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1

Even though curves are the most elementary and best known algebraic va-
rieties, nevertheless many crucial related problems still remain widely open.

Algebraic curves can be investigated by following several different ap-
proaches (analytic, algebro-geometric, topological, mathematical physics):
however, in these lectures we are going to focus on just one point of view,
namely, the strictly algebro-geometric one. We always refer to varieties and
schemes defined over the complex field C.

We prefer to outline a global overview of algebraic curves rather than
address a few specific topics: indeed, all different aspects of the theory
are essential in order to properly understand the development of algebraic
geometry.

Several results, or even whole parts of the theory, have been known much
before than actually proven: indeed, classical geometers made up for the lack
of suitable techniques by intuitive geometrical arguments. Several decades
(and in certain cases even a century) elapsed before replacing their plau-
sibility arguments with rigorous proofs or finding counterexamples to their
claims, in several cases the proof (or the counterexample) is still missing.

By the way, this is one of the reasons stimulating the critical reading of
classical authors and the effort to clarify the obscure points of their work.

In the present work we are going to describe some of those arguments,
which are not actual proofs but are often enlightening.

Unluckily we are compelled to just touch some important questions and
even to completely avoid some relevant arguments, such as the Schottky
problem, enumerative geometry, higher rank vector bundles on curves, real
algebraic curves, monodromy questions, set-theoretical complete intersec-
tions and many other topics. We follow an historical perspective in order to
properly understand the development of concepts and methods.

2

As a starting point we choose the year 1851, when the doctoral disserta-
tion [53] by Riemann appeared, followed in 1859 by the other fundamental
contribution [54].

Riemann resumed the research started by the analysts, from Cauchy to
Puiseux, about algebraic functions of one complex variable, i.e. the func-
tions y(x) implicitly defined by an equation f(x, y) = 0 where f ∈ C[x, y].
By adopting a geometric point of view, Riemann introduced the surfaces
named after him (made up by as many copies of C as the degree of f with
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respect to one of the variables and suitably glued together in certain “ram-
ification points”) and gave a transparent geometric interpretation of those
involved analytic theorems. To every surface Riemann associated a topolog-
ical invariant, the genus, and showed that it equals the number of linearly
independent abelian integrals of the first kind associated to f , thus establish-
ing a deep connection with the investigations of Legendre, Abel and Jacobi
on elliptic functions.

However, in his contributions we find not only the unification of several
different branches of his contemporary mathematics, but also a radically
new approach to geometry as the investigation of invariant properties under
birational transformations. Indeed, Riemann was the first one to adopt this
point of view, by showing that the genus is a birational invariant.

On the other hand, we should not forget that Riemann was working in an
analytic framework: in his investigations he applied the theory of potential
and was led by considerations inspired by fluidodynamics.

Riemann’s ideas were resumed by Clebsch, whose aim was to recover the
same results and develop them using purely algebraic means. Among other
things, he discovered that the genus g of an irreducible plane curve of degree
n with δ nodes is equal to the difference with the maximum number of nodes,
namely, g = 1

2(n− 1)(n− 2) − δ.
This program, interrupted due to the early death of Clebsch, was carried

on in Germany by his student M. Noether and by Brill.
At the beginning of the eighties the theory of plane and space algebraic

curves had already been developed with purely algebraic means.

3

As far as plane curves are concerned, the culminating point of that period
is the paper [5] by Brill and Noether dating back to 1873, which summarized
all knowledge obtained insofar and was the starting point for the investiga-
tions of a whole generation of geometers.

There the fundamental concept of linear series was introduced.
Roughly speaking, a linear series of dimension r and degree n (denoted by

gr
n) on an irreducible curve C is a set of ∞r groups of n points of the curve

obtained by intersecting it with another curve varying in a linear system of
dimension r.

