
Lectures on
Families of Projective Varieties

E. Sernesi

1 Beginning remarks on the notion of family

Projective varieties are distributed in families, obtained by suitably varying
the coefficients of their defining equations. The description of the properties
of such families and, in particular, of the properties of their parameter spaces
is the central theme of these lectures. All varieties and schemes will be
assumed to be defined over a fixed algebraically closed field k.

The classical geometers knew some properties of some families of varieties.
In particular they knew how to compute their dimension and sometimes they
were able to describe the parameter space. The examples classically known
are:

(i) Hypersurfaces in IP r, in particular plane curves. A hypersurface Y ⊂ IP r

of degree d is given by an equation:∑
io+···+ir=d

aio,...,irX
i0
0 · · ·X ir

r = 0

where the indices ij are nonnegative integers and the aio,...,ir ’s are not
all zero. Since two such equations define the same hypersurface if and
only if they are proportional, the family of hypersurfaces of degree d in
IP r is parametrized by the

(
r+d

r

)
-tuple of coefficients up to proportion-

ality, thus it is parametrized by the projective space IP (r+d
r )−1. In more

intrinsic, coordinate-free, terms we can parametrize the hypersurfaces
of degree d in IP r by the space IP [H0(IP r,O(d))].

(ii) Linear spaces. The classical geometers knew very well that the family
of linear spaces Λ ⊂ IP r of dimension n in IP r is parametrized by the
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grassmannian G(n, r), a nonsingular projective variety of dimension
(n + 1)(r − n). They had a deep understanding of the geometry of
the grassmannian, especially in connection with problems arising in
enumerative geometry.

(iii) Curves in IP 3. The families of nonsingular connected curves of given
degree d and genus g have been extensively studied by the classical
geometers (esp. Halphen and Noether). They knew many examples,
how to compute the dimension of such families in several cases, and a
rough description of the parameter spaces. For example it was known
that every such family has dimension ≥ 4d, and that equality holds
under certain conditions. A precise description of the parameter variety
was missing.

(iv) Singular plane curves. Since every nonsingular curve can be projected
in IP 2 as a nodal curve (i.e. with ordinary double points), the fam-
ilies of plane curves of given degree and number of nodes have been
studied considerably, especially by Severi and his school. The varieties
parametrizing such curves are therefore called Severi varieties. The
families of curves of given degree and having a fixed number of nodes
and ordinary cusps were also studied due to the fact that such curves
appear as branch curves of generic projections of surfaces to IP 2.

(v) Surfaces with ordinary singularities in IP 3. Every projective nonsingu-
lar algebraic surface can be projected in IP 3 and the image in general
has a curve consisting generically of double points for the surface, hav-
ing finitely many triple points, and containing some other singularities
of the surface of a very precise type (pinch points). The families of
such surfaces were studied because they give information on the local
parameters, or moduli, on which the surfaces depend abstractly. The
only results known were about the dimension of such families, and were
not at all complete (Enriques, Segre, Castelnuovo).

Roughly these are all the classes of families of projective varieties known
to the classical geometers. I did not mention Hurwitz varieties parametrizing
branched covers of IP 1, because they are of a slightly different nature. For a
long time there was no attempt to give a systematic description of families in
a global way, i.e. to find a systematic way to describe the family of varieties
of a given type. The construction of a parameter variety was proposed by
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Bertini, and finally by Van der Waerden and Chow. We will explain their
idea next.

2 The Chow variety

We will briefly discuss the construction of the Chow variety referring to the
case of curves in IP 3 (the general case is analogous). The treatment closely
follows the one given in [2].

Consider an irreducible curve C ⊂ IP 3. In (IP 3)∨ × (IP 3)∨ consider the
set V (C) of all pairs of planes (π, π′) such that π∩π′∩C 6= ∅. This is clearly
a subvariety of dimension 5 in (IP 3)∨ × (IP 3)∨, and it is therefore defined by
a bihomogeneous polynomial fC(u, v) in the variables u = (u0, . . . , u3) and
v = (v0. . . . , v3) which is determined (up to a multiplicative scalar) by C, and
is called the Chow form of C. By obvious reasons of symmetry, the degree
of fC(u, v) in the two sets of variables is the same and it is easy to see that
it coincides with the degree d of C. Therefore to the curve C we associate
the point

[fC(u, v)] ∈ IP (Vd,d)

in the projective space associated to the vector space

Vd,d := H0((IP 3)∨ × (IP 3)∨,O(d, d))

of bihomogeneous polynomials in u, v of bidegree (d, d). We call [fC(u, v)]
the Chow point of C.

More generally, if C is an algebraic effective cycle of dimension 1 in IP 3,
namely if C is the sum of irreducible components C1, . . . , Cn, counted with
multiplicities m1, . . . ,mn, (the degree of the cycle is, by definition,

∑
midi,

where d1, . . . , dn are the degrees of C1, . . . , Cn respectively), then the Chow
form of C is, by definition, fC =

∏
fmi

Ci
, and accordingly the Chow point of

C is defined to be [fC ]. The crucial facts about Chow points are:

(1) the map from the set of algebraic effective cycles to the set of points of
IP (Vd,d) is injective, namely two distinct cycles have non proportional
Chow forms;

(2) a polynomial in Vd,d is the Chow form of a cycle of degree d if and only
if its coefficients verify a suitable set of homogeneous equations.
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In other words the subset V (d, 1, 3) of IP (Vd,d) consisting of Chow points
of algebraic cycles of dimension 1 and degree d of IP 3 is an algebraic variety
(by property (2)) and is in fact a parameter space for the family of all cycles
of dimension one and degree d in IP 3 (by property (1)).

As mentioned above, this construction easily generalizes to algebraic cy-
cles of degree d and dimension n in IP r. Denoting by V r(d, . . . , d) the space
of plurihomogeneous polynomials of multidegree d in n + 1 sets of r + 1
variables, we obtain a subvariety

V (d, n, r) ⊂ IP (V r(d, . . . , d))

which is a parameter space for such cycles. This variety is the so called Chow
variety.

Example 2.1 By the same construction, the Chow variety appears to be
a generalization of the Grassmann varieties. In fact it is easy to see that
V (1, n, r) is isomorphic to G(n, r) and also that V (d, r − 1, r), the Chow
variety parametrizing hypersurfaces of degree d in IP r, is isomorphic to the

projective space IP (r+d
r )−1 described in Example (i) of §1.

In order to explain how these isomorphisms arise, let us consider the case
of the Grassmannian of lines in IP r. Such a line can be assigned in the form
` = 〈p0, p1〉 ⊂ IP r, as generated by two distinct points

p0 = [p00, . . . , p0r], p1 = [p10, . . . , p1r]

The matrix of their homogeneous coordinates

P =


p00 p10

p01 p11

· · · · · ·
p0r p1r


is determined up to right-multiplication by an element of GL2(k), and the

homogeneous coordinates of the corresponding point in G(1, r) ⊂ IP (r+1
2 ) (the

so called Plücker coordinates of `) are given by the 2×2 minors of the matrix
P .

The Chow form of the line ` is a bilinear polynomial in the variable
coefficients (u0, . . . , ur), (v0, . . . , vr) of the equations of a pair of hyperplanes

H0 : u0X0 + · · ·+ urXr = 0, H1 : v0X0 + · · ·+ vrXr = 0
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Such polynomial is obtained by imposing the condition that `∩H0∩H1 6= ∅.
Therefore, letting

A =
(
u0 u1 . . . ur

v0 v1 . . . vr

)
the Chow form of ` is just given by the condition det(AP ) = 0, that is:

H0(p0)H1(p1)−H0(p1)H1(p0) = 0

The left side is a sqew-symmetric bilinear form in u, v whose coefficients
are just the Plücker coordinates of `, and this circumstance gives us the
isomorphism of the Chow variety with the Grassmannian.

The case of hypersurfaces is similar, and is left as an exercise (hint: start
from the case of plane curves).

An important remark has to be made at this point. Since the Chow vari-
ety is a projective variety, it has only finitely many irreducible components.
This is what the classical geometers used to express by saying that the alge-
braic varieties of given degree and dimension in a fixed projective space fill up
finitely many complete irreducible algebraic families (here “complete” means,
of course, not properly contained in some other irreducible algebraic family).
This property is what we call today boundedness. The classification of va-
rieties in a projective space consisted for them in describing these families,
namely their number, dimensions, intersections, etc. For a great deal this is
still our concept of classification: the only difference is that, as we shall see,
we will use another parameter space.

Another basic remark about the Chow variety is that it is a rather course
object. In fact first of all the definition of Chow point makes sense only for
purely dimensional cycles. If one considers varieties having more than one
component, at least two of which with different dimensions, the construction
of the Chow point for these has no meaning, unless one decides to forget
all lower dimensional components (and this is what is usually done). In
other words the Chow point of a variety is uneffected by lower dimensional
components.

Secondly, the Chow variety actually parametrizes cycles and not schemes.
In fact the construction of the Chow point does not take into consideration
non reduced scheme structure apart from multiplicities of components.

Both the above characteristics could appear to be, at first glance, an
advantage of the Chow construction: if we want to study curves in IP 3, for
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instance, why should we look at some complicated scheme structure instead
of looking only at reduced curves? The point is that non reduced scheme
structures unavoidably come into the picture even when we start looking
only at smooth reduced curves. The following example gives an idea of how
this occurs.

Example 2.2 Consider the pair of skew lines in IP 3 defined by the equations

X2 = X3 = 0
X1 = X3 − tX0 = 0

where t 6= 0 is a complex number. The ideal of this reducible curve is
generated by the polynomials

X1X2, X1X3, X2(X3 − tX0), X3(X3 − tX0)

As t varies, approaching 0, we get a one parameter family of skew lines which
approaches the scheme defined by the polynomials

X1X2, X1X3, X2X3, X
2
3

The support of this scheme is the union of the two lines

X2 = X3 = 0
X1 = X3 = 0

but the scheme itself has an embedded point at their intersection [0, 0, 0, 1],
which makes it a non planar scheme. The embedded point keeps track of the
fact that the scheme is in fact a limit of non coplanar lines.

