling (1.2) back on C we get a commutat ive diagram 

0 , C c ( - K  ) 

0 ' (p*O x ~0 

,Tc , N. ,0 

1 
, T  c ,qg*N x- ,qg*Tx ~ 

and f rom this we deduce the exact sequence 

(1.4) O~ N -~q~* Nx--,q~* T~ ~O. 
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On X we have an exact sequence 

0~d)x--.~0 * (9c--. Y---, 0 

with Y- a torsion sheaf supported on Sing (X), such that 

h~ 

we deduce the exact sequence 

O--, N~-+~o , ~* N=--, Y | Nx-+O. (1.5) 

Since 

and 

z(q,*N=)= z(~o, ~0" Nx) 
Z(qg* Tx~)=h~ Tx~)= 26 

Z (~- @ Nx) = h~ (3" @ Nx) = (r - 1) 6 

from (1.4) and (1.5) we deduce 

E. Sernesi 

z (N x )=z (N ~ , ) - ( r -3 )6  q.e.d. 

Let Hilb = Hilb~,,g(x) be the Hilbert scheme parametrizing closed subschemes 
of I~  whose Hilbert polynomial is nt+ 1-g (X)  (cfr. [11]). 

For each subset I~_Sing(X) we can define in the usual functorial way a 
subscheme Hilb(I) of Hilb containing the point corresponding to X and 
parametrizing a universal family of deformations of X in IP' which are locally 
trivial at every PeI .  For example 

Hilb (qS) = Hilb 

and Hilb (Sing (X)) parametrizes flat deformations of X in which none of its 6 
nodes is smoothed. 

Every inclusion I ~ J  corresponds to an.inclusion 

Hilb (J) ~ Hilb (1). 

Information on the local structure of Hilb (I) is obtained by considering the 
functor of Artin rings: 

H~(A)I = ~fflat deformations of X c IP' parametrized by A t 
~and locally trivial at all P e I  

J 

for every local Artin C-algebra A. In particular H~x=Hx, the local Hilbert 
functor (cfr. [19]). From the well known connection between the sheaf T~ and 
the deformation theory of X (cfr. [16]) it follows that H~ and HI(N~x) are 
the tangent and obstruction spaces respectively of H~. Since clearly H~ is 

A 

prorepresented by (~Hilb(l),p(X), the completed local ring of Hilb(I) at the point 
p(X) parametrizing X, we see that Hilb(I) is a locally closed subscheme of 
Hilb. 
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It follows directly from the definitions that Hilb({P}) is a proper closed 
subscheme of Hilb for all P~Sing(X) if and only if X is flatly smoothable in 
IP r, i.e. if and only if there is an irreducible flat family of curves of I~  
containing X as a member and whose general fibre is smooth. 

(1.6) Proposition. (i) For each Ic_Sing(X) we have 

z(n, g(X)) -[II < dim Hilb (I) < h ~ (Nx t) 
p( x) 

and the second inequality is an equality if and only if Hilb(I) is smooth at the 
point p(X) parametrizing X;  in particular 

H I(N~ ') = 0 

if and only if Hilb (I) is smooth of dimension z(n, g(X))-[II at p(X). 
(ii) I f  

H1 (N~,)=O 

Hilb is smooth of dimension z(n, g(X)) at p(X) and X is flatly smoothable in IP'. 

Proof. (i) follows in the usual way from formal deformation theory (cfr. [15], 
Theorem (4.2.4)). 

To prove (ii) let 1 ~ Sing (X) and consider the exact sequence 

O"~Nx-~N:~-* Txl]sing (x)-.. i-'-~ 0 

where the last map is the composition 

From this sequence and from 

it follows that we also have 

HI(N~)=0 

HI(Nxl)=0 

and therefore that Hilb (I) is smooth of dimension 

z(n, g(X))-Itl 

at the point p(X) by part (i). In particular this is true for Hilb and moreover 

dim Hilb ({P}) =d im Hilb - 1 
p( x) p( x) 

for all p~Sing(X); recalling the remark made before, this concludes the 
proof, q.e.d. 

w The map po(D) 

Let C be a projective connected reduced curve of arithmetic genus g>2,  with 
only nodes as singularities, and let D be a divisor on C. Denoting by o c the 
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dualizing sheaf of  C, we have a natural  m a p  

#o (D): H~ | H~ - D))--. HO(coc). 

When C is smoo th  this map  plays a role in the study of the relat ion between 
the modul i  of C and the existence of divisors of  given degree and dimension. 

We will be especially interested in the case when #o(D) is of maximal  rank, 
i.e. is either surjective or  injective. 

For  the relat ion between the injectivity of #o(D) and modul i  we refer the 
reader  to  [2], [6]  and [9]. 

In this section we will only investigate the m a p  #o (D) in some cases, leaving 
the discussion on modul i  for next  sections. 

If n = d e g ( D )  and r +  1 =h~ an obvious  necessary condit ion for/~0(D) to 
be surjective is that  the number  

p (g, r, n). '= g - (r + 1) (g - n + r) = h ~ ((Oc) - h ~ (D). h ~ (OJc( - D)) 

is non positive. This n u m b e r  is called the Br i l l -Noether  number o f  g, r, n. 
In par t icular  we see that  in order  to have the surjectivity of #o(D) it is 

necessary that  D is a special divisor such that  h~  
We are mainly  interested in the m a p / % ( D )  for divisors D which are hyperplane  
sections of a smoo th  C in some  project ive space or such that  ]D] defines a 
b i ra t ional  map  of a smoo th  C into IP 2. Later  on we will also need to consider 
the m a p  #0 associated to hyperplane  sections of  certain reducible curves�9 Such 
curves are constructed as follows. 

Let 's  start with a smoo th  irreducible C and with a divisor D of degree n > r  
+ 1 such that  [DI is base  point  free and of d imension r > 2 .  We assume that  the 
map  

(P D : C-'~ Ier 

is an embedd ing  if r >= 3 and tha t  ~Po is bira t ional  onto  a curve with only nodes 
if r = 2 ;  we call 

r . .  = qh , ( c ) .  