More precisely, a divisor on the irreducible plane curve C is a formal finite
linear combination D =

∑

p npp of points p ∈ C with integral coefficients,

where a singular point (assumed for the sake of simplicity to be an ordinary
one, i.e. with distinct tangents) accounts for as many distinct points as the
number of tangent directions. The degree of D is deg(D) =

∑

p np. The

divisor D is effective (denoted by D ≥ 0), if np ≥ 0 for every p.
With the sum defined as the natural formal one, divisors form an abelian

group Div(C), where the zero is the null divisor.
If D1, D2 ∈ Div(C) then D1 ≥ D2 means D1 −D2 ≥ 0. For every plane

curve such that C is not one of its irreducible components, the divisor cut
out on C can be defined in a natural way: it turns out to be effective and
of degree equal to the product of the degrees of the two curves.
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This way we associate to a linear system of plane curves a set of effective
divisors, the so-called linear series cut out by the system. If all divisors of
this gr

n are ≥ than the same effective divisor E, this is said to be a fixed
divisor of the series and by subtracting E from every divisor of the gr

n we
obtain a gr

n−v, where v = deg(E).
For instance, if C has degree n, then the lines passing through a point

p ∈ P2 cut out a g1
n. If p ∈ C then E = p is a fixed divisor (in this case p is

said to be a fixed point) of the series and by subtracting p we obtain a g1
n−1.

If p ∈ C is an s-uple point, then by subtracting the s tangent directions in
p we obtain a g1

n−s.
Two effective divisors are linearly equivalent if there exists a linear series

containing both of them (in particular, they have the same degree). More
generally, any two divisors D1 and D2 are linearly equivalent (denoted by
D1 ∼ D2) if D1 −D2 = E1 −E2, where E1 and E2 are effective and linearly
equivalent.

The set of all effective divisors linearly equivalent to a certain D form a
linear series |D| which is not contained in a bigger series, hence is said to be
a complete linear series.

If D ∼ 0 then |D| is a g0
0 . Every linear series is contained in a unique

complete linear series.
For instance, the g2

3 cut out by the lines on a cubic with one node is not
complete, since it is contained in the g3

3 cut out on C by the conics through
the node and another point. This g3

3 is complete since a gr
n with r > n

cannot exist (indeed, there are ∞n n-tuples of points on a curve and no
more).

The sum between divisors is compatible with linear equivalence, hence
linear series can be summed and subtracted.

Brill and Noether investigated linear series by exploiting two essential
tools.

The first one, of geometric flavour, is the theorem stating that every
irreducible plane curve can be birationally transformed into one carrying
only ordinary multiple points by applying to it a finite number of quadratic
transformations of the plane (i.e. transformations defined up to a change of
homogeneous coordinates as x0 = y1y2, x1 = y0y2, x2 = y0y1): this theorem
is due to Noether [46] and independently to Kronecker (unpublished). Its
relevance is due to the fact that linear series are preserved under a birational
transformation, hence it allows to replace an irreducible curve with arbitrary
singularities by a much simpler one.

The other tool, of more algebraic flavour, is the theorem by Noether which
is known as AF +BΦ Theorem, and he called Fundamentalsatz, proven for
the first time in [47] and subsequently refined and improved by the same
author. This theorem establishes the possibility of expressing the equation
of a curve f = 0, passing in a suitable way through the intersection of two
curves F = 0 and Φ = 0, in the form f = AF +BΦ.

In the approach of Brill and Noether, abelian integrals and the topological
considerations by Riemann were replaced by the study of linear series and
their properties. The genus g was characterized by the dimension of the
so-called canonical series, which is the complete gg−1

2g−2 cut out on C by the
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plane curves of degree n− 3 adjoint to C. If g = 0 then the canonical series
is empty, i.e. there are no adjoint curves of degree n − 3. For every g ≥ 1
the canonical series is the unique gg−1

2g−2 on C.

If |D| is a complete gr
n and K is a canonical divisor (i.e. a divisor such

that |K| is the canonical series), then the series |K −D| is called residue to
D: it is a gi−1

2g−2−n, where i ≥ 0 is the index of speciality of D and D is said

to be special if i > 0. Since dim(|K − D|) ≤ dim(|K|) we have i ≤ g and
equality holds if and only if D ∼ 0.

In the terminology of Brill and Noether the Riemann-Roch Theorem, al-
lowing to compute the dimension of spaces of meromorphic functions with
prescribed singularities on a fixed Riemann surface, became the relationship

r − i = n− g

among the genus g and the characters of a complete gr
n.

In order to exploit modern sheaf theory, we introduce the normalization
ν : C → X of the plane curve X and we recall that every D ∈ Div(C)
defines an invertible sheaf O(D) over C and, if D is effective, a section
s ∈ Γ(C,O(D)) up to a nonzero constant such that D = {s = 0}. This way,
a linear series of dimension r containing D corresponds to a vector subspace
V of dimension r + 1 of Γ(C,O(D)) cointaining s. If V = Γ(C,O(D)) then
we obtain a complete linear series.