Let us consider, on the other hand, the one parameter family of conics
given by the equations

X3 = X1X2 − tX2
0 = 0

As t approaches 0, the conics of the family approach the conic defined by the
equations

X3 = X1X2 = 0

This is exactly the support of the limit of the two skew lines above, but this
time the limit is planar, according to the fact that all the conics of the family
are such.

From the Chow variety point of view we have that the Chow points of the
curves of the two families above tend, when t goes to 0, to the Chow point
of the same cycle, although the geometric situation is completely different in
the two cases.
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Another unpleasant feature of the Chow variety is that, apart from its
existence, it is not easy to say something more about it, and in fact it seems
in general a rather untractable object. For instance, even in the simplest
cases (n = 1 and low d) the following questions appear to be fairly difficult:

(1) What is the dimension of a component of the Chow variety?

(2) Given a point of the Chow variety V (d, n, r) (i.e. a cycle of dimen-
sion n and degree d in IP r) what is the tangent space to V (d, n, r) at
that point? In particular, is it possible to recognize singular from non
singular points of the Chow variety?

Summarizing, the Chow variety shows that the notion of family can be
given a general meaning, but the insight obtained is still unsatisfactory. Any-
way, this is what the geometers knew on this subject at the time when
Grothendieck and the language of schemes came on stage (mid 1950’s).

3 The modern notion of family

If we look back at the previous discussion, we see that we did not define what
we precisely mean by a family. If we want to go beyond the classical naive
point of view we need to give a precise definition.

Definition 3.1 A family of projective varieties is a projective morphism of
schemes:

f : X → S

The members of the family are the fibres of f and S is the parameter scheme.
The morphism f is required to satisfy the extra condition of being flat, or even
smooth if we want the fibres to be nonsingular.

A family of closed subschemes of IP r is a family f as above which is part
of a commutative diagram of morphism:

X � � //

f
$$I

IIIIIIIII IP r × S

��
S

(1)

realizing X as a closed subscheme of the product IP r×S and where the vertical
arrow is the second projection. We will say that f is a family of deformations
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of X ⊂ IP r if X is a fibre of f in (1), i.e. if there is a k-rational point
s : Spec(k) → S of S and a diagram:

X //

��

X � � //

f

��

IP r × S

{{vvvvvvvvvv

Spec(k) s // S

(2)

which induces an isomorphism of X with the fibre X (s) ⊂ IP r. The family
(1) will be called trivial if X = X × S for some closed subvariety X ⊂ IP r.
In this case it will be also called a trivial deformation of X in IP r.

The condition of flatness is required in order to exclude certain undesir-
able morphisms f from the definition (we will see examples illustrating this
fact). Recall that for families of projective schemes as in (1) flatness implies
that the Hilbert polynomial of the fibres is constant; if moreover S is an
algebraic scheme then flatness is equivalent to the Hilbert polynomial of the
fibres being constant.

In the above definition we are free to replace IP r by any projective scheme
Z: we will obtain the definition of family of closed subschemes of Z:

X
� � //

f
##H

HHHHHHHH Z × S

��
S

(3)

This generalization is very natural and will allow us to consider for example
families of projective curves contained in a given surface Z, etc.

Example 3.2 The product IP r×IP r can be viewed as the trivial deformation
of IP r in IP r:

IP r × IP r

pr2
''OOOOOOOOOOOO IP r × IP r

pr2

��
IP r

Example 3.3 The family of hypersurfaces of degree d in IP r is obtained by
considering the polynomial ring

k[a] = k[. . . , ai0,...,ir , . . .]i0+···+ir=d
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and IP (d+r
r )−1 = Proj(k[a]). Then

X = V (σ) ⊂ IP r × IP (d+r
r )−1

where σ =
∑
aio,...,irX

i0
0 · · ·X ir

r is a section of the invertible sheafO
IP r×IP(d+r

r )−1
((d, 1),

called the universal polynomial.

Example 3.4 The two families considered in Example (2.2) are respectively:

X = Proj

(
k[t,X0, . . . , X3]

(X1X2, X1X3, X2(X3 − tX0), X3(X3 − tX0))

)
⊂ IP 3 ×A1 (4)

and

Y = Proj

(
k[t,X0, . . . , X3]

(X3, X1X2 − tX2
0 )

)
⊂ IP 3 ×A1 (5)

These two families have no fibres in common because the Hilbert polynomials
are different. They are:

p(T ) =
{

2T + 2 for the first family
2T + 1 for the second family

This example already shows the advantage of the new definition of family
versus the approach which uses the Chow variety.

Example 3.5 Consider a pencil of lines in IP 2:

λ0L1(X0, X1, X2)− λ1L0(X0, X1, X2) = 0

where L0 and L1 are non-proportional linear forms. This can be viewed as
the equation of a hypersurface Λ in

IP 2 × IP 1 = Proj(k[X0, X1, X2])× Proj(k[λ0, λ1])

and the diagram:

Λ
� � //

f $$IIIIIIIIII IP 2 × IP 1

��
IP 1

represents the family of lines swept by the pencil. The fibres of f are the
lines of the pencil. Note that even though the fibres of f are all isomorphic
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to IP 1, Λ is not isomorphic to IP 1 × IP 1. In fact composing the inclusion
Λ ⊂ IP 2 × IP 1 with the first projection we obtain a birational morphism

Λ → IP 2

which identifies Λ with the blow-up of IP 2 at the base point of the pencil.
The morphism f makes Λ isomorphic to the rational ruled surface

IP (OIP 1 ⊕OIP 1(−1))

Example 3.6 Consider the families of plane conics (in affine coordinates
x, y):

Ct : x2 + y2 + 2t(x+ y) + t2 = 0

and
Du : x2 + y2 + 2u(x+ y) + 2u2 = 0

Both families are deformations of C0 = D0, the reducible conic x2 + y2 = 0.
In the first family Ct is nonsingular for all t 6= 0 and all Ct are tangent to

the lines x = 0 and y = 0.
In the second family all the conics Du are reducible in two distinct lines,

meeting at the variable point (−u,−u).
If we remove the term t2 and the term 2u2 from the respective equations,

we obtain the same linear pencil:

x2 + y2 + 2λ(x+ y) = 0

as the linear approximation of both families.

4 In search of the universal family

If we consider a family of projective schemes (1) and a morphism of schemes
ψ : V → S, we obtain a new family by taking the pullback of (1) by ψ:

X ×S V
� � //

&&NNNNNNNNNNNN IP r × V

��
V

Therefore from a family (1) we can obtain many new ones by taking pullbacks.
For instance, choosing a fibre of (1), i.e. a point of S, is a special case of
pullback, corresponding to a morphism Spec(k) → S.
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The operation of pullback is nothing but a change of parameters: the
fibres of the new family are (some of) the fibres of the old one, and we cannot
hope to get from (1) by pullback a family containing as fibres subvarieties of
IP r which are not already fibres of (1).

These remarks suggest the following question: can we hope to find a
family from which all other families of subvarieties of IP r can be obtained by
pullback?

As it stands, this question is not well-posed: we should impose some
restriction on the type of subvarieties we want to obtain, otherwise we are
asking too much because such family, if it exists, will contain all subvarieties
among its fibres. In view of the flatness condition it is natural to restrict
the fibres to have a fixed Hilbert polynomial. The new formulation of the
question is the following:

Question: Given r and a Hilbert polynomial p(T ), does there exist a
family of closed subschemes of IP r:

U � � //

$$J
JJJJJJJJJ IP r ×Hr

p(T )

��
Hr

p(T )

(6)

such that every other family (1) of closed subschemes of IP r having Hilbert
polynomial equal to p(T ) can be obtained as a pullback of (6) by a unique
morphism ϕ : S → Hr

p(T )?

Definition 4.1 If it exists, Hr
p(T ) is called the Hilbert scheme of IP r relative

to p(T ) and (6) is the universal family.

Are we again asking too much? For instance, is the requirement of unique-
ness of ϕ too strong? The answer is NO: in fact Hr

p(T ) and the family (6)
exist and are uniquely determined by the defining conditions.

Sometimes we will need to consider families having a weaker property as
follows.

Definition 4.2 A family

X � � //

$$I
IIIIIIIII IP r × U

��
U

(7)

11



of closed subschemes of IP r having Hilbert polynomial p(T ) is called com-
plete if every other family (1) of closed subschemes of IP r having Hilbert
polynomial equal to p(T ) can be obtained as a pullback of it by a morphism
ϕ : S → U .

The property of completeness does not require uniqueness of the mor-
phism ϕ. If a family is universal it is also complete, but the converse is not
necessarily true. Given a complete family (7) and a universal family (6) there
are a unique morphism ϕ : U → Hr

p(T ), and a morphism ψ : Hr
p(T ) → U , not

necessarily unique. If also (7) is universal then ψ is unique as well and ϕ and
ψ are isomorphisms inverse to each other. This means that Hr

p(T ) is unique
up to isomorphism.

Definition 4.2 has a local counterpart (local completeness) which is more
commonly used. It is formulated by means of the notion of smoothness of a
morphism. We will not use it in these lectures. We refer to [6] for details.

Before stating a precise general result of existence of universal families,
we will discuss some special cases.

Exercise 4.3 Consider the diagram:

∆
� � //

%%JJJJJJJJJJ IP r × IP r

pr2

��
IP r

where ∆ is the diagonal. Prove that this is the universal family of IP r w.r.
to the Hilbert polynomial p(T ) = 1. Then ∆ ∼= IP r is the Hilbert scheme of
points of IP r.