I f  r = 2 let 7 be  a general line on IP z, so that  ? c~ F consists of  n distinct points  
- 1  p_. . - . ,  P~ . . . .  , P, ; let Pl = ~oD (i) ,  i = 1, n, and  

C'=Cw? 

with Pl ,  P2,P3 identified with P~, P2, P3" In o ther  words  C' is the stable curve 
ob ta ined  by desingutarizing all mult iple  points of 

F ' : =  F w ?  

except P1, P2, Pa. 
If r=>3 let H be a general  hyperplane  in IP'. H ~ F  consists of  n distinct 

�9 - - 1  p :  - . . 7  points in general  posi t ion P~,. . . ,  P,, let P~=q~o (i) ,  i =  1, n. Let  moreove r  ? 
be a smoo th  ra t ional  curve of degree r -  1 in H containing P~ . . . . .  P,+ 1 and not  
P,+2 . . . .  , P~; it is easy to show that  such a ? exists (cfr. [8]). Let  

C ' = C w 7  
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with Pl . . . .  , P,+ 1 identified with P~ . . . . .  P~+ 1; C' is a stable curve isomorphic  to 

F ' : = F w T .  

In all cases r >__ 2 the curve C' has arithmetic genus 

g ' = g + r .  

The divisor D' on C' defined by a general hyperplane section of F'  has degree 

n ' = n + r - t  
and 

h~ ', (9(D'))>r + 1. 

(2.1) Lemma.  h~ ', (9(D'))=r + l ;  equivalently 

hl(C ', (9(D'))=hl(C, (9(0))+ 1. 

Proof. Letting L = (9~,r-,(1)| (97 we have an exact sequence of sheaves on C' 

(2.2) O--* L( - P~ ... - P~ + 1)--*ec, (D')~(gc(D)---,O 

from which the l emma follows immediately, q.e.d. 
We have the following 

(2.3) Proposition. Under the above assumptions, if #o(D) is of  maximal rank 
then #o(D') is also of  maximal rank. 

Proof. Obviously #o(D') is of  maximal  rank if 

h ~ (e) c, ( - D')) N 1. 

Since by Lemma (2.1) 

h~ , ( - D')) = h~ - D))+ 1 

we may assume that  

h~ 1. 

F r o m  this assumption it follows that  C is non hyperelliptic of genus g > 3. F r o m  
the exact sequence of  sheaves on C' 

0--,(gc(-P~ ... -P~+ d--,(gc, ~(9<-,0 

one deduces an exact sequence 

(2.4) O ~ e ) ~ ~ 1 7 6  -}- ...  ~- err+ 1) "->0 

and from this an i somorphism 

H~176 --=-' H~ +...  + P,+ 1)). 

After tensoring (2.4) by (9 ( - D ' )  we deduce an isomorphism 

H~ ~ ' H ~  P1 +. . .  +P~+I)). 
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We also have an isomorphism induced by restriction (lemma (2.1)) 

n ~ ~ , n ~ 

Altogether these give rise to a commutat ive diagram 

HO(D,)| HO(ogc,(_D ,) ~,oW') , HO(~oc ,) 

E. Sernesi 

H~ | H~ +Pi +-- -  +P~+ i)) #b' ~ HO(o.)c(Pl _.~_.. -~-Pr+ i)) 

in which the vertical maps are isomorphisms and #~ is the natural map. 
Therefore it suffices to show that #~ has maximal rank. The space 

H~ + . . .  + P~+ i)) defines the complete linear system on C 

IK+~+...+~+,I 

where K is a canonical divisor; since r +  1 >-3 this system embeds C in IP g+r-1. 
The image of #~ corresponds to a linear system of hyperplanes which cut on C 
the minimal sum 

IDI+IK-D+ P~ +... + P~+ ll 

and whose base locus is a certain linear space B c IP g+r-1. Since 

g=h~176 + ... + P~+ 1 ) -  r 

and [K[ is base point free, the linear span 

( e l ,  . . . ,  e r + l ~  

of P1, ..., P,+l in IP ~+~-I has dimension r -  1 and satisfies 

(P1 . . . . .  Pr+ 1> ("~ C = {P1 . . . . .  Pr+l} .  

Claim: B n ( P  1 . . . . .  P,+ l )  = q6. 
Assume that 

dim (B ~ (P1, ..., P~+ 1)) =.. v =0. 

Note  that by construction 

h~ D -Pi . . .  -P~+ 1)=h~ D - P I  - . . .  - / ~ - . . . - P ~ +  1) 

or equivalently 

h~ + ... +P~+ 1)= 1 +h~ + ... + / ~ +  ... +P,+ 1)~ 

i = 1  .. . .  , r + l .  
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This means  that  P~ . . . .  , P,+I are not base points  of  

I K - D + P 1  + . . .  +P~+lt; 

since ID[ has no base points it follows that  Px . . . .  , P~+Ir B- 
Therefore  after possibly reorder ing the Pi's we have 

<B, P1, ..., P~- ~-v)  = (B, P1 . . . . .  P~+ 1). 

By the genericity of  the divisor 

P I + . . .  +P,~ID] 

we can find E'EIDI such that  

P1 . . . . .  P,-1 - v r  (E') 
and 

P~-v, ... ,  P~+ a r  (E') �9 
M ore ove r  let 

E" ~tK-D+P~ +... +P~+xl 
be such that  

P1 . . . . .  P~+, r  (E"). 

We then see that  

(Supp(E'+E"))~(B,P~ ..... P r - l - v >  = (B, Pl, "" ,Pr+l> 

and therefore 
P~ . . . . . . . .  + l ~ ( S u p p  (E' + E"))  n C. 

But this is a contradic t ion because 

P~- ~, ..., P~+ 1 r  (E') w Supp (E") = ( S u p p  (E' + E"))  ~ C 

and the claim follows. 
Consider  the commuta t ive  d iagram 

H~ | H~ -D) uo(D) HO(K) 

HO(D)| .6' , H O ( K + p ~ + . . . + p , + l ) .  