Linearly equivalent divisors define isomorphic invertible sheaves. Thus
invertible sheaves of fixed degree (up to isomorphism) correspond to linear
equivalence classes of divisors and those carrying sections to complete linear
series of fixed degree. The sum of divisors induces tensor product of sheaves.
The null and the canonical series correspond respectively to the structural
sheaf O and to the so-called canonical sheaf ω.

In this language the study of linear series is translated into that of invert-
ible sheaves and their sections.

For instance, let us consider the Riemann-Roch Theorem. From the point
of view of sheaf theory, its proof splits into two parts. The first ingredient
is

Theorem 1. (Serre duality) For every divisor D on C there is a nondegen-
erate bilinear form

H1(D) ×H0(ω(−D)) → H1(ω) ∼= C

thus inducing an isomorphism H1(D) = H0(ω(−D))∗.

In particular, we have g = h0(ω) = h1(O) and special divisors define
special invertible sheaves L, i.e. with h1(L) > 0, where we have denoted by
hj() the dimension of Hj().

The second part of the proof relies on the exact sequence of sheaves over
C associated to every effective divisor D of degree n:

0 → O → O(D) → OD(D) → 0

hence we obtain h0(D) − h1(D) = 1 − h1(O) + n and, by applying Serre
duality,

h0(D) − h0(ω(−D)) = n− g + 1

which is precisely the Riemann-Roch Theorem.
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Update. In [87] Hartshorne introduced the notion of generalized divisor on
an integral, projective Gorenstein curve C (recall that C is Gorenstein if
and only if ωC is invertible). According to [87], a generalized divisor on C
is just a fractional ideal of C, namely, a nonzero subsheaf of the constant
sheaf of the function field of C which is a coherent OC -module.

Even though two generalized divisors can never be added unless at least
one of them is a honest Cartier divisor, nevertheless both the Riemann-Roch
Theorem and Serre duality hold for generalized divisors (see [87], Theorem
1.3 and Theorem 1.4).

4

The link between linear series and the geometry of C is given by their
relationship with the maps of C in P2, P3, or in any Pr.

For instance, the g2
n cut out on a plane curve X, hence on C, by the lines

in P2 allows to recover the map ν : C → X. Indeed, let the g2
n correspond to

a vector subspace V ⊆ H0(L) of dimension 3 for a certain invertible sheaf
L: V may be identified with the vector space of linear forms on P2, hence
P2 identifies with the projective space P(V ∗) of 2-dimensional subspaces of
V . Hence we have ν(p) = {s ∈ V : s(p) = 0}.

It is straightforward to generalize the above remark in order to interpret
any base-point free gr

n as a map C → Pr, where the gr
n is induced by inter-

secting the image with hyperplanes. In a similar fashion, intersections with
quadrics, cubics, and so on, define corresponding linear series.

The same curve can be realized in different ways in a projective space
according to its linear series (notice however that a gr

n does not necessarily
induce an immersion of C in Pr). Therefore, understanding either linear
series on a curve or curves in a projective space are just two aspects of the
same problem.

This point of view was applied by Noether and Halphen to the investiga-
tion of space curves, i.e. contained in a P3, in their important papers [48]
and [25], published in the same year and winning ex-aequo the Steiner prize
in 1882.

Halphen and Noether addressed the problem of classifying space curves
according to their degree and genus, thus obtaining several important re-
sults. In particular, Halphen tried to characterize the set of pairs (n, g) such
that there exist nonsingular and irreducible space curves of degree n and
genus g. His main result, which he stated with an incomplete proof, has
been proven by Gruson and Peskine [24] only in 1978. It claims that:

Theorem 2. (1) A nonsingular irreducible non-plane space curve C of
degree n has genus

g ≤ π(3, n) =

{

(n−2)2

4 if n is even
(n−1)(n−3)

4 if n is odd

(2) If

1 + n(n− 3)/6 < g ≤ π(3, n)

then C lies on a quadric (and not all values of g satisfying these
inequalities can be obtained, but there are some gaps).
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(3) For every 0 ≤ g ≤ 1 + n(n− 3)/6 there exist nonsingular irreducible
non-plane space curves of genus g and degree n.

The proof by Gruson and Peskine relies on the explicit construction of
curves with prescribed degree and genus either on a nonsingular cubic surface
or on a quartic surface with a double line.

The investigation of curves in Pr was pursued in the same period especially
in Italy. Here a new geometric school was emerging, with Cremona (first in
Bologna, then in Milan and Rome), Betti (in Pisa) who had been the first
disseminator of Riemann’s ideas in Italy, Beltrami (in Bologna), Battaglini
(in Naples) and others.