Exercise 4.4 Let IP r = Proj(k[X0, . . . , Xr]), and let the dual space be
IP r∨ = Proj(k[u0, . . . , ur]). Prove that the hypersurface

H : u0X0 + · · ·+ urXr = 0

of IP r × IP r∨ defines a universal family of hyperplanes of IP r:

H
� � //

π
%%KKKKKKKKKK IP r × IP r∨

pr2

��
IP r∨
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Therefore the Hilbert scheme of IP r w.r. to p(T ) =
(

T+r−1
r−1

)
is the dual

projective space IP r∨. The bilinear polynomial u0X0 + · · ·+urXr is a section
of

OIP r×IP r∨(1, 1) := pr∗1OIP r(1)⊗ pr∗2OIP r∨(1)

called the universal section.

Example 4.5 (Hypersurfaces) The family of Example 3.3 is the universal
family of IP r relative to the Hilbert polynomial of hypersurfaces of degree d,
which is

p(T ) =

(
T + r

r

)
−
(
T + r − d

r

)
=

d

(r − 1)!
T r−1 + · · ·

For the proof of this fact we need first to check that every closed subscheme
of IP r with Hilbert polynomial p(T ) is a hypersurface of degree d. We refer
to [6], p. 207, for the proof. Therefore every family of closed subschemes of
IP r having Hilbert polynomial p(T ) is a family of hypersurfaces of degree d.

For simplicity assume that we have such a family parametrized by an
affine algebraic scheme S = Spec(A). It can be given by an equation
F (X0, . . . , Xr) = 0 where

F (X0, . . . , Xr) =
∑

io+···+ir=d

αio,...,irX
i0
0 · · ·X ir

r

with αio,...,ir ∈ A. Then there is induced a morphism ϕ : S → IP (d+r
r )−1 by

the rule:
s 7→ [. . . , αio,...,ir(s), . . .]

The pullback of the family 3.3 by ϕ is the given family. The uniqueness
follows from the fact that the fibres of 3.3 are in 1–1 correspondence with
the hypersurfaces of degree d.

Therefore we see that the Hilbert scheme of hypersurfaces of degree d in

IP r exists and is isomorphic to IP (d+r
r )−1.

Example 4.6 Let’s consider the case r = 2 and p(T ) = 2, i.e. families of
subschemes of length 2, in particular pairs of points in IP 2. Every subscheme
X ⊂ IP 2 of length 2 is the complete intersection of a line and a conic:

L(X0, X1, X2) = Q(X0, X1, X2) = 0 (8)
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such that L is not a component of Q. In case the conic Q is tangent to the
line L we obtain a subscheme of length 2 supported at one point. We can
describe a family parametrizing all X ⊂ IP 2 of degree 2 as follows.

Consider IP 2
u = Proj(k[u0, u1, u2]), IP

5
a = Proj(k[a00, a01, a02, a11, a12, a22])

and the closed subscheme W ⊂ IP 2
u × IP 5

a defined by

W = {([u], [a]) : rk(A) ≤ 3}

where

A =


a00 a01 a02 a11 a12 a22

u0 u1 u2 0 0 0
0 u0 0 u1 u2 0
0 0 u0 0 u1 u2


Then ([u], [a]) ∈ W if and only if the line

L : u0X0 + u1X1 + u2X2 = 0

is a component of the conic

Q :
∑

aijXiXj = 0

Let S = (IP 2
u × IP 5

a )\W and consider the closed subscheme X ⊂ IP 2 × S
defined by

u0X0 + u1X1 + u2X2 = 0

∑
aijXiXj = 0

(9)

We obtain a flat family of subschemes of degree 2 of IP 2:

X � � //

f
$$I

IIIIIIIII IP 2 × S

��
S

(10)

Since any pair of polynomials as in (8) occurs in (9) for some ([u], [a]) ∈ S
we deduce that the family (10) contains all subschemes of degree 2 of IP 2. It
follows easily from this fact that (10) is a complete family. But the family is
not universal because there are pairs of different points of S having the same
fibre (we leave it to the reader to check this).

Exercise 4.7 Generalizing the construction of Example 4.6 describe a com-
plete family of complete intersections X ⊂ IP r of dimension 0 ≤ n = r − 2
and multidegree d = (d1, d2).
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5 Grassmannians

In §1 we mentioned the grassmannians G(n, r) as examples of classically well
known parameter spaces. In §2 we proved (in a special case) that G(n, r)
coincides with the Chow variety of linear spaces V (1, n, r). In this section
we will reconsider the grassmannians with the purpose of understanding how
close they are to the Hilbert scheme Hr

(T+n
n )

. Let’s start by recalling the

description of the grassmannian by means of an affine cover.
A linear subspace Λ ⊂ IP r of dimension n can be assigned as

Λ = 〈p0, . . . , pn〉

the span of n+1 independent points whose homogeneous coordinates can be
displayed in a (n+ 1)(r + 1) matrix

M =


p00 p01 . . . p0r

p10 p11 . . . p1r

. . . . . . . . . . . .
pn0 pn1 . . . pnr


This matrix is determined by Λ up to multiplying by A ∈ GLn+1(k) on
the left. Assume that, corresponding to a multiindex I = {i0, . . . , in}, 0 ≤
i0 < · · · < in ≤ r, the square submatrix MI , consisting of the columns
belonging to I, is invertible. Then (M−1

I M)I = In+1 and the remaining
(n + 1)(r + 1) entries are uniquely determined by Λ and, conversely, they
determine Λ, so that they can be taken as local coordinates of Λ. Since each
Λ has det(MI) 6= 0 for some I, we see that G(n, r) is covered by

(
r+1
n+1

)
copies

of the affine space A(n+1)(r−n), each of which we denote by UI as I varies
among all the multiindices. If Λ ∈ UI ∩ UK , then the change of coordinates
from UI to UK is given by left-multiplying by M−1

K the matrix M associated
to Λ and having MI = In+1.

We can suitably modify the previous argument, as follows, to give a de-
scription of the scheme structure on G(n, r).

Let I = {i0, . . . , in}, 0 ≤ i0 < · · · < in ≤ r be a multiindex. Then

UI = Spec(k[uij])

where the uij’s are indeterminates, and

0 ≤ i ≤ n, 0 ≤ j ≤ r, j /∈ I
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Define a (n+ 1)× (r + 1) matrix by

M(I) = (mij)

by

mij =
{
uij if j /∈ I
δim if j = im

where δim is the Kronecker symbol. Let K = {k0, . . . , kn}, 0 ≤ k0 < · · · <
kn ≤ r, be another multiindex,

UK = Spec(k[vih])

with
0 ≤ i ≤ n, 0 ≤ h ≤ r, h /∈ K

Let uK = det(M(I)K) ∈ k[uij] and vI = det(M(K)I). consider the open
subsets

UIK := Spec (k[uij]uK
) ⊂ UI , UKI := Spec (k[vih]vI

) ⊂ UK

Then we obtain an isomorphism

UIK
∼ // UKI

by means of the isomorphism

k[vih]vI

∼ // k[uij]uK

obtained by mapping each vih to the corresponding entry of the matrix
M(I)−1

K M(I). This gives the scheme structure on the grassmannian. As
a consequence of this construction we see that G(n, r) is nonsingular of di-
mension (n+ 1)(r − n) and rational.

After choosing an ordering on the set of multiindices I ⊂ {0, . . . , r} such
that |I| = n+ 1 we can map

G(n, r) //
IP (r+1

n+1)−1

by the rule

Λ
� // [. . . , det(MI), . . .]

This is the Plücker embedding. It can be proved that this is a closed em-
bedding. In particular G(n, r) is a projective variety. The coordinates
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[. . . , det(MI), . . .] of the Plücker image of a space Λ are called Plücker coor-
dinates of Λ.

It will be convenient to consider, more generally, the grassmannian Gn(V )
of (n + 1)-dimensional vector subspaces of a k-vector space V of dimension
r + 1 or, equivalently, of n-dimensional linear subspaces of the projective
space IP = IP (V ).

The simplest case of grassmannian is a projective space IP = IP (V ) =
G0(V ). Since V ∨ = H0(IP,OIP (1)), we have a surjection (evaluation of sec-
tions):

ev : V ∨ ⊗OIP
// OIP (1) // 0 (11)

such that for each p ∈ IP the induced surjection

ev(p) : V ∨ // OIP (1)(p) ∼= k

has kernel consisting of the linear forms on V vanishing on p. The map
ev describes the invertible sheaf O(1) as a tautological quotient of the trivial
sheaf V ∨⊗OIP . Therefore the surjection (11) gives an equivalent (and better)
way to describe IP (V ) as the set of 1-dimensional quotients of the dual of
V . Equivalently, IP (V ) can be viewed as the set of stars of codimension 1 of
hyperplanes.

On the other hand such description is equivalent to the scheme-theoretic
definition:

IP (V ) = Proj(S∗(V ∨))

where S∗(V ∨) = ⊕ρ≥0S
ρ(V ∨) is the symmetric algebra of V ∨.

A similar convention is used for the projective bundle IP (F) associated
to a locally free sheaf F on a scheme X. In particular, if we take X = IP
and F = V ⊗OIP we obtain

IP × IP = IP (V ⊗OIP ) = Proj[S∗(V ∨)]× IP

and the surjection (11) induces a section

IP = IP (OIP (−1)) σ // IP × IP

of the second projection p2 : IP × IP → IP , which identifies σ(IP ) with the
diagonal ∆. In this way we recover the universal family of Exercise 4.3.
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The description of grassmannians is similar. One can describe the grass-
mannian Gn(V ) of (n+ 1)-dimensional subspaces of V as the set of (n+ 1)-
dimensional quotients of V ∨, or, what is the same, as the set of stars of
codimension n+ 1 of hyperplanes.