37 

Im(x)  and I m ( x ) ~  I m ( / ~ )  cor respond to the l inear systems of hyperplanes  
of  IP g+r-  1 containing 

<P1 . . . .  , P ,+ I )  and <B, P1 . . . . .  P~+I) 

respectively. Since 

Im (• o #o (D)) ~ Im (Z) ~ Im (#~) 
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we have 

(2.5) r k(p o (D)) = r k (~ o #o (D)) < dim [Im (Z)n Im (p~)] 

=g + r -  l - d i m  (B,P~ . . . . .  Vr+l) 
= g + r -  1 - d i m B - r = r k ( # ~ ) - r .  

If /~o(D) is surjective this implies that /X~ too is surjective and proves the 
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A is contained in 
E'EIDI; in particular 

Since 

we see that 

A ~_ (e~,  . . . ,  e~). 

h~ 1 +.. .  +P~)=h~ D-P1 - . . . - P ~ ) -  1 

proposition in this case. 
If #o(D) is injective but not surjective, we must show that #o is injective; 

this amounts to show, by (2.5), that 

r k(#~) > r k(#o (D)) + r + 1 

or equivalently that we have a strict inclusion 

Im (X ~ #o (D))~ Im (~)n Im (#~). 

For  this purpose we will consider the map 

' + "  ( + ' I  I % ( D - P I - " ' - P ~ + I ) : H ~  2 Pj) |176 K - D +  E PJ ~H~ �9 
\ j = l  l j = l  

Since we have 

1 r + l  \ ~  
Im ZO#o ( D - j ~  1Pj) )~_Im(z)nlm(p~)  

in view of the injectivity of X the proposition will follow if we can show that 

( r + l  \ \  
(2.6) Im #o D -  ~. P~))r 

j= I !! 

We now view C canonically embedded in ]pg-1 and we denote by (-) the 
linear span in IW-1 of - .  The minimal sum 

IDI + IK - DI 

is cut on C by the hyperplanes of IP g- 1 containing a certain linear space A of 
dimension 

p(g,r,n)-  l >O. 

all the ( n - r - 1 ) - d i m e n s i o n a l  linear spaces (Supp(E')) ,  
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and (P,+I  . . . . .  /~ . . . . .  P,) is a hyperplane  of (P1 . . . .  ,P~) for all i = r + l  . . . .  ,n. 
Therefore  A is not  contained in (P~+I . . . . .  /~, . . . ,P~) for some i; f rom the fact 
that  we can interchange any two of the P [ s  by moving  P~ + ... +P~ in ID[ it 
follows that  A is not  contained in (P~+I . . . .  , P~ . . . . .  P,) for all i. In part icular  A 
is not conta ined  in (Pr+2 . . . . .  P~). This implies that  the linear system 

= D r+1=l I_~_ K r+lpj P~§247 ... P~I - j ~ P j  - / 9+  y~ 
j = l  

is not  conta ined in [DI + [ K - D [ ,  or equivalently tha t  (2.6) is true. q.e.d. 

Next  propos i t ion  describes a class of smoo th  curves in IP 3 with #o(D) of 
max ima l  rank. 

(2.7) Proposition. Let  F be a smooth irreducible non degenerate curve in IP 3, 
and D a plane section of  E Assume that 

h~ (g(D))=4 

and that F is contained either in a smooth quadric or in a smooth cubic surface. 
Then #o(D) has maximal rank. 

Proof. Suppose  that  F c Q, a smooth  quadric.  Let  lt, I z be two intersecting lines 
on Q, H a plane section of Q and let 

F,,,ccl 1 + fllz, cr fi positive integers, on Q. 

We have, denot ing by K a canonical  divisor on F, 

(gr(K) --- (9r ((c~ - 2) 11 + (fl - 2) 12) 

Cr(K - D) ~- (gr ((~ - 3) 11 + (fl - 3) 12). 

The  restriction m a p  

H ~ (Q, C o ( H ) ) ~  H ~ (F, d~r(D)) 

is bijective by hypothesis,  and  one easily checks tha t  the restriction maps  

H ~  (O, C o ( a -  2) l~ + ( f l -  2) l:)--* H ~ (F, (gr(K)) 

H~ Cr - 3) l~ + ( f l -  3 )12)~n~  Cr(K - D)) 

are bijective as well. 
It follows that  we have a commuta t ive  d i ag ram 

H ~ (Q, (9 o (H)) | H ~ (Q, C o ((a - 3) l 1 + (fl - 3) l z))--* H ~ (F, (9 (O)) | H ~ (F, (~ ( g  - D)) 

H~ ( g o ( ( z - 2  ) 11 +(fl- 2)Iz) ) --* H~ O(K)) 

in which the hor izonta l  maps  are bijective. Therefore  it suffices to prove  that  
the m a p  # has max imal  rank. We m a y  assume that  D is a special divisor and 
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therefore that ~, f l>3 .  In this case /~ is in fact surjective. This follows from 
Castelnuovo's  vanishing theorem (cfr. [17]) since the sheaf (gQ((c~-3)/l+(fl 
- 3 ) / 2 )  is 1-regular; in fact 

n 1 ((gQ((c~- 3) 11 + (fl - 3) 12) ) = H2 ((.0Q((0~ - -  4) 11 + (fl - 4) 12) ) = O. 

If F c S  a smooth  cubic surface with plane section H, we have the following 
bijective restriction maps:  

H~ (.9s(H))+H~ (-0r(D)) 

(bijective by hypothesis), 

n ~  (9s(F - H))--, HO(F, 0r(K))  

(bijective because H ~ (S, (gs( - n ) )  = H 1 (S, d)s( - H)) = 0), 

H~ (gs(F - 2 H ) ) ~ H ~  (gr(K - D ) )  

(bijective because H~ (9s( - 2H)) = H 1 (S, (9s(-  2H)) = 0). 

Since #o(D) has maximal rank if D is nonspecial or F is a canonical  curve of 
genus 4, we may  assume that F is not  contained in a quadric  surface. It is easy 
to check that in this case the sheaf ( g s ( F - 2 H )  is 1-regular. The surjectivity of 
/2o(D ) follows now as in the first part  of the proof, q.e.d. 

w 3. The number of moduli of a family 

Fix integers r > 2, g > 3, n > 3. 
If r > 3  (respectively r = 2 )  let V be an open irreducible subset of Hilb~,g 

parametr izing smooth  irreducible nondegenera te  curves of genus g and degree 
n (respectively let Vbe an irreducible component  of ~,g). 