First with Veronese and then with C. Segre the study of hyperspace ge-
ometry was extensively developed. Along these lines, new interesting results
about algebraic curves emerged. C. Segre, and a few years later his student
G. Castelnuovo, rephrased the theory of linear series on curves purely in
terms of projective geometry.

The attempt to free the theory from Noether’s Fundamentalsatz led Ca-
stelnuovo to give a new proof of the Riemann-Roch Theorem relying on
enumerative geometry.

He also determined the maximum genus π(r, n) for a curve of degree n
in Pr, thus generalizing the corresponding formula given by Halphen in the
case r = 3 and characterized curves of maximal genus, now called Castel-
nuovo curves. From that period, the papers [59], [6], and [7], are especially
important; it is worth mentioning also the interesting [14] by Fano (his mas-
ter thesis written under the guidance of Castelnuovo), whose investigations
should be resumed.

For an arbitrary r, the classification of nonsingular curves in Pr, with
respect to the genus and the degree as Halphen did for r = 3, was never
completed. We point out the contributions by Gieseker [19] and Harris [27]
to this problem.

Update. The classification of all possible genera in the admissible range
for smooth irreducible curves was extended to P4 and P5 by Rathmann [93],
and to P6 by Ciliberto [74].

Moreover, as we have seen before, curves C in P3 whose genus is big with
respect to the degree must lie on surfaces of small degree, so it is natural
to refine the bound introducing the minimal degree s allowed for surfaces
containing C. Halphen himself gave, in fact, a bound for the genus of space
curves of degree n, not contained in surfaces of degree < s.

As pointed out in [73], Halphen’s theory can be generalized to curves in
Pr in several ways: one may ask for the maximal genus of curves C ⊂ Pr

as a function of the degree n and either of the minimal degree allowed for
hypersurfaces through C, or of the minimal degree s allowed for surfaces
through C. The first point of view seems to be still widely open; for the
second, results when s is not too big with respect to r are contained in [27].
The paper [73] pushes further Eisenbud-Harris’ point of view by establishing
the bound for the genus of irreducible, nondegenerate curves of degree n in
Pr, not contained on surfaces of degree < s, when n is large with respect to
s.
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Another interesting problem concerns the existence of a smooth and irre-
ducible family parametrizing irreducible nonsingular curves of degree n and
genus g in Pr having ”the expected number of moduli”, in a suitable sense
to be clarified later. Relevant results in this direction are due to Gieseker
[19] and Sernesi [61].

5

The approach by Segre and Castelnuovo relied on the study of linear series
on the canonical curve.

It is easy to show that if C has genus g ≥ 3 and is not hyperelliptic (i.e.
it has not a g1

2 : indeed, every genus 2 curve has a g1
2 , the canonical series,

while for g ≥ 3 not all curves of genus g are hyperelliptic, but there exist
hyperelliptic curves of genus g for every g), then the canonical series maps
C isomorphically onto a curve of degree 2g−2 in Pg−1, a so-called canonical
curve, the canonical model of C.

In the hyperelliptic case, the canonical series defines a 2 : 1 map of C
onto a rational curve of degree g − 1 in Pg−1.

The study of linear series on a hyperelliptic curve is not difficult. If
instead C is not hyperelliptic, and we identify it with the canonical model,
we see that an effective divisor is special if and only if it is contained in
a hyperplane of Pg−1. More precisely, the index of speciality of D is the
number of linearly independent hyperplanes containing D. Hence if |D| is
a gr

n with n ≤ 2g − 2, then by Riemann-Roch the linear subspace < D >
n-secant C generated by D in Pg−1 has dimension

dim(< D >) = g − 1 − i = n− r − 1.

This geometric interpretation of the Riemann-Roch Theorem enlightens a
remarkable property of the canonical curve: if C has an n-secant Pn−r−1

then it has ∞r of them.
For instance, if C has a trisecant line then it has ∞1 of them, cutting out

on C the divisors of a complete g1
3 .

More generally, every property of special linear series on C mirrors a pro-
jective property of the canonical curve, and vice versa, hence the interest for
canonical curves. Noether had inaugurated their investigation by showing
that they are projectively normal (recall that a curve C ⊂ Pr is said to be
projectively normal if it is nonsingular and for every d ≥ 0 hypersurfaces of
degree d cut out on C a complete linear series).