In analogy with the case of projective space, this description suggests
that on the grassmannian G = Gn(V ) there should be a locally free sheaf F
of rank n+ 1 and a surjection:

ev : V ∨ ⊗OG
// F // 0

such that for each λ ∈ G the kernel of the induced surjection

V ∨ // F(λ) ∼= kn+1

is the star of hyperplanes vanishing on the space parametrized by λ. F will
be called the tautological quotient sheaf.

An explicit construction of this sheaf can be made as follows. Let’s con-
sider the case of G(n, r) to which we can always reduce after choosing a basis
of V . For each multiindex I = {i0, . . . , in}, 0 ≤ i0 < · · · < in ≤ r, we can
associate to the matrix M(I) a homomorphism of free k[uij]-modules:

k[uij]
r+1 M(I) // k[uij]

n+1

which defines a homomorphism of free OUI
-modules:

ηI : Or+1
UI

// On+1
UI

Given another multiindex K = {k0, . . . , kn}, 0 ≤ k0 < · · · < kn ≤ r, and the
corresponding

ηK : Or+1
UK

// On+1
UK

the homomorphisms (ηI)|UIK
and (ηK)|UKI

are made compatible with the
glueing of UIK with UKI by the following diagram:

k[vih]
r+1
vI

M(K) //

��

k[vih]
n+1
vI

M(K)−1
I

��
k[uij]

r+1
uK

M(I) // k[uij]
n+1
uK

(12)
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This implies that the ηI ’s glues together to a surjection:

Or+1
G

ev // F // 0

where F is the locally free sheaf of rank n + 1 obtained by the glueings of
diagram (12).

Taking projective bundles we obtain

IP (F∨) � � //

++VVVVVVVVVVVVVVVVVVVVVVVV IP (Or+1
G ) IP r ×G(n, r)

��
G(n, r)

(13)

Proposition 5.1 (13) is the universal family of linear subspaces of dimen-
sion n of IP r. In particular G(n, r) = Hr

(T+n
n )

.

Proof. Let

Y � � //

$$I
IIIIIIIII IP r × S

q

��
S

(14)

be a family of n-subspaces of IP r. Let IY ⊂ OIP r×S be the ideal sheaf of Y .
Then we have a surjection of locally free sheaves on S:

Φ : Or+1
S

// q∗OY(1) // 0

p∗OIP r×S(1)

and q∗OY(1) is locally free of rank n+1. for each multiindex I = {i0, . . . , in} ⊂
{1, . . . , r}, consider the composition

ΦI : On+1
S

� � // Or+1
S

Φ // q∗OY(1)

where the first arrow is the inclusion corresponding to I. Let SI ⊂ S be the
(possibly empty) open subset where ΦI is surjective (i.e. an isomorphism).
Then {SI} is an open cover of S. On SI we can consider the composition:

Φ−1
I · Φ : Or+1

S
// On+1

S
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This morphism is defined by a (n+ 1)× (r + 1) matrix N(I) with elements
in Γ(SI ,OS) such that N(I)I = In+1. Therefore the matrix N(I) defines a
morphism ϕI : SI → UI . It is clear that the morphisms ϕI are compatible
with the glueings of the UI ’s, so that they patch together defining a morphism
ϕ : S → G(n, r). It is easy to check that

ϕ∗F = q∗OY(1)

and from this fact to deduce that the family (14) is the pullback of (13) by
ϕ. The uniqueness follows from the uniqueness of the matrices N(I). 2

6 Existence of the Hilbert schemes

The examples of Hilbert schemes considered so far are concrete and natural,
and give some evidence for the existence of a universal family in general. But
things can get more complicated if we consider families of more general sub-
schemes. It would be difficult to find a universal family in general by direct
and constructive methods. The standard original proof of existence, due to
Grothendieck with refinements by Mumford, uses a different approach, which
essentially reduces the construction to the special case of grassmannians. We
shall outline their approach in this section.

The main difference between the Chow variety and the Hilbert scheme
is that the Chow variety uses linear spaces of appropriate codimension that
intersect the subvarieties we want to parametrize, while the Hilbert scheme
uses hypersurfaces containing the subvarieties. The main ingredients of the
construction of Hr

p(T ) are:

(i) Given a Hilbert polynomial p(T ) there is a uniform m such that for
every subscheme X ⊂ IP r having Hilbert polynomial p(T ), the Hilbert
function of X equals p(n) for all n ≥ m and moreover the homogeneous
ideal of X is generated in degrees ≤ m. Therefore every such X is
uniquely determined by the subspace

ΛX := H0(IP r, IX(m)) ⊂ H0(IP r,O(m))

which has dimension

dim(ΛX) =

(
m+ r

r

)
− p(T )
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independent of X. Therefore each X defines a point of the grassman-
nian G(N − p(T ), N), where N =

(
m+r

r

)
− 1. This procedure identifies

the set of all subschemes X ⊂ IP r with a given Hilbert polynomial
with a subset of a grassmannian. But so far this subset has no scheme
structure.

(ii) There is an integer c ≥ 1 such that a necessary and sufficient condition
for a subspace Λ ⊂ H0(IP r,O(m)) of codimension p(m) to be of the
form Λ = ΛX for some X is that the map:

µk : Λ⊗H0(IP r,O(k)) // H0(IP r,O(m+ k))

has rank ≤
(

m+k+r
r

)
− p(m+ k) for all 1 ≤ k ≤ c. These conditions on

the maps µk can be expressed by the vanishing of appropriate minors of
matrices representing them, and they give rise to polynomial equations
involving the Plücker coordinates of Λ. They are the equation of the
locus considered in (i). We thus obtain the Hilbert scheme as a closed
subscheme of a grassmannian. In particular we obtain that Hr

p(T ) is
projective.

The previous procedure, as well as the construction of the universal family,
involve some delicate technical points. We will not give any details, referring
the reader to [6] and references therein.

A straightforward variant of the above arguments leads to a proof of the
existence of a generalized version of the Hilbert scheme, as follows.

Theorem 6.1 Let Z ⊂ IP r be a projective scheme. For every numerical
polynomial p(T ) there is a universal family of closed subschemes of Z:

U � � //

##H
HHHHHHHHH Z ×HZ

p(T )

��
HZ

p(T )

having Hilbert polynomial p(T ). The scheme HZ
p(T ) is projective and it is a

closed subscheme of Hr
p(T ); it is called the Hilbert scheme of Z.

It is sometimes convenient to consider the disjoint union of all the Hilbert
schemes of IP r:

Hr :=
∐
p(T )

Hr
p(T )
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which is a scheme locally of finite type. It will be called the Hilbert scheme
of IP r. Similarly, for a closed subscheme Z ⊂ IP r we will consider

HZ =
∐
p(T )

HZ
p(T )

and we will call it the Hilbert scheme of Z. Note that HZ is independent of
the embedding Z ⊂ IP r, because changing the embedding only changes the
Hilbert polynomials indexing its components.

7 The tangent space

What really makes the Hilbert scheme useful is the fact that, in principle,
we can compute its tangent spaces and other local invariants.

We fix r and a Hilbert polynomial p(T ). Consider the universal family

U � � //

$$J
JJJJJJJJJ IP r ×Hr

p(T )

��
Hr

p(T )

(15)

LetX ⊂ IP r be a closed subscheme and let [X] ∈ Hr be the point parametriz-
ing X. We want to compute the tangent space T[X]Hr.

Denote by
Spec(k[ε]) = Spec(k[t]/(t2)

Then Spec(k[ε]) is an algebraic scheme having only one point 0 and a 1-
dimensional Zariski tangent space. If V is an algebraic scheme and v ∈ V is
a closed point, we will denote by Mor(Spec(k[ε]), V )v the set of morphisms
θ : Spec(k[ε]) → V such that θ(0) = v.

Lemma 7.1 Given V and v as above, Mor(Spec(k[ε]), V )v has a natural
structure of k-vector space and there is a canonical isomorphism of k-vector
spaces:

TvV ∼= Mor(Spec(k[ε]), V )v

We refer to [6], p. 285 for the proof.

22



Definition 7.2 If X ⊂ Z is a closed embedding, and if I ⊂ OZ is the ideal
sheaf of X in Z, the sheaf of OX-modules I/I2 is called the conormal sheaf
of X in Z. The normal sheaf of X in Z is

NX/Z := HomOZ
(I,OX) = HomOX

(I/I2,OX)

If it is locally free then I/I2 (resp. NX/Z) is called the conormal bundle
(resp. normal bundle).

Proposition 7.3 Let X ⊂ Z be a closed embedding of projective schemes.
Then there is a natural identification

T[X]HZ = H0(X,NX/Z)

Proof. According to Lemma 7.1,

T[X]HZ = Mor(Spec(k[ε]),HZ)[X]

By the universal property of the Hilbert scheme, elements of Mor(Spec(k[ε]),HZ)[X]

correspond in a 1-1 way to families:

X � � //

&&MMMMMMMMMMMM Z × Spec(k[ε])

��
Spec(k[ε])

(16)

whose fibre over the closed point Spec(k) → Spec(k[ε]) is X ⊂ Z. These
families are called first order deformations of X in Z.

First order deformations of X in Z can be obtained by glueing together
first order deformations of the open sets of an affine covering of X. Therefore
we will study the affine case first. We need the following

Lemma 7.4 Let A be a k[ε]-algebra, and let A0 = A/εA = A⊗k[ε] k. Then
A is flat over k[ε] if and only if there is an isomorphism εA ∼= A0.

Proof of Lemma 7.4. We have an exact sequence

0 // Tor
k[ε]
1 (A,k) // A⊗k[ε] (ε)

β // A // A⊗k[ε] k // 0

Tor
k[ε]
1 (A,k[ε]) A⊗k[ε] k A0

A0
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obtained from
0 → (ε) → k[ε] → k → 0

after tensoring by ⊗k[ε]A.