If r > 3 the proper  and smooth  family parametr ized  by V defines a natural  
morphism 

~ : V-.', J/l g 

of  Vinto the modul i  space of curves of  genus g. 
In the case r = 2 a natural  morphism 

/~: V - *  J//g 

is also defined. In fact the family of plane nodal  curves 

c$ c l p 2  x V 

V 
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parametrized by V can be "simultaneously desingularized", i.e. there is a 
diagram of proper morphisms 

~ -*~d~IP 2 x V 

V 

where f is a proper smooth morphism of curves and 4~ is fibrewise the 
normalization map. The map �9 is the blow up of ~ along its singular locus. 
The morphism lr is defned functorially by the family f. 

Recall that ~ g  is a reduced and irreducible variety of dimension 3 g - 3 .  

(3.1) Definition. Vhas general moduli (resp. special modulo if 

d imzc(V)=3g-3  (resp. dimn(V)<3g-3) .  

The number of moduli of V is dimn(V). We say that V has the expected number 
of moduli if 

dim ~ (V)= min (3g - 3, 3g - 3 + p(g, r, n)). 

The following two propositions give criteria for a family as above to have 
the expected number of moduli in terms of the map kto introduced in w 2. 

(3.2) Proposition. Let F be a nodal plane irreducible curve of degree n and 
genus g, q~: C-~F the normalization of F and D the pullback on C of a line 
section of F. 

Then F is parametrized by a point of a component V of 3v g which has the 
expected number of moduli if the following conditions are satisfied: 

(i) h~ (9(D))=3; 
(ii) kto(D) has maximal rank. 
In particular if (i) and (ii) are satisfied with #o(D) injective then V has general 

moduli. 

Proof. Let 
(~ �9 ~ ,~cxip2 x V 

V 

be the simultaneous desingularization of the family of nodal curves para- 
metrized by Vand let 0e Vbe the point parametrizing 

C * , F ~ I P  2xV. 

It is well known that the map 

~(C)" H~ Hl(~)c) , 
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we see that 

and therefore 

deduced from the exact sequence (1.1) on C, is the Kodaira-Spencer map of the 
family f (cf. [13]). 

Since N~o is an invertible sheaf of degree 3n + 2 g - 2 ,  we have 

H ' (N~)=0;  

from the exact sequence (1.1) it follows that 

rk(~ (C))= 3 g -  3 - h  1 (Tc). 

Using the "Euler sequence" on C 

O-.(_gc~(9(D)(~H~ Tc-~O 

H~(Tc)~-ker Po(D) * 

rk(~(C))=min(3g-  3, 3 g -  3 + p(g, 2, n)). 

By upper semicontinuity properties (i) and (ii) are satisfied by all curves of the 
family f parametrized by a certain open set U containing 0eV. It then follows 
that the Kodaira-Spencer map has constant rank equal to rk(~(C)) at all points 
of U. 

From general facts of deformation theory we may conclude that 

dim r~(V)=rk(~( C)) 

and therefore V has the expected number of moduli. 
The last assertion of the proposition follows from the fact that #o(D) 

injective is equivalent to 

HI(Tc)=O 

i.e. to the fact that ~(C) is surjective, q.e.d. 

(3.3) Proposition. Let F cIP', r> 3, be a smooth irreducible non degenerate 
curve of degree n and genus g and D a hyperplane section divisor on F. Assume 
that the following conditions are satisfied: 

(i) h~ ~0(D))=r+ 1; 
(ii) /~o(D) has maximal rank 

(iii) H'(F, Nr)=0  

then F is parametrized by a smooth point of Hilb~,,g belonging to an open set V 
with the following properties: 

(iv) V is smooth of dimension z(n, g); 
(v) all closed points of V parametrize smooth irreducible non degenerate 

curves of genus g and degree n. 
(vi) V has the expected number of moduli. 

In particular if (i), (ii), (iii) are satisfied with #o(D) injective then V has 
general moduli. 
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Proof. From (iii) and from proposition (1.6)0) it follows that Hilb'.,g is smooth 
of dimension z(n, g) at the point 0 parametrizing F. The existence of V satisfy- 
ing (iv) and (v) follows from this. Since by uppersemicontinuity conditions (i), 
(ii) and (iii) are satisfied by all curves parametrized by some open neigh- 
borhood of 0eV, property (vi) can be proved as in the previous proposition. 
Similarly for the last assertion of the proposition, q.e.d. 

w 4. Plane curves: existence of families with the expected number of moduli 

In this section we will discuss the case of plane curves. We will show the 
existence of irreducible components of ~..,g with the expected number of 
moduli for all n, g such that 

n - 2 < g <  (n211 ,  n>__5. 

When p(g, 2, n)>0, equivalently g < 3 n / 2 - 3 ,  this is well known as a particular 
case of the results of [9]. Note that if V is a component of ~,,g then certainly 
we have 

(4.1) number of moduli of V<d im V - d i m  A u t ( l p 2 ) = 3 n + g - 9  

= 3g - 3 + p(g, 2, n). 

If p(g, 2, n)<0 this means that V has at most the expected number of moduli. 
From (4.1) it follows that in order for V to have the expected number of 
moduli it is sufficient that a general point of V parametrizes a curve F which is 
birationally, but not projectively, equivalent to only finitely many curves of the 
family. In other words it is sufficient that the normalization C of F has only 
finitely many linear systems of degree n and dimension 2. 

This condition was classically known to be satisfied in the case g =  ( n ~ l )  - - 

i.e. in the case of smooth plane curves, and n>4 ;  it is in fact classical that a 
smooth plane curve of degree n > 4  has a unique linear system of degree n and 
dimension > 2 (cfr. [24]). 

The existence of components of ~//~.,g having the expected number of moduli 
has also been proved independently by M.R.M. Coppens [3] in the cases 

2 n - 4 < g < ( n 2  1) 

(4.2) Theorem. For all n, g such that 

(4.3) n - 2 < g <  ( n 2  1), n~5 ,  

there is an irreducible component V of ~,~ whose general point parametrizes a 
nodal curve F with the following properties: 
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(1) the lines cut a complete linear system [D[ on the normalization C of P, 
(2) #o(D) has maximal rank; 
(3) V has the expected number of moduli. 