Enriques proved in 1919, in a short note [12], that C ⊂ Pg−1 is the
intersection of the quadrics containing it with only two exceptions: either
C has a g1

3 (it is ”trigonal”), or C has genus 6 and it is isomorphic to a
nonsingular plane quintic. The proof by Enriques, very elegant and concise
but incomplete, was resumed and completed by Babbage in 1939 [3].

The same subject was also addressed by Petri in a paper [50] dating
back to 1922 but rediscovered only in the seventies. Petri proved that the
quadrics containing the canonical curve generate its ideal except in the two
cases described by Enriques, where the ideal is generated by quadrics and
cubics. Petri explicitly describes, in a very tricky way, a basis of the vector
space of quadrics containing the canonical curve C and expresses in terms of
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them every polynomial in the ideal. His proof has been written and clarified
in modern language by Saint Donat [55].

6

A subsequent paper [51] was devoted by Petri to extending the previous
result to projective curves more general than canonical curves. The gen-
eral problem addressed by him is to find a procedure to explicitly describe
the equations defining a curve in Pr (i.e. its ideal), or at least to deduce
informations on the equations from informations on the curve, such as the
genus, the degree and several properties of the hyperplane linear series and
its multiples.

A related example is the theorem (due to G. Gherardelli [18]) stating
that a nonsingular curve in P3 is a complete intersection if and only if it is
projectively normal and its canonical linear series coincides with the series
|dH| for some d ≥ 0, where H is the divisor of a plane section (this last
property is usually referred to as C is ”sub-canonical”).

A class of curves wider than complete intersections, which are easily de-
scribed, are the projectively normal ones in P3, investigated by Apery, Gaeta
and Dubreil, and subsequently by Peskine and Szpiro [49]. These curves are
characterized by the fact that their ideal is generated by the maximal minors
of a suitable matrix M of dimension m ×m + 1 with entries homogeneous
polynomials: this is equivalent to their geometric property of being “of finite
residual” (C ⊂ P3 is of finite residual means that there exists a sequence
C = C1, . . . , Ck of curves such that Ci ∪ Ci+1 is a complete intersection for
i = 2, . . . , k − 1 and Ck is a complete intersection). An important property
of these curves is that they are all described by letting the corresponding
matrix M vary generically (i.e. without imposing any closed condition to
the coefficients of the polynomials defining it). Unluckily such a simple de-
scription is compensated by the fact that projectively normal curves in P3

are almost all very special among those of their genus.
Explicitly describing curves which are sufficiently general among those

of fixed genus, in a suitable sense to be clarified later, becomes harder and
harder as g grows. Petri was able to give only partial results in this direction,
but some of his ideas have been subsequently resumed and extended giving
rise to a very interesting research line.

In 1960 Mumford proved an analogue of the theorem by Enriques-Babba-
ge-Petri, stating that if D is a divisor of sufficiently high degree n on a
nonsingular curve C of genus g, the complete gn−g

n |D| embeds C in Pr−g and
the image is projectively normal and its ideal is generated by quadrics [42].
Mumford’s estimate is n ≥ 2g + 1 for projective normality and n ≥ 3g + 1
for quadratic generation of the ideal. This last one was later improved to
n ≥ 2g + 2 by Saint Donat [55].

When n is low with respect to the genus it is much more difficult to
provide even qualitative informations about the ideal of a projective curve
of degree n. Several partial generalizations of the above results are now
available, but there is still a lot of work to do in this direction.

In [21] M. Green conjectured that the various numerical characters of a
minimal free resolution of the ideal of a canonical curve C ⊂ Pg−1 closely
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follow geometric properties of C, thus generalizing the fact that the degrees
of the generators of the ideal of C depend on geometric properties of C.
About this problem we have only partial results.

Update. More precisely, the Clifford index of a line bundle L of degree d
with k sections on a curve C of genus g is defined as Cliff(L) = d− 2(k− 1).
The Clifford index of the curve is defined as the minimum of the Clifford
indices of its line bundles of degree at most g − 1.

On the other hand, a canonical curve C ⊂ Pg−1 is said to satisfy condi-
tion N0 if it is projectively normal, property N1 if its ideal is generated by
quadrics and property Np if it satisfies property Np−1 and the p-th syzygies
are generated by linear relations among the (p− 1)-st syzygies.

Green’s conjecture states that a curve satisfies property Np if and only if
Cliff(C) > p. This is classically known for p = 0 and 1.