Assume that A is k[ε]-flat. Then Tor
k[ε]
1 (A,k) = 0. Since Im(β) = εA we

deduce that εA ∼= A0.
Conversely, assume that εA ∼= A0. Then β is an isomorphism and this

implies that Tor
k[ε]
1 (A,k) = 0. Therefore A is k[ε]-flat. 2

Let’s assume that X = Spec(A0), Z = Spec(B0) are affine, with A0 =
B0/I0 for some ideal I0 ⊂ B0. Then

Z × Spec(k[ε]) = Spec(B0 ⊗k k[ε]) = Spec(B0[ε])

and a first order deformation of X in Z is given by a closed subscheme

X = Spec(A) ⊂ Spec(B0[ε])

defined by an ideal I ⊂ B0[ε] such that A is flat over k[ε]. By applying
Lemma 7.4 we obtain the following commutative and exact diagram:

0

��

0

��
I

��

// I0

��
0 // εB0

//

γ

��

B0[ε]

��

// B0

��

// 0 (∗)

0 // εA0

��

// A

��

// A0

��

// 0

0 0 0

(17)

So the first order deformations of X in Z are in 1-1 correspondence with the
ideals I as above.

Assume moreover that I0 = (f) is principal, generated by a non 0-divisor
f . Given I, let F = f + εg ∈ I be a lifting of f and let A′ = B0[ε]/(F ). Since
clearly F is not a 0-divisor in B0[ε], because otherwise f would be one in B0,
we have an exact sequence:

0 // B0[ε]
F // B0[ε] // A′ // 0
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Tensoring by ⊗k[ε]k we obtain:

0 // Tor
k[ε]
1 (A′,k) // B0

f // B0
// A0

// 0

and, since f is not a 0-divisor, we deduce that Tor
k[ε]
1 (A′,k) = 0, and therefore

A′ is flat over k[ε]. Therefore, using Lemma 7.4 again, we deduce that we
have a commutative diagram:

0 // εA0
// A′ //

����

A0
// 0

0 // εA0
// A // A0

// 0

which shows that A′ ∼= A. Therefore the ideal I is principal as well.
Now observe that, given I, the generator F = f + εg which lifts f is

determined only up to multiplication by a unit U = u + εa of B0[ε]. Since
UF must be a lifting of f , u = 1 and a ∈ B0 is arbitrary. Therefore:

UF = (1 + εa)(f + εg) = f + ε(g + af)

This means that we can replace g by any other element of the class g+ I0 to
obtain a generator of I lifting f . If we take another generator uf of I0, then
a lifting generating I is of the form uf + ε(ug + af).

Therefore: given I we are given a homomorphism ϕ : I0 → A0 de-
fined by ϕ(f) = g + I0. Conversely, such a homomorphism defines an ideal
I ⊂ B0[ε] by I = (f + εg), where g + I0 = ϕ(f), and I defines a first
order deformation of X in Z. The conclusion is that we have a canon-
ical 1-1 correspondence between first order deformations of X in Z and
HomB0(I0, A0) = HomA0(I0/I

2
0 , A0).

If we do not assume any more that I0 is principal we can proceed as
follows. Taking the pushout of the row (∗) by γ we replace diagram (17) by
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the following one:

0

��

0

��
I0

α

��

I0

��
0 // εA0

// E

��

// B0

��

// 0

0 // εA0

��

// A

��

// A0

��

// 0

0 0 0

From this diagram we see that we have a bijection between the set of first
order deformations of X in Z and the homomorphisms α : I0 → E making
the above diagram commutative. Letting α0 : I0 → E be the homomorphism
corresponding to the trivial deformation, we can associate to each α the
homomorphism

α− α0 : I0 → εA0

thus obtaining a 1-1 natural correspondence:

{first order deformations of X in Z} oo // HomB0(I0, A0)

HomA0(I0/I
2
0 , A0)

Now, globalizing this analysis we deduce that there is a natural 1-1 cor-
respondence between H0(X,NX/Z) and the set of first order deformations of
X in Z, and this proves the proposition. 2

Proposition 7.3 implies that h0(X,NX/Z) is an upper bound for the di-
mension of HZ . The following important result gives a lower bound as well.

Theorem 7.5 Given a closed embedding of projective schemes X ⊂ Z such
that X is a local complete intersection in Z, the dimension of HZ at the point
[X] satisfies ths following inequalities:

h0(X,NX/Z)− h1(X,NX/Z) ≤ dim[X]HZ ≤ h0(X,NX/Z) (18)
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When X is a local complete intersection in Z we say that X is regularly
embedded in Z or that X ⊂ Z is a regular embedding. In this case I/I2 and
NX/Z are both locally free of rank equal to the codimension of X in Z (see
[6], Appendix D). Note the following immediate consequence:

Corollary 7.6 In the situation of the theorem, the second inequality holds
in (18) if and only if HZ is nonsingular of dimension h0(X,NX/Z) at [X].
This is true in particular if

H1(X,NX/Z) = 0

For the proof of Theorem 7.5 some more refined algebraic machinery is
required. We refer to [6] for details.

8 About the normal sheaf

Theorem 7.5 and its corollary show that, given X ⊂ Z a closed embedding
of projective schemes, the computation of the cohomology of NX/Z is very
important if we want to study the local properties of HZ at [X]. In this
section we will describe some properties of the conormal and normal sheaves.

The starting point is the following exact sequence associated to any closed
embedding j : X ⊂ Z of (not necessarily projective) schemes defined by an
ideal sheaf I ⊂ OZ :

I/I2 δ // Ω1
Z|X // Ω1

X
// 0 (19)

This is the conormal sequence of X in Y . If X is nonsingular then Ω1
X is

locally free. The left arrow δ is not in general injective, and its kernel is
supported on the locus where j is not a regular embedding. Therefore, if j is
a regular embedding then δ is injective and I/I2 is locally free. If moreover
X is nonsingular then Z is also nonsingular and the sequence (19) dualizes
as follows:

0 // TX
// TZ|X // NX/Z

// 0 (20)

This is the normal sequence of X in Z. This sequence turns out to be very
useful for the computation of the cohomology of NX/Z . In general, even if
X ⊂ Y is not a regular embedding and we make no assumptions on X and
Y , the sequence (20) is exact except possibly at NX/Z .
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If we have closed embeddings

X
� � j // Y

� � i // Z

corresponding to ideal sheaves

IX/Y ⊂ OY , IX/Z ⊂ OZ , IY/Z ⊂ OZ

then we obtain an exact sequence

0 // IY/Z
// IX/Z

// IX/Y
// 0

which, tensored by ⊗OZ
OX , gives the exact sequence:

(IY/Z/I2
Y/Z)⊗OX // IX/Z/I2

X/Z
// IX/Y /I2

X/Y
// 0 (21)

and dualizing we obtain:

NX/Y
// NX/Z

// NY/Z ⊗OX // 0 (22)

Lemma 8.1 If i and j are regular embeddings then the sequences (21) and
(22) are both also exact on the left.

Proof. See [6], Lemma D.1.3 p. 306. 2

Example 8.2 Let E be a locally free sheaf of rank e on a scheme Z. If
σ ∈ H0(Z,E) is such that its zero-scheme X := V (σ) in non-empty and has
everywhere codimension e, then there is an isomorphism:

NX/Z
∼= E|X (23)

In fact from the assumption about codimension it follows that X ⊂ Z is a
regular embedding, so that the conormal sheaf I/I2 is locally free of rank e.
By the definition of X there is a homomorphism:

E∨ σ // OZ

whose image is I. Tensoring by OX we obtain a surjective homomorphism

σ|X : E∨ ⊗OX → I/I2
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of locally free sheaves of rank e on X, which must therefore by an isomor-
phism. By dualizing we obtain (23).

It easy to show that if E is globally generated then the general section
σ ∈ H0(E) has a zero-scheme of pure codimension e.

A special case is obtained by taking Z = IP r, E = O(d1) ⊕ · · · ⊕ O(dc)
for integers 1 ≤ d1 ≤ · · · ≤ dc. A section σ ∈ H0(E) is nothing but a c-
tuple of homogeneous polynomials (F1(X), . . . , Fc(X)) in X = (X0, . . . , Xr)
of multidegree (d1, . . . , dc). If X = V (σ) has pure codimension c then it is a
complete intersection of equations:

F1 = · · · = Fc = 0

In this case the normal bundle of X is

NX/IP r = ⊕c
i=1OX(di)

For example, for a hypersurface X ⊂ IP r of degree d we have

H0(X,NX/IP r) = H0(X,OX(d))

which has dimension
(

d+r
r

)
− 1, equal to the dimension of the Hilbert scheme

(the projective space IP (d+r
r )−1), as expected. It is also true that the Hilbert

scheme of complete intersections of any multidegree is nonsingular, but we
cannot prove it using Corollary 7.6 because in general H1(X,NX/IP r) 6= 0.

Example 8.3 Consider a nonsingular projective variety X ⊂ IP r, and the
diagram:

0

��
OX(−1)

��
Or+1

�� ''PPPPPPPPPPPP

0 // TX(−1) // TIP r|X(−1) //

��

NX/IP r(−1) // 0

0
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The horizontal sequence is (20) twisted byO(−1) and restricted toX, and the
vertical sequence is the Euler sequence twisted by O(−1) and restricted to X.
The diagonal homomorphism is clearly surjective, showing that NX/IP r(−1)
is globally generated. Then it follows from standard facts on ample vector
bundles that NX/IP r = NX/IP r(−1)⊗O(1) is ample.