Proof. By proposition (3.2) property (3) follows from properties (1) and (2); 
therefore it will suffice to prove the existence of a component V of ~ ,g  having 
properties (1) and (2). 

For  every fixed a eZ  the existence of V will be proved for all couples (n, g) 
such that (4.3) and 

(4.4) g = 2 n - 5 - a  

are satisfied. 
The proof is by induction on n. Suppose that we have proved the existence 

of V for a given couple (n,g) satisfying (4.3) and (4.4); we will deduce the 
existence of a component of ~ +  1,g+2 having properties (1) and (2). 

Let 

be the normalization of F and 

~oo: C--*F 

F ' = F w y  

where 7 is a general line in IP 2. Let 

r ~  ~ = (e~ . . . . .  ~} ,  

Pl = q~ol(P~), i=  1 . . . . .  n, and C' be the stable curve obtained by desingularizing 
all the singular points of F' except P~, P2, P3. C' has genus g + 2  and the 
pullback D' of a line section of F' is a divisor of degree n + 1 on C'. By Lemma 
(2.1) 

h~ ', (9(D'))= 3. 

Note that C is not hyperelliptic if D is a special divisor (i.e. if n -  2 < g) and if n 
- 2  = g we may assume that C is not hyperelliptic by the genericity of F in the 
family. Therefore by Proposition (2.3) the map #0(D') is of maximal rank. 
From Severi's theory we deduce that there is a family of plane nodal curves of 
degree n + 1 

f#' ~ IP z x S 

i- s 
parametrized by a smooth curve S and a point 0eS  whose fibre is 

F ' c l p  2 

and such that all fibres 
~ '  (s)  c IP  2 
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seS, s~eO, are irreducible nodal curves of genus g+2 ,  i.e. belonging to 
~,+1,g+2, whose nodes specialize to the nodes of F' except P~, Pz,P3. We now 
consider the following commutative diagram 

' c:2~p2 x S 

where ~b' is the blow-up of f#' along the closure of the singular locus of 
rc-l(S\{0}). By construction the fibre over 0eS of this diagram is just 

and for all s~S, s+O, 

is the normalization map. 

(p': C'-.[" ~ l p 2 x S  

�9 '(s): ~' ( s ) - - , fC ' ( s )=lP 2 

We may apply the theorems of semicontinuity to deduce that for a suf- 
ficiently general seS the divisor D'(s), pullback on oK'(s) of a line section of 
fq'(s) has the same properties of the divisor D' on C'. In particular there is a F" 
parametrized by a point of ~Vs § z having properties (1) and (2). By semicon- 
tinuity the irreducible component of ~+1,g+2 containing that point has the 
required properties. This completes the proof of the inductive step. 

To prove the starting step of the induction assume first a > 2. 
In this case the induction starts at 

(n, g)=(a  + 3, a +  1); 

in particular g = n - 2 .  It is an elementary well known fact that every smooth 
irreducible curve C of genus g > 3 can be mapped birationally onto a plane 
nodal curve F of degree g + 2  by a complete linear system [DI. Such a F clearly 
satisfies conditions (1) and (2) and therefore is parametrized by a point of a 
component of ~+2,g having the required properties. 

If a = 1 the initial step of the induction is 

(n, g)= (5, 4) 

and it is immediate to check properties (1) and (2) for an irreducible quintic 
with two nodes; the theorem follows in this case as above. 

If a = 0 the induction starts at 

(n, g )=  (5, 5). 

Property (1) is obvious for a quintic with one node P,, the surjectivity of 
/to(D ) can be easily checked using the base point free pencil trick (cfr. 1-20]). 
Again the theorem is proved in this case. 
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Let's assume now that a < - l .  It is easy to check that in this case the 
induction starts at a couple (n, g) such that 

(4.5) (n 2 1 ) - g < n - 5 .  

Let F be an irreducible nodal plane curve of degree n and genus g 
satisfying (4.5) (recall that ~,,,g ~ if, see w 1), and let 

qgo: C ~ F  

be the normalization of F. Denote by q / c  (,O~,~ the ideal of plane curves adjoint 
to F. Inequality (4.5) implies that the 

nodes of F impose independent conditions to the curves of any order > n - 5 .  
Therefore 

hl( C,(_9(D))=h~ ql(n-4))= ( n 2 2 ) - 6 = g - n  + 2, 

equivalently 
h~ (9(D)) = 3; 

hence F satisfies condition (1). 
As before the theorem will be completely proved if we will show that/~o(D) 

is surjective. 
We have 

hi(C, d~(2D))= h~ 2, ~ ( n -  5))= (n 2 3) - 6  = g -  2n + 5 = - a  > 1 

and by Riemann-Roch theorem 

h~ (.0(2 D)) = 6. 

The theorem is now a consequence of the following 

(4.6) Lemma. Let 1" be an irreducible plane nodal curve of degree n and genus g 
for some n and g, and 

q~O: C ~ F  

its normalization. Assume that 

h~ (g(O))= 3 
h~ ~(2D)) = 6 

and that 2D is a special divisor. Then #o(D) is surjective. 
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Proof. Let P c  C be a general point and K a canonical divisor on C. We have a 
commutat ive diagram: 

0-+ H~ - P) | H~ - D) --. H~ | H~ - D)--, H ~ (D | (g v) | H~ - D)---, 0 

1 1 l 
0--~ H~ - P )  --~ H~ --~ H~174 

l I 1 
coke r (~ )  --, coker [~0(D)] --~ 0 

-- ,0 

The first and the second columns are exact by definition; the third column 
is exact because D is special and P is general. The first and second row are 
exact because 

HI(D-P)_~HI(D) 
and 

H I ( K -  P)_~ HX(K) 

respectively. The third row is exact by linear algebra. Therefore it suffices to 
show that #o is surjective. 