The“only if” part was proven by Green and R. Lazarsfeld in the appendix
of [21], and the conjecture was established for g ≤ 8 and for p = 2 by
Schreyer in [94] and [95]. More recently, Voisin was able to prove Green’s
conjecture for the generic curve of even genus in [99] and odd genus in
[100] by considering curves contained in suitable K3 surfaces and studying
syzygies on the surface and their restriction to the curve.

More generally, if L is a spanned line bundle on a curve C of genus
g, Green investigated in [21] certain L-valued Koszul cohomology groups
Kp,q(C,L) of C. In particular, if d is the gonality of the curve and L is of
sufficiently large degree, Green and Lazarsfeld conjectured that

Kh0(C,L)−d,1(C,L) = 0

for the generic curve: this was later proved in [66] by Aprodu and Voisin for
even genus and in [65] by Aprodu in the odd genus case.

7

Let us fix an irreducible nonsingular curve C and denote by Pic(C) the
Picard group of C, i.e. the group of isomorphism classes of invertible sheaves
on C. We have

Pic(C) = ⊕nPicn(C)

where Picn(C) is the subset of invertible sheaves of degree n. Notice that
Pic0(C) is a subgroup of Pic(C) and for fixed M ∈ Picn(C) the map

Pic0(C) → Picn(C)

L 7→ L⊗M

is a bijection.
The first geometrically relevant fact is that Pic0(C), hence every Picn(C),

has a natural structure of irreducible and nonsingular projective variety of
dimension g equal to the genus of C: it is indeed an abelian variety, namely
the commutative group structure is compatible with the structure of variety.
It is called the Jacobian of C, also denoted by J(C).

If g = 0, then J(C) is just one point and Pic(C) ∼= Z: this means that
all invertible sheaves of given degree n are isomorphic, hence all divisors of
degree n are linearly equivalent. It is indeed a simple case, due to the fact
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that every curve of genus zero is rational and that on P1 any two point are
linearly equivalent.

If g = 1, then J(C) is a curve. Once fixed a point p0 ∈ C, we can define
a map

C → Pic0(C)

p 7→ O(p− p0).

This map (which is a morphism) is not constant (otherwise C would be
rational, carrying a g1

1), hence it is surjective. It is also injective by the same
reason, hence C is isomorphic to its Jacobian.

More generally, let us consider a curve of arbitrary genus g. For every
n ≥ 1 the set of effective divisors of degree n on C has a natural structure
of nonsingular projective algebraic variety: it is obtained from the cartesian
product C × C × . . . × C (n times) by taking the quotient by the natural

action of the symmetric group σn permuting factors: it is denoted by C (n)

and it is called the n-th symmetric power of C. For every n we have a
natural map

ψn : C(n) → Picn(C)

D 7→ O(D)

having as fibers the linear systems of degree n. It is straightforward from
Riemann-Roch that ψn is surjective if n ≥ g. Fixed p0 ∈ C, we get

C(n) → Pic0(C)

D 7→ O(D − np0)

which is the composition of ψn and the isomorphism of varieties

Picn(C) → Pic0(C)

L 7→ L(−np0).

Notice that C(1) = C and for every n the fibers of ψn are connected because
they are projective spaces. In particular, it turns out that ψg is a birational

isomorphism, i.e. the Jacobian of C is birationally isomorphic to C (g), from
which it is obtained by contracting to a point every special linear system,
as it follows from Riemann-Roch.

For instance, if g = 2 the map

C(2) → Pic2(C)

is bijective with the exception of the fiber of ω, which is a P1, the canonical
g1
2 . Hence J(C) is obtained from C (2) by contracting a curve (which is

exceptional of the first kind).
Assume g = 3 and C non-hyperelliptic, so that the canonical curve of C

is a nonsingular plane quartic. Consider the map

ψ3 : C(3) → Pic3(C).

The special divisors D ∈ C (3) are the ∞2 triples of aligned points of C ⊂ P2.
The set of the corresponding O(D) in Pic3(C) can be identified with the set
of fourth points of intersection of C with the corresponding lines. Hence the
locus in Pic3(C) where ψ3 is not an isomorphism is a curve isomorphic to C

and its inverse image is a surface in C (3), birationally isomorphic to C ×P1.
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More generally, it is easy to show (for instance, at least in the non-
hyperelliptic case, by using the geometric version of Riemann-Roch) that
the image ψg−1(C

(g−1)) is a divisor in Picg−1(C), which is called theta divi-
sor and denoted by Θ, consisting of all special invertible sheaves of degree
g − 1. It is an ample divisor on Picg−1(C) and defines a so-called princi-
pal polarization. A celebrated theorem by Torelli [64] states that the pair
(Picg−1(C),Θ) identifies C, namely, if C ′ is a curve such that there exists an
isomorphism between Picg−1(C) and Picg−1(C ′) preserving theta divisors,
then C ′ is birationally isomorphic to C.