9 Classification of projective curves and Hilbert

schemes

The problem of classifying nonsingular projective curves in a given projective
space IP r is classical. It can be divided in two parts:

i) Find all values of (d, g) for which there exist connected nonsingular
non-degenerate curves gC

d ⊂ IP r of degree d and genus g.

ii) For those values (d, g) for which such curves exist, describe the family
which parametrizes them.

Part (i) is known as the gap problem. Of course in IP 2 every nonsingular

curve of degree d has genus
(

d−1
2

)
. Therefore the gap problem is interesting

only if r ≥ 3. In a fundamental paper of 1882 Halphen considered the case
of curves in IP 3. His results where completed and clarified by Gruson and
Peskine in a series of papers dating from 1977. It turns out that there exist
connected nonsingular non-degenerate curves gC

d ⊂ IP 3 for every d ≥ 3. The
genus of such a curve satisfies the inequality:

g ≤ π0(3, d) :=


(

d
2
− 1

)2
if d is even(

d−1
2
− 1

) (
d+1
2
− 1

)
if d is odd

(24)

The maximum is attained bu curves on a nonsingular quadric. Since the
genus of nonsingular curves on a quadric is known the next, and more diffi-
cult, result is the following:

If gC
d ⊂ IP 3 does not lie on a quadric then

g ≤ π1(3, d) := 1 +
d(d− 3)

6
(25)

Moreover for all (d, g) as in (25) such a gC
d ⊂ IP 3 exists.
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This result is important because it characterizes the gaps, i.e. those pairs
(d, g) such that g ≤ π0(3, d) and such that curves gC

d ⊂ IP 3 do not exist. It
suffices to choose (d, g) such that

π1(3, d) < g < π0(3, d)

and such that such a curve cannot exist on a quadric. Then first example is
(d, g) = (9, 11); here π0(3, d) = 12.

The upper bound π0(3, d) was generalized by Castelnuovo to all r ≥ 3 in
a famous paper of 1889. He proved that if a gC

d ⊂ IP r exists then:

g ≤ π0(r, d) :=

(
m

2

)
(r − 1) +mε (26)

where m and ε are defined by the equality:

d− 1 = m(r − 1) + ε, 0 ≤ ε ≤ r − 2

The number π0(r, d) is called Castelnuovo bound and curves attaining this
bound are called Castelnuovo curves. They were completely described by
Castelnuovo who showed that they are generalizations to IP r of curves lying
on quadric surfaces in IP 3: in fact a Castelnuovo curve in IP r necessarily lies
on a rational ruled surface of degree r − 1. The gap problem has not been
completely solved in full generality. Partial results are due to several authors.

Part (ii) of the classification problem is related to the structure of the
Hilbert schemes of IP r. It can be rephrased as the problem of describing,
for a given (d, g) for which the gap problem can be solved, those irreducible
components of Hr

dt+1−g whose general point parametrizes a gC
d ⊂ IP r. Let’s

denote by U r
d,g ⊂ Hr

dt+1−g the union of such components.
This problem turns out to be too ambitious even for r = 3. We know very

few general results regarding such families, while our concrete knowledge of
families of projective curves is scattered. Classical work on families of curves
in IP 3 goes back to M. Noether, while the case of curves in any IP r was
considered especially by Severi. We can ask questions regarding either local
or global properties of such families.

Let’s consider local properties. The first information one would like to
know is about the dimension and type of singularities of U r

d,g. A curve gC
d

such that [gC
d] is a singular (resp. nonsingular) point of U r

d,g is called ob-
structed (resp. unobstructed).
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If C = gC
d ⊂ IP r is non-degenerate, nonsingular connected then we can

use the diagram of Example 8.3 and obtain:

χ(NC/IP r) = (r + 1)χ(OC(1))− χ(OC)− χ(TC)
= (r + 1)d+ (r − 3)(1− g)

(27)

This number gives a lower bound for the dimension of U r
d,g at [C] (Theorem

7.5). The right hand side of (27) is called the expected dimension of U r
d,g at

[C]. Note that for a curve in IP 3 we get

χ(NC/IP 3) = 4d

which is independent of g. The following are some classes of curves hav-
ing H1(NC/IP r) = 0, for which therefore U r

d,g is nonsingular of the expected
dimension.

Example 9.1 Suppose that H1(C,OC(1)) = 0, i.e. that C = gC
d ⊂ IP r is

non-special. Consider the surjection

Or+1
C

// NC/IP r // 0

deduced from the diagram of Example 8.3. We obtain

h1(C,NC/IP r) ≤ (r + 1)h1(C,OC(1)) = 0

Therefore H1(NC/IP r) = 0. The following are particular classes of non-special
curves:

• C ⊂ IP r is a rational curve of degree d. Then

h0(C,N) = (r + 1)d+ r − 3

• C ⊂ IP r is a nonsingular curve of degree d and genus 1. Then

h0(C,N) = (r + 1)d

• C ⊂ IP r is a nonsingular curve of genus g and degree d ≥ 2g − 1.
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Example 9.2 For a given nonsingular non-degenerate C = gC
d ⊂ IP r con-

sider the subspace

V ∨ = Im[H0(IP r,OIP (1)) // H0(C,OC(1))]

Note that IP r = IP (V ). The restriction to C of the Euler sequence can be
written as follows:

0 // OC
// V ⊗OC(1) // TIP |C // 0 (28)

It induces a map:

H1(C,OC)) // V ⊗H1(C,OC(1)) (29)

whose dual is just the cup-product map:

µ0(V
∨) : V ∨ ⊗H0(C, ωC(−1)) // H0(C, ωC)

µ0(V
∨) is called the Petri map of C ⊂ IP r. If µ0(V

∨) is injective then (29)
is surjective and from (28) we deduce that H1(C, TIP |C) = 0. But then from
the exact sequence (20) we see that H1(C,NC/IP ) = 0. Therefore if the Petri
map of C ⊂ IP r is injective then H1(C,NC/IP r) = 0.

The most important examples of curves with injective Petri map are the
canonical curves gC

2g−2 ⊂ IP g−1, equivalently denoted by r+1C
2r ⊂ IP r. In

fact in this case we have OC(1) ∼= ωC , V = H0(C, ωC) and

µ0 : H0(C, ωC)⊗H0(C,OC) // H0(C, ωC)

is just the identity map. It follows that H1(C,N) = 0 and

h0(C,N) = (g + 4)(g − 1) = (r + 5)r

Unfortunately (or fortunately?) most curves in IP r do not belong to any
of the classes described in Examples 9.1 and 9.2. The scheme U r

d,g tends to be
singular and not of the expected dimension in general. Note for example that
the expected dimension (27) is negative when r ≥ 4 and g is large with respect
to d: in such cases necessarily h1(C,N) 6= 0. The complete intersections in
IP r with r ≥ 3 and of multidegree (d1, . . . , dr−1) with d1 ≤ · · · ≤ dr−1 and
such that

∑r−1
j=2 dj ≥ r+1 are the most typical examples of nonsingular curves

having h1(C,N) 6= 0. This fact follows from the fact that N = ⊕OC(dj)
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(see Example 8.2). Nevertheless it can be proved that complete intersection
curves are unobstructed.

Several examples are known of obstructed nonsingular curves. We refer
to [6] for more details.

Our knowledge of global properties of the schemes U r
d,g is very limited.

Perhaps the most important starting point in this area is a classical problem,
dating back to Severi. Let

ρ(g, r, d) := g − (r + 1)(g − d+ r)

be the so called Brill-Noether number. The we may ask:

• If ρ(g, r, d) ≥ 0 is U r
d,g irreducible?

Note that if L is an invertible sheaf of degree d on a connected nonsingular
curve C of genus g then we may consider the Petri map of L:

µ0(L) : H0(C,L)⊗H0(C, ωCL
−1) // H0(C, ωC)

Then ρ(g, r, d) ≥ 0 is a necessary condition for the injectivity of µ0(L). If C ⊂
IP r and L = OC(1) then the injectivity of µ0(L) implies that h1(C, TIP |C) = 0
(as shown in Example 9.2) and, by the exact sequence (20), it follows that
H1(C,N) = 0 and that the coboundary map

H0(C,N) // H1(C, TC)

is surjective. This turns out to mean that there is a unique component U of
U r

d,g containing [C], that U is generically nonsingular and that the rational
map

m : U //___ Mg

with values in the moduli space of curves of genus g is dominant. Since Mg

is known to be irreducible, one might hope that U is the only irreducible
component of U r

d,g. This is essentially the content of the above problem.
We know today that, as stated, the problem has a negative answer. In fact
there are examples of J. Harris of components of U r

d,g not dominating Mg

and with ρ(g, r, d) ≥ 0; these components consist generically of non linearly
normal curves. On the other hand Fulton and Lazarsfeld have proved that
if ρ(g, r, d) ≥ 0 there is a unique component U of U r

d,g dominating Mg; this
component consists generically of linearly normal curves. What remains
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unknown is whether the component U is the unique one generically consisting
of linearly normal curves. Some interesting irreducibility results have been
proved by L. Ein for r = 3, 4 and d ≥ g + r.

On the opposite side we know that if ρ < 0 then U r
d,g is in general reducible

and it may have an arbitrarily large number of irreducible components.

Other important global questions about U r
d,g concern its birational prop-

erties. To fix ideas let’s assume ρ(g, r, d) ≥ 0 and let U be the unique
component dominating Mg. It is customary to say that curves of U have
general moduli. Since we have the dominant morphism m, there is some re-
lation between the geometry of U and that of Mg and, since U is a much more
concrete object, one might hope to understand the geometry of Mg from that
of U . From this point of view several results are known, especially for low
values of g. For example it has been proved in this way (or using variants
of this idea) that Mg is unirational for g ≤ 14 and rationally connected for
g = 15 (Severi, Sernesi, Chang-Ran, Verra, Bruno-Verra).