Since ID-PI is a base point free pencil we have, by the base point free 
pencil trick: 

dim Im (#~)) = dim H ~ - P) | H~ (K - D) - h ~ (K - 2 D + P) 

= 2(g-n  + 2 ) - h ~  2D)= 2(g-n  + 2 ) - ( g -  2n + 5) 

= g - 1  = h ~  q.e.d. 

w 5. Smoothing certain reducible curves in IP ~, r >-3 

In this section we prove that certain reducible curves in IP" can be flatly 
smoothed;  this result will be applied to obtain an inductive construction of 
smooth curves similar to the construction of irreducible plane nodal curves 
given in the proof  of theorem (4.2). 

We need some preliminary remarks. 
Let 7 and F be two smooth irreducible curves in IP' such that 

F'= Fw,/ 
is connected and 

{P1, "", P~} = F n y  

are ordinary double points of F'. We denote by J r / r ,  J r / r '  the ideal sheaves of 
7 and F respectively in (9 r, and by Jr ,  J r ,  J r '  those of 7, F, F' respectively in 
~lpr. 

Note that J r / r '  has support  in ? and we have a natural isomorphism 



48 

Similarly we have 
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diagram 

O- ' : F / r , |  " 

N r, * - - , N  r , 0  

I 1 
) N r, , Nr, | (9 r ,0  

where the lower row is exact and the vertical maps are injective; we get an 
inclusion 

ker(~) ~_ Jr/r' | Nr'. 

In order to show that this is an isomorphism it suffices to check that 

J(Jr/r' | Nr')~- N'r'. 

This follows from the very definition of the map 

Nr,--* Tr 1, 

whose kernel is Nr,, and from the fact that J(Jr/r' | Nr') is supported only on 
one branch of F' locally at each singular point. This proves (i) and also proves 
that there is an exact sequence 

O~ NF~ N r, | (fir--* r;, ~0.  

After interchanging the role of 7 and F we obtain an exact sequence 

O~N~.~NF,| 

( k )q- and from this we deduce sequence (ii) tensoring by (9~ - j =  1 

Y~/r'~-r - j _  PJ C(gr~r 

(5.1) Lemma. There are exact sequences on F' 

(i) O ~ : F / r , |  ~ , N r - , 0  

(ii) O---~N~ -~--~i Pj -+J r / r ' |  Tr~'---'O" 

Proof. It is easy to check that the surjective restriction 

rr,--,T~- 

maps 0 F. into O r and therefore induces the mapO. We have a commutative 
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By applying Prop. (1.6)(ii), from the above lemma one immediately deduces 
that if 

then F' is smoothable. Bur for our purposes we will need to smooth certain 
curves which do not satisfy these conditions. Therefore we now prove the 
following 

(5.2) Theorem. Let F clP" be a smooth irreducible non degenerate curve of genus 
g and degree n such that 

n1(r ,  Nr)=O, 

H a general hyperplane and 

H ~ F  = (Pt, . . . ,  P,}. 

Let l_<~_<min(n,r+2), 7 a smooth irreducible rational curve of degree r -  1 
contained in H but not in a hyperplane of H and containing Px, ..., Pa but not 
P~+ I .... ,P,; let 

F '=Fw7.  

Then Hilb~+r_l,g+a_ 1 is smooth of dimension z ( n + r - l , g + 6 - 1 )  at the point 
parametrizing F' and F' is f latly smoothable in IP'. 

Proof. By Proposition (1.6)(ii) it suffices to prove that 

HI(N~-,) = 0. 

From the exact sequence (5.1)0) we see that for this purpose we only need to 
show that 

Hl(Yr/r , | Nr,)=0. 

Denote by Ny m the normal bundle of y in H. We have 

(5.3) N ~ m ~ M O . . . |  ( r - 2  copies) 

where M is an invertible sheaf of degree r +  1 (cfr. [18]). 
The inclusions 7 c  H e l P  r induce an exact sequence 

O ~ N r m ~ N r ~ L ~ O  

where deg L = r - 1 ; since 

Ex tl(L, Nr/H) = Hi(?, Ne/u| L-1)= 0 

by (5.3), the above sequence splits and therefore 

L. 

Consider the exact sequence 

(5.4) O-~ Nr- ~-L~ Nr,| Tr~.--*O 



50 E. Sernesi 

deduced from (5.1)(ii)after tensoring by (9 ( ~ P~). The middle sheaf is locally 
j= 

free of rank r -  1 and therefore, since 7 is rational, 

Nr,@@7~MI ~ . . .OMr_ 1 

where M 1 . . . . .  Mr_ x are invertible sheaves. 
Claim: 

Co o) rl= 1 : M @ . . . @ M @ L ~ M a @ . . . @ M ~ _  1 

Proof of the claim: at each point different from P~ . . . . .  P~ q is the identity and 
therefore the matrix of tl is a diagonal matrix 

by the exact sequence (5.4). For each i with ~ l . . . ~ r _ l e H  ~ 7,(9 7 i 

= 1 .... ,6 we may find f l  . . . .  , f , -2 ,  u, ve(gn, r v ' such that 

The map 

o%,p,=(U)COrr p, 

Jr, e,=(fl ,  . . . ,L_z,U)= Cn, ce/ 

H~ @7) = N7 oNr" | (97 = H~  07) 

is defined by the inclusion J r '  c J7 and therefore locally at Pi it is defined by 
the matrix 

This proves the claim. 
From the claim it follows that 

Mi~-M, i=1,  . . . , r - 2  

We may conclude that 

j = l  
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and therefore 
Hl(Jr/r  , | Nr,) = 0  

because all summands have degree >_ - 1 .  q.e.d. 

(5.5) Corollary. Let F be a smooth irreducible nondegenerate curve F ~ I~, r >=3, 
of  degree n and genus g. Then 

(i) /f HI(F, Nr)=O then for each l_<5_<min(n,r+2) there exists a smooth 
irreducible nondegenerate curve X in I~  of degree n + r - 1  and genus g + 6 - 1  
such that 

H~(X, Nx)=O; 
(ii) /f 

HI(F, Nr)=O and h~ + l 

where D r is a hyperplane section of F, then for each r <- 6 <_ min (n, r + 2) there 
exists a smooth irreducible nondegenerate curve X in IP r of degree n + r - 1  and 
genus g + f i -  1 such that 

HI(X,  Nx)=O and h~ 

where D x is a hyperplane section of X ;  

(iii) /f 
Ha(F, Nr)=O, h~ + l, n_>-r+l 

and #o(Dr) is of maximal rank, then there exists a smooth irreducible nonde- 
generate curve X in IP r of degree n + r -  1 and genus g + r such that 

H~(X, Nx)=O, h~ + 1 

and #o(Dx) is of maximal rank. 