For instance, in the case g = 2 the theta divisor is isomorphic to C (more
generally, ψ1(C) = C for every g).

If g = 3 then the theta divisor is isomorphic to C (2) unless C is hyperel-
liptic, in which case the g1

2 is contracted to a point in Pic2(C), singular for
the theta divisor.

Let us go back to the general case and introduce

W r
n = {L ∈ Picn(C) : h0(C,L) ≥ r + 1},

i.e., the set of all complete gs
n, with s ≥ r. Fix a point p0 ∈ C and via

multiplication by O(−np0) realize every W r
n as a subset of Pic0(C) = J(C).

It can be shown that W r
n has a natural structure of closed subscheme of

J(C).

For instance, we have W 0
n = ψn(C(n)). If n ≤ g then dim(W 0

n) = n, while

if n ≥ g then W 0
n = W 1

n = . . . = W n−g
n . In this notation, the theta divisor

is W 0
g−1 and obviously W r+1

n ⊆W r
n .

It is a fundamental problem to study the structure of the W r
n’s. First of

all: when is W r
n 6= ∅ ?

The answer depends on g, r, n, but also on C. For instance, W 1
2 6= ∅ if

and only if C is hyperelliptic.
Brill and Noether gave a criterion on g, r, n in order to have W r

n 6= ∅ on
every curve of genus g, based on the following easy argument.

Assume C nonhyperelliptic (the hyperelliptic case can be treated sepa-
rately), canonically embedded into Pg−1. We can assume that g−n+r > 0,
i.e. that W r

n consists of special sheaves, since the nonspecial case is trivial.
It is easy to see that if W r

n 6= ∅ then W r+1
n ( W r

n, hence W r
n 6= ∅ is equiva-

lent to the existence of L ∈W r
n \W r+1

n . By arguing on the canonical curve,
the existence of such an L is equivalent to that of a Pn−r−1 n-secant C.

The Pn−r−1’s containing at least one point of C form a nonempty ir-
reducible subvariety of codimension g − n + r − 1 of the Grassmannian
G(n− r− 1, g− 1). Thus the set S of the Pn−r−1’s n-secant C has codimen-
sion in G(n−r−1, g−1) not exceeding n(g−n+r−1), if it is not empty. In
this case S has dimension at least r, as it follows from the geometric version
of Riemann-Roch. Hence we have

r ≤ dim(G(n− r − 1, g − 1)) − n(g − n+ r − 1),

that is to say,

g − (r + 1)(g − n+ r) ≥ 0.

The numerical quantity ρ(g, r, n) := g − (r + 1)(g − n + r) is called the
Brill-Noether number. It was implicitly evident to Brill and Noether that



12 EDOARDO SERNESI

S 6= ∅, however the above argument definitely does not prove that W r
n 6= ∅ if

ρ(g, r, n) ≥ 0. What it proves is that, if the above inequality is satisfied and
W r

n 6= ∅, then every irreducible component of W r
n has dimension ≥ ρ(g, r, n).

A complete proof of the Brill-Noether criterion, i.e. of the fact that
on every curve of genus g we have W r

n 6= ∅ and dim(W r
n) ≥ ρ(g, r, n) if

ρ(g, r, n) ≥ 0 is due to Kleiman and Laksov [37] and, independently, to
Kempf [35].

We may wonder whether and when the above estimate is sharp, namely,
we have precisely dim(W r

n) = ρ(g, r, n).
The answer was given once again by Brill and Noether, who claimed (but

without proof) that W r
n = ∅ if ρ(g, r, n) < 0 and dim(W r

n) = ρ(g, r, n) if
ρ(g, r, n) ≥ 0 on every “sufficiently general” curve.

The precise meaning of the condition “C is sufficiently general” comes
from the consideration of the moduli space, which we are going to address
in a short time. By now, we content ourselves of its intuitive meaning.