Of course one can ask similar questions about U r
d,g in more general cases,

but little is known. For example one may ask about unirationality, rational
connectedness or uniruledness of components of U r

d,g. Questions of this type
could be used to deduce birational properties of more general (and interest-
ing) moduli spaces.

Example 9.3 Let g ≥ 3 and consider the scheme Kg := U g−1
2g−2,g. It is an

irreducible and generically nonsingular variety of dimension (g + 4)(g − 1)
(Example 9.2). Because of the uniqueness of the canonical linear series on
every curve, every non-hyperelliptic curve C of genus g can be embedded
in IP g−1 in a unique way up to projective transformations. In other words
C corresponds to a unique orbit of PGL(g) inside Kg. The geometry of
Kg is therefore intimately related to the geometry of Mg, the moduli space
of curves of genus g, which parametrizes abstract curves of genus g. It is
suggestive to think of Kg and of Mg as spaces whose geometry reflects the
complexity of the number g. The first case g = 3 has been studied classically.
Despite the fact that plane nonsingular quartics are just a linear system of
curves, their geometry is incredibly rich and complicated, and at the same
time extremely elegant. This reflects in some sense the properties of the
number 3. No other Kg’s have been studied in such a detail, even though we
know some of their properties, especially for low values of g.
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10 Symmetric products of curves and their

generalizations

Given a projective variety Z, the properties of its Hilbert schemes often reflect
the geometry of Z itself and this can be frequently used to study the geometry
of Z and conversely. The most classical example of this phenomenon are the
Hilbert schemes of a projective nonsingular connected curve C, whose genus
we denote by g.

A few preliminary general observations. If z ∈ Z is a (closed) point of a
projective algebraic variety, we have

Nz/Z = TzZ

In other words, Z and HZ
1 have the same tangent space at z. This is obvious

also because there is a canonical identification HZ
1 = Z with the universal

family given by the diagonal:

∆
� � //

pr1

��

Z × Z

Z

This a first confirmation of what we stated at the beginning. The next cases
to consider are the Hilbert schemes HZ

n parametrizing closed subschemes of
finite length n. If X ⊂ Z is such a subscheme consisting of n nonsingular
points then

NX/Z =
⊕
x∈X

TxZ

In particular h0(NX/Z) = ndim(Z). Since certainly dim[X]HZ
n = ndim(Z),

this means in particular that HZ
n is nonsingular at a point [X] as above.

But this will not be the case for an arbitrary non-reduced X even if Z is
nonsingular. Let’s consider the simplest case of curves, where we can more
easily understand what happens.

Let C be a projective nonsingular curve of genus g. A closed subscheme
D ⊂ C of length n is a local complete intersection in C, i.e. an effective
Cartier divisor of degree n, which can be written as D =

∑
nipi, where∑

ni = n, ni ≥ 1. The normal sheaf is ND/C = OD(D). Since D is a
0-dimensional scheme, we certainly have H1(D,ND/X) = 0. and it follows
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that HC
n is nonsingular at [D] because D is a local complete intersection in

C (Corollary 7.6). Since we have an isomorphism OD(D) ∼= OD we have
h0(OD(D)) = n. Therefore HC

n is everywhere nonsingular of dimension n.
Consider the n-fold symmetric product of C:

Cn := Cn/σn

the quotient of the n-fold cartesian product by the natural action of the
symmetric group on n letters. Using local coordinates it is easy to show that
Cn is nonsingular of dimension n. Its points are in natural 1-1 correspondence
with the effective Cartier divisors of degree n. We have a natural bijective
morphism:

Cn
//HC

n

which must therefore be an isomorphism. The conclusion is that HC
n can be

naturally identified with Cn, which is projective irreducible and nonsingular
of dimension n.

It is not difficult to realize that the various Cn contain essentially all the
possible geometrical information about C. For example, the linear systems
of degree n are projective spaces sitting inside Cn. For every n > 0 there is
a natural map:

αn : Cn
// Picn(C)

whose target is the n-th Picard variety, which set-theoretically consists of
the isomorphism classes of invertible sheaves of degree n on C. It is non-
canonically isomorphic to the jacobian variety, which can be identified with
Pic0(C), and is an abelian variety (a projective algebraic group) of dimension
g with origin the class of the trivial sheaf [OC ]. It is also denoted by J(C).
The morphism αn is called the Abel map. It acts by sending D 7→ [OC(D)].
Therefore the fibres of αn are precisely the complete linear systems of divisors
of degree n. The structure of αn varies considerably as n and g change.

If g = 0, i.e. C = IP 1 then Picn(IP 1) = {[O(n)]} consists of one ele-
ment. All divisors of degree n are linearly equivalent, thus (IP 1)n = IP n. A
geometrical realization of this identification can be obtained by embedding
IP 1 ⊂ IP n as a rational normal curve: the effective divisors are then identified
with the hyperplane sections, i.e. with the dual projective space (IP n)∨.

If g ≥ 1 and n ≥ 2g− 1 then all divisors of degree n are non-special, and
all complete linear systems of degree n have the same dimension n − g: αn

is surjective because by Riemann-Roch every invertible sheaf L of degree n
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has at least one non-zero section. In this case αn is a fibration with fibres
isomorphic to IP n−g. For example, when g = 1 and n = 1 it follows that α1

is an isomorphism, i.e. C ∼= J(C).
If g ≤ n ≤ 2g− 2 then αn is still surjective again because every invertible

sheaf L of degree n has at least one non-zero section. But in this case the
structure of αn reflects the existence of special divisors of degree n and is more
complicated. If 1 ≤ n ≤ g − 1 then αn cannot be surjective for dimension
reasons, and is birational onto its image.

For example
α2 : C2

// J(C)

is an embedding unless C is hyperelliptic. More generally, αn is not an
embedding for some 2 ≤ n ≤ g − 1 precisely if there is a linear series of
dimension r ≥ 1 and degree n.

The most important symmetric product is Cg−1. Its image

αg−1(Cg−1) =: Θ ⊂ Picg−1(C)

is a divisor, called the theta divisor. It is an ample divisor. The pair
(Picg−1(C),Θ) is the polarized jacobian of C. This object has been stud-
ied extensively since about 150 years. For example, the singularities of Θ are
related to the geometry of the linear systems of degree g − 1 on C in a very
precise manner, by the following:

Theorem 10.1 If D ∈ Cg−1 then

multα(D)(Θ) = h0(C,OC(D))

The following is also true:

Theorem 10.2 (Torelli) The polarized jacobian uniquely determines C.

There are several proofs of this theorem today, and they all reveal the
deep interplay between the geometry of C and that of the polarized jacobian.
We refer to [1] for an exposition of two proofs of the Theorem of Torelli.
Theorem 10.2 is the prototype of the property we want to discuss, namely
that a Hilbert scheme of a variety can be used to recover completely the
variety, because to give the polarized jacobian is essentially the same thing
as giving Cg−1.
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Theorem 10.2 has been generalized in many ways, because it states a
natural property one would like to reproduce in several situations. Namely, it
is natural to ask whether an algebraic variety can be reconstructed from data
associated to it which a priori contain less information. Results answering
questions of this kind are called Torelli type theorems. More generally it is
interesting to understand how strong are the informations coming from the
families of subvarieties of certain types. Questions and results of this type
can range from very elementary to very deep ones.

Example 10.3 The classical work of Enriques and Castelnuovo on the clas-
sification of algebraic surfaces was based on the study of families of curves on
surfaces, in particular of linear systems. For example, the existence of a lin-
ear pencil of rational curves on a (projective algebraic nonsingular connected)
surface Y implies the rationality of Y .

The direct generalization of this result to higher dimensional varieties
is known to be false. For example a nonsingular cubic threefold Y ⊂ IP 4

is covered by a linear system of rational surfaces, namely its hyperplane
sections. Nevertheless Y is known to be non-rational. The non-rationality
of cubic threefolds was proved by Clemens and Griffiths in 1972, solving a
long-standing classical problem known as the Luroth problem. The solution
came out from the study of HY

t+1, the Hilbert scheme of lines of Y . This
Hilbert scheme turns out to be a projective nonsingular surface, which was
classically studied by Fano, and for this reason it is called the Fano surface
of lines of Y , and usually denoted by F (Y ). The Fano surface has a very
rich geometry which faithfully reflects the geometry of Y . In fact the Torelli
theorem holds for F (Y ): namely F (Y ) uniquely determines Y . This theorem
was first proved by Beauville, and then reconsidered by Tyurin and others.
It has been generalized to other 3-folds analogous to the cubic (certain Fano
threefolds) and has been disproved in several situations too.

In general, the study of curves, especially of rational curves, that can
exist on a variety, is one of the central tools in higher dimensional algebraic
geometry.

Coming back to the beginning of this section, the Hilbert scheme of 0-
dimensional subschemes of given degree n of a nonsingular projective variety
Z can be quite complicated. The first next case is the one of surfaces. In
this case a general theorem due to Fogarty states that HZ

n is nonsingular
and irreducible of dimension 2n for every nonsingular projective irreducible
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surface Y and for every n ≥ 1 (see [6] for a proof). The study of these Hilbert
schemes has progressed significantly in the last two decades, especially in the
case when Y is a K3 surface. The reason is that, when Y is a complex
algebraic K3 surface, the Hilbert schemes HZ

n are symplectic varieties. By
definition a symplectic variety carries an everywhere non-vanishing regular
2-form. This property has been discovered by Beauville.

When Y is a nonsingular variety of dimension d ≥ 3 then the Hilbert
schemes HY

n are in general singular and reducible. This was first discovered
by Iarrobino in the 80’s (see [6] for more details).