Proof. (i) follows immediately from Theorem (5.2): X can be taken as a 
sufficiently small smooth deformation of F' =F•7. 

(ii) If we set 
L =(~.(1) | (~ 

we have an exact sequence 

which shows that 

h~ if 6>r .  

By uppersemicontinuity we also have 

h~ O(Dx) ) = r + 1 

when X is taken as above. 

(iii) If 5 = r + l  by Proposition (2.3) #o(Dr,) is of maximal rank and by 
semicontinuity po(Dx) has the same property, if X is as before, q.e.d. 
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w 6. Curves in IW, r-> 3: 
existence of families with the expected number of moduli 

In w we have observed that every component of ~s has at most the expected 
number of moduli, 

In I~, r>3 ,  the situation is different. One can easily find examples of 
components of Hilb~.,g, for some n,g, which have a number of moduli larger 
than expected. 

For  instance, let F be a smooth complete intersection of r -  1 hypersurfaces 
of degrees n 1 __> . . .  > r / r _  1 >2. Then F has degree n = n  1 ... nr_ 1 and genus 

g=(1/2)  n(n a + ... +n ,_  1 - r -  1)+ 1 
and 

S r  ~- (g r(n i D) 0 . . .  (~ (~ r(n, _ 1D). 

The map #o(D) coincides in this case with the natural map 

H~ (9(D))| H~ (.9((d -- 1) D))-. H~ (9(dD)) 

where d=  n~ + ... + nr_ 1 -  r - 1 ,  and it is surjective because F is projectively nor- 
mal. Therefore, by Euler sequence, 

h'(Tr)  = -p (g ,  r, n). 

On the other hand suppose that n I >=r+ 1. Then 

h ' (Nr) •O 

and, by the exact sequence (1.2), 

r a n k ( n ~  n l ( O r ) ) = h l ( O r ) - h l ( T r )  + hl(Nr) 

= 3g-- 3 + p(g, r, n) + h l ( N r ) >  3 g -  3 + p(g, r, n). 

One can check that Hilb~,g is smooth at the point parametrizing F and there is 
an open irreducible subset V containing that point and parametrizing smooth 
complete intersections of the same multidegree as F (cfr. [21]); it follows that 
V has a number of moduli equal to 

r k [ H ~  

and therefore larger than expected. 
Note that if r = 3 every smooth irreducible nondegenerate curve of degree 

n = 2 a ,  a>__4 
and genus 

g = a ( a - 2 ) +  l 

is the complete intersection of a quadric and a surface of degree a. This shows 
that in general there are values of r > 3 ,  n,g such that there exist smooth 
irreducible nondegenerate curves of degree n and genus g in IP', but there are 
no components of Hilb~,g having the expected number of moduli. 
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For  every given r > 3  what is the set of (n,g) for which there exists an open 
set of a component of Hilb~,,g having the expected number of moduli is to my 
knowledge unknown. I do not even know of any component of the Hilbert 
scheme having a number of moduli strictly smaller than expected. 

One should note that for r > 4 the set of (n, g) for which there exist smooth 
irreducible nondegenerate curves of degree n and genus g in IP ~ is not known 
(this set is known for r=3 ,  cfr. [10]). A partial answer to this problem has 
been given by Gieseker in [7], where he shows the existence of such curves for 
all r > 4, n and g such that 

< r + l  ( r+  1)(r+3) 
g = r ~  - n -  r - 1  

We will now prove an existence theorem for smooth curves and for families 
with the expected number of moduli. 

(6.1) Theorem. Let r>=3. For all n,g such that 

r(n - r) - 1 
(6.2) n - r < g <  , n > r + l  

r - 1  

there is a smooth irreducible nondegenerate curve F c IP ~ of  genus g and degree n 
embedded by a complete linear system [D[ and such that 

hl(r ,  Nr)=O 

and #o(D) has maximal rank. The curve F is parametrized by a smooth point of 
an irreducible open subset V of Hilb~,g having dimension z(n,g) and the expected 
number of  moduli. 

Proof. The second part follows from the first in view of Propositions (1.6)(i) 
and (3.3). Therefore it suffices to prove the existence of F. 

The curve F exists if n = g + r ,  g >  1. In fact given any smooth irreducible 
curve X of genus g there is on X a nonspecial very ample divisor D of degree g 
+ r  (cfr. [12]); let F be the image of X in IP r by the map defined by IDI. From 
the Euler sequence on F and the nonspeciality of D we get 

H ' ( r ,  Tr)=0 
and therefore 

H~(F, Nr)=O 

using the exact sequence (1.2). From the nonspeciality of D it follows also that 
#o(D) is of maximal rank. 

To prove the theorem for any n, g satisfying (6.2), let 

a = r n - g ( r  - 1) - r  2. 

We may obtain the given couple (n,g) from (a+r,a) with a finite number of 
substitutions of the form 

(m,h)~--~(m + r -  1,h + r). 
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This follows observing that 
g - a = r ( g - n + r )  

and 
n - ( a + r ) = ( r -  1 ) ( g - n + r ) .  

If the theorem is true for a couple (m, h) it is also true for the couple (m + r -  1, 
h+r) by Corollary (5.5)(iii); the theorem is therefore true for (n,g) because it 
holds for (a + r, a) by the first part of the proof (note that a > 1 by (6.2)). q.e.d. 

p(g,r,n)>O 

g < r +  1 (n--r). 
r 

Since 
r + 1 r(n - r) - 1 
- - ( n - r ) <  for n>_2r 

r r - - 1  - -  

the above theorem implies that for all r >__ 3, n, g such that 

p(g,r,n)~O, n> 2r 

a general curve C of genus g can be realized as a smooth non degenerate curve 
of degree n in IP ~ or, what is the same, that C has a very ample invertible sheaf 
L of degree n such that 

h~ + 1. 
If moreover 

p(g,r,n)>O 

it is known that the scheme Wf(C) of linear systems of degree n and dimension 
>__r on C is reduced irreducible of dimension p(g,r,n) (cfr. [5]). Since the set of 
L~Wf(C)  which are very ample is open, it follows that this set being not 
empty, is also dense in Wf(C). Note that if g - n + r > 0  then n>=2r by Clifford 
theorem, while for g - n  + r =0  the existence of smooth curves is well known. 
We therefore have the following 

(6.3) Corollary. Let r > 3. I f  
p(g,r,n)>O 

and C is a general curve of genus g, the set of L~Wn'(C ) which are very ample is 
open and dense in W[(C). 

if 
p(g,r,n)=O 

and C is a general curve of genus g there exists at least one very ample 
L~ W: ( C). 