11 Severi varieties

We saw that the Hilbert scheme of plane curves of degree d can be naturally
identified with the projective space

Σd := IP [H0(IP 2,O(d))] ∼= IP
d(d+3)

2

A very important and interesting problem is to describe the loci in Σd con-
sisting of points which parametrize singular curves with assigned “types” of
singularities. In particular one can consider reduced curves having an as-
signed number δ of ordinary double points (called nodes) and κ of ordinary
cusps. The loci parametrizing such curves have a natural functorially de-
fined scheme structure (see definition below), and with this structure they
are called Severi varieties or Severi schemes and denoted by Vδ,κ

d . In case
κ = 0 we will denote the corresponding Severi variety by Vδ

d : it parametrizes
curves of degree d having δ nodes and no other singularities.

Set-theoretic description. The geometrical configuration where every-
thing takes place is described by the following diagram:

Z
� � //

  A
AA

AA
AA

A C
π2

��

π1

$$I
IIIIIIIII

� � // IP 2 × Σd

Σd IP 2

where C is the hypersurface of IP 2 × Σd defined by the universal equation:

F (X0, X1, X2) =
∑

i0+i1+i2=d

aio,i1,i2X
i0
0 X

i1
1 X

i2
2 = 0
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Inside C we have the critical locus Z, defined by the equations:

∂F

∂X0

=
∂F

∂X1

=
∂F

∂X2

= 0 (30)

Lemma 11.1 (i) Z is irreducible, nonsingular and rational of codimen-
sion 3 in IP 2 × Σd.

(ii) π2 maps Z birationally onto its image W ⊂ Σd, which is an irreducible
rational hypersurface parametrizing all singular curves of degree d.

Proof. Left as an exercise (hint: consider the the projection π1 : Z → IP 2).
2

The equation of the hypersurface W is given by a polynomial in the
coefficients aio,i1,i2 obtained from the equations (30) after elimination of the
variables X0, X1, X2. It follows that W has degree 3(d− 1).

Z contains an open non-empty subset Z1 whose set of closed points is

{(p, s) : C(s) has only nodes as singularities and p is a node of C(s)}

Let
W1 := π2(Z1)

which is a dense open subset of W , and parametrizes all singular curves of de-
gree d having only nodes as singularities. A general point of W1 parametrizes
a curve of degree d having one node and no other singularities. Therefore
the points of W\W1 parametrize all singular curves of degree d which have
at least one non-nodal singular point. The picture is the following:

Z1
� � //

π

��

Z

��

� � // C
π2

��
W1

� � //W
� � // Σd

The fibre π−1(s) over a point s ∈ W1 is the scheme of nodes of the curve
C(s). It follows that the morphism π is finite, birational and unramified. A
more accurate analysis shows that W1 has normal crossing singularities and
π is the normalization morphism of W1. A point s ∈ W1 has multiplicity δ
equal to the cardinality of π−1(s), i.e. equal to the number of nodes of the
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curve C(s). Therefore we can say that the Severi variety Vδ
d is supported on

the locus of points of W1 having exactly multiplicity δ, in symbols:

Supp(Vδ
d) = Singδ(W1)

It is possible to deduce some properties of Vδ
d from this description. In

particular, the fact that W1 has normal crossing singularities implies that Vδ
d

has codimension ≤ δ in Σ. We refer to §4.7.3 of [6] for more details.

Scheme structure. The structure of scheme on Vδ
d is defined by means

of a universal property, as follows.

Theorem 11.2 For every d, δ, κ here is a uniquely determined locally closed
subscheme Vδ,κ

d ⊂ Σd such that, for each family

X
f

��

� � // IP 2 × S

S

of plane curves of degree d such that S is an algebraic scheme and all closed
fibres X (s) have exactly δ nodes, κ cusps and no other singularities, the
characteristic morphism χ : S → Σd induced by the universal property of π2

factors through Vδ,κ
d ; in symbols:

S
χ //

  A
AA

AA
AA

A Σ

Vδ,κ
d

. �

>>}}}}}}}}

Vδ,κ
d is called the Severi variety of curves of degree d with δ nodes and κ

cusps.

A consequence is that every family f as in the statement can be obtained
by pulling back the restriction to Vδ,κ

d of the universal family π2. This is the
universal property of the Severi varieties.

We refer to [6], §4.7.2, for the proof of Theorem 11.2, which is long and
technical.
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Local properties. In this subsection we will restrict our attention to
the Severi varieties Vδ

d of nodal curves. Suppose that C ⊂ IP 2 is such a curve,
so that [C] ∈ Vδ

d . The tangent space to Σd at the point [C] is

T[C]Σd =
H0(IP 2,O(d))

〈C〉
= H0(C,OC(d)) = H0(NC/IP 2) (31)

where, with an abuse of notation, we have identified the curve C with its
equation. These equalities can be interpreted as follows. A tangent vector
to Σd at [C] is a first order deformation of C. If C(X0, X1, X2) = 0 is an
equation of C, then a first order deformation is given by

C(X0, X1, X2) + εg(X0, X1, X2) = 0

where g is any homogeneous polynomial of degree d. Two such polynomials
g and g′ define the same deformation if and only if g − g′ = αf for some
0 6= α ∈ k. This accounts for the first equality. The second and the third
follow from the exact sequence

0 // OIP 2
C // OIP 2(d) // OC(d) // 0

NC/IP 2

The tangent space to Vδ
d at [C] is therefore a subspace of H0(NC/IP 2) which is

represented by a subspace of H0(IP 2,O(d)), i.e. by a linear system of plane
curves of degree d. The curves passing through the singular points of C are
called adjoint to C. The linear system of curves adjoint to C is identified
with the subspace

H0(IP 2, I∆(d)) ⊂ H0(IP 2,O(d))

where
∆ := {n1, . . . , nδ}

is the scheme of nodes of C.

Lemma 11.3 ∆ := Sing(C) imposes independent conditions to the curves
of degree ≥ d− 2.
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Proof. Assume first that C is irreducible, and let ν : C̃ → C be the normal-
ization. Then

h0(IP 2, I∆(d− 3)) ≥
(
d− 1

2

)
− δ = g(C̃) (32)

Since the adjoint curves of degree d− 3 pullback to divisors of degree

d(d− 3)− 2δ = 2g(C̃)− 2

on C̃, they define a linear series on C̃ whose dimension cannot exceed g(C̃)−1.
Therefore (32) must be an equality, and in fact the adjoints of degree d− 3
pullback to canonical divisors on C̃. In particular ∆ imposes independent
conditions to the curves of degree ≥ d− 3.

Assume now that C = C1 ∪ C2 is reducible, with deg(Ci) = di. Assume
moreover that C1 and C2 are both nonsingular, so that ∆ = C1 ∩ C2 and
δ = d1d2. Then we have an exact sequence:

0 // O(−d1 − d2 + k) // O(−d1 + k)⊕O(−d2 + k) // I∆(k) // 0

which implies
h1(I∆(k)) ≤ h2(O(−d1 − d2 + k))

and therefore h1(I∆(k)) = 0 if k ≥ d1 + d2 − 2 = d − 2. This proves the
assertion in this case.

The general case can be proved by combining the first and the second
part of the proof, and is left to the reader. 2

The following proposition gives an explicit description of the tangent
space to the Severi variety at [C].

Proposition 11.4 For any nodal curve C of degree d we have a natural
identification

T[C]Vδ
d =

H0(IP 2, I∆(d))

〈C〉
(33)

and Vδ
d is nonsingular at [C]. In particular Vδ

d is a nonsingular subvariety of
Σd of dimension:

dim(Vδ
d) = dim(Σd)− δ =

d(d+ 3)

2
− δ = 3d+ g − 1

where the last equality holds in case C is irreducible, with g =
(

d−1
2

)
the genus

of C.
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Proof. (outline) Let n ∈ ∆ be a node of C. Up to projectivity we may
assume that in local coordinates n = (0, 0) is the origin and C has local
equation

f(x, y) = xy + f̃(x, y)

where f̃(x, y) ∈ m3 = (x, y)3. A first order deformation f+εg of C is tangent
to Vδ

d if and only if it is of the form:

f(x, y, ε) = (x− αε)(y − βε) + ϕ(x, y, ε)
= xy − (αy + βx)ε+ ϕ(x, y, ε)

where ϕ ∈ (x−αε, y−βε)3 and ϕ(x, y, 0) = f̃(x, y). This immediately implies
that g(x, y) ∈ m. In other words the curve g = 0 contains n. On the global
level this translates into the equality (33).

The equality (33) and Lemma 11.3 imply in particular that Vδ
d has codi-

mension ≥ δ in Σ. But since we have already seen that its codimension is
also ≤ δ, we deduce that Vδ

d is nonsingular of codimension δ. 2

The properties of nonsingularity and codimension of the Severi varieties
of nodal curves stated in Proposition 11.4 do not extend to the varieties Vδ,κ

d .
In other words Severi varieties of plane curves with nodes and cusps can be
singular and of dimension larger that the one one would expect from a naive
count of parameters.

Global properties. In general the Severi varieties Vδ
d are reducible. This

already happens for d = 4 and δ = 3: V3
4 has two components, one consisting

of irreducible quartics with 3 nodes, and the other of quartic reducible in a
line and a nonsingular cubic intersecting transversally.

In 1915 Severi gave a controversial argument to show that for all δ and
d the variety Vδ

d has a unique irreducible component consisting of irreducible
curves. His argument contains a gap, and the problem of proving the as-
sertion of Severi remained open until J. Harris proved it in 1986 [3]. Other
proofs have been found later by Z. Ran and by R. Treger.

The interest of the Severi statement is that it asserts the irreducibility of
the variety of plane irreducible curves of any degree and number of nodes,
regardless to their relation with moduli. It is even more remarkable that the
Severi varieties Vδ,κ

d are in general reducible. The properties of Severi varieties
of nodal curves contrast with the case of space nonsingular irreducible curves,
whose families are in general reducible, as we saw in §9.
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