As already mentioned in the introduction, this result has been proved by 
Eisenbud and Harris in [4], using different techniques and in a more general 
form. 

The inequality 

is equivalent to 
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They give more precise information on the projective embedding defined by 
a general LeW,~(C) on a general curve C of genus g, if 

p(g,r,n)>O. 
Moreover for 

p(g,r,n)=O 

they prove that every L~W~(C) is very ample on such a curve C. 

w 7. Curves in IP 3 : a more general existence theorem 

In this section we improve Theorem (6.1) in the case r=3 .  The method of 
proof  is the same, but the result is better because we can find a better starting 
point for the induction in this case. 

(7.1) Theorem. For all n,g such that 

(7.2) n-3=<g<__3n- 18, n > 9  

there exists a smooth irreducible nondegenerate curve F ~ I P  3 of genus g and 
degree n embedded by a complete linear system IDI such that 

Hl(r ,  Nr)=O 

and #o(D) is of maximal rank. The curve F is parametrized by a smooth point of 
an irreducible open subset V of " 3 Htlb,,g having dimension 4n and the expected 
number of moduli. 

Proof As in the proof of Theorem (6.1), it suffices to show the existence of F, 
since the last part follows from Propositions (1.6)(i) and (3.3). 

Let S be a smooth cubic surface in IP 3, H a plane section of S and F a 
smooth irreducible nondegenerate curve on S. Denote by D a plane section 
divisor on F. Suppose that 

(7.3) h~ (9(D)) = 4. 

Then by Proposition (2.7) ~lo(D ) is of maximal rank of F. Suppose moreover 
that 

(7.4) h~ (gs(F - 4H)) = 0. 

Then by the exact sequence 

O~(gs(-  4 H ) ~ @ s ( F -  4 H)~(g r(K - 3 D ) ~ 0  

where K is a canonical divisor on F, we have 

h 1 ((9r(3 D)) = h~ - 3 D)) = 0. 

From this and from the exact sequence 

O-*(g r(K + D)~ Nr--*(g r(3 D)--*O 
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(~gr (K+D)  is the normal  bundle  of  s in S and Cr(3D) is the restriction to F of 
the normal  bundle of  S in IP 3) it follows that  

H i ( s  

Let n o w  E 1 . . . . .  E 6 be disjoint lines on S and L a smooth  irreducible rational 
curve of  S such that  

(L2)= 1, ( L . E , ) = O ,  i = 1 , . . . , 6 .  

Consider  the following linear systems on S, for (5 > 9: 

A1((5 ) = [ ( S L - ( ( 5 -  7)E 1 - 3E 2 - 3E 3 -  3E 4 -  3E 5 - 3E61 

A2(5 ) = [ ( S L -  ( a -  7) E 1 - 4 E  z -  3E a -  3E 4 -  2E5 - 2E61 

A 3((5) = I(SL -((5 - 7) E 1 - 4E 2 - 3E 3 - 3 E 4 - 3E 5 - 2E61 

A4(6) = t ( S L -  ((5 - 7) E 1 - 4 E  z - 4E 3 - 3 E 4 - 3 E 5 - 2E6] 

A5((5) = ](SL- ((5- 7) E x - 4E 2 -  4E 3 - 3E 4 -  2E 5 - 2E61 

A6((5) = I 6 L -  ( 6 -  7) E1 - 4E 2 -  4 E  3 - 4E 4 -  2E 5 -  2E61. 

It is easy to check they all contain smooth  irreducible nondegenerate  
curves. If s  ) is such a curve, it is likewise easy to verify that  /" satisfies 
both  condit ions (7.3) and (7.4). By the first part  of  the p roof  this means that  the 
theorem is proved for all n, g which are respectively the degree and the genus 
of  one of  the linear systems Ai(& ). Their 
following, with (5 > 9: 

n = 2 6 - 8 ,  

n = 2 ( 5 - 9 ,  

n = 2 ( 5 - 8 ,  

n = 2 & - 9 ,  

n = 2 ( 5 - 8 ,  

n = 2 5 - 9 ,  

values are readily computed  to be the 

g = 6 6 - 4 2 ;  

g = 6 6 - 4 5 ;  

g = 6 6 - 4 3 ;  

g = 6 5 - 4 6 ;  

g = 6 5 - 4 4 ;  

g = 6 6 - 4 7 .  

The above expressions give all values of  n,g satisfying the following inequa- 
lities: 

(7.5) 3 n - 2 0 < g N 3 n - 1 8 ,  n > 9 .  

Let now (n, g) be any couple of  integers satisfying inequalities (7.2). If 

g_<_(3/2) ( n -  3) 

the theorem is t rue by Theorem (6.1). Therefore we may assume that  

( 3 / 2 ) ( n - 3 ) < g <  3 n -  18, n > 9 .  
Since 

g - (3/2) (n - 3 ) = g  + 3 - (3/2) (n - 1) 
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a n d  

( 3 n -  1 8 - g ) +  3 = 3(n + 2 ) -  1 8 - - ( g +  3) 

we  see  t h a t  t h e  c o u p l e  (n ,g)  c a n  b e  o b t a i n e d  f r o m  o n e  s a t i s fy ing  (7.5) a f te r  a 

f in i te  n u m b e r  of  s u b s t i t u t i o n s  o f  t h e  f o r m  

(n,g)~--,(n + 2,g + 3). 

T h e  t h e o r e m  is n o w  a c o n s e q u e n c e  o f  C o r o l l a r y  (5.5). q.e.d. 
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