Justifying the claim, or better the conjecture, of Brill and Noether, has
been an open problem for many years. An attempt of proof is due to Severi
[62]. In [36] Kleiman showed that Severi’s argument could be reduced to a
problem of enumerative geometry. Such a problem was then solved, hence
the conjecture completely proven, by Griffith and Harris in [22] (in the case
r = 1 the proof had already been given by Laksov in an appendix to [36]).
From this result it follows that on a sufficiently general curve all schemes
W r

n are reduced.
Another interesting problem comes from the easy fact that W r+1

n is always
contained in the singular locus of W r

n , for every curve C. Indeed, in the
case r = 0, n ≤ g − 1, W 1

n coincides with the singular locus of W 0
n : more

precisely, the s-uple points of W 0
n , s ≥ 2, are the L ∈ W s−1

n \W s
n, i.e. such

that h0(C,L) = s. This is the content of the so-called Riemann singularity
theorem in the case n = g − 1, generalized by Kempf in [34] to the other
values n ≤ g − 1.

It is easy to give examples where W r+1
n is different from Sing(W r

n), but in
all these examples the curve has very special properties that a more general
curve of the same genus does not exhibit. It is hence natural to conjecture
that if C is sufficiently general and ρ(g, r, n) ≥ 0 then W r+1

n = Sing(W r
n).

This conjecture, formulated by Mayer, is equivalent to a statement of coho-
mological nature made by Petri in [51]. For a thorough discussion of this
equivalence we refer the interested reader to [1], where the conjecture has
been proven in the case r = 2 (for r = 1 it was already known). In the
general case it has been established by Gieseker [19].

In order to prove both Brill-Noether and Petri conjectures it is enough
to show that they are true for just one curve C of given genus (this follows
from rather elementary general facts). However, this does not trivializes the
problem: indeed, it seems very difficult to find such a nonsingular curve
of given genus. Paradoxically it happens that, even though on almost all
curves the claims of Brill-Noether and Petri do hold, nevertheless on every
nonsingular curve which can be explicitly found they turn out to be false.
The method applied by Griffiths-Harris and Gieseker to bypass this obstacle
is to look for particular singular curves on which it is possible to check the
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theorem (in a suitably generalized sense), and then extend it to nonsingular
curves by deforming the curve.

The method of reducing problems about linear series on nonsingular
curves to problems on singular curves has found more and more applica-
tions in the last decades. But singular curves are not yet well understood
from the viewpoint of linear series. Progress in this direction is going to be
of great importance.

In order to complete the picture of the geometric properties of W r
n we

mention a theorem by Fulton and Lazarsfeld [17] claiming that if C is any
curve of genus g and ρ(g, r, n) > 0, then W r

n is connected and if moreover C
is sufficiently general then W r

n is irreducible.
In the end, let us see what happens to the W r

n ’s when the curve C is very
special.

Assume n ≤ g − 1. By a rather elementary reason (namely, Clifford’s
Theorem) W r

n 6= ∅ implies n ≥ 2r, and if equality holds then C is hyper-
elliptic. It has been proven by H. H. Martens [39] that W r

n has dimension
n − 2r and if equality holds for at least one irreducible component then C
is hyperelliptic.

Martens’ Theorem has been refined by Mumford [43], who proved that if
C is nonhyperelliptic then dim(W r

n) ≤ n− 2r− 1, and if equality holds then
C is either trigonal, or a nonsingular plane quintic, or a double covering of
a curve of genus 1.

There exist further refinements of Martens’ Theorem and various results
of this kind, all going in the direction of explicitly characterizing those curves
of fixed genus g for which a W r

n has not the expected dimension computed
by the Brill-Noether number ρ(g, r, n).

Update. The main tool developed insofar to address degenerations of lin-
ear series on families of curves with singular fibers is the theory of limit
linear series [78] by Eisenbud and Harris. Roughly speaking, a limit gr

d on
a curve of compact type (i.e., a union of smooth curves with dual graph
a tree) is a collection of gr

d’s, one for each irreducible component, related
by a compatibility condition on vanishing orders at the nodes. The main
result of [78] is a smoothability criterion for a limit linear series on a special
curve to be the limit of a honest linear series on the general fiber. A more
functorial construction (working over fields of arbitrary characteristic) has
been presented in [92].

8

A fundamental issue is the classification problem.
Let Mg,n be the set of isomorphism classes of birational isomorphism of

curves of genus g with n marked points. The problem is to describe Mg,n.
The solution is easy for the first values of g.
The space M0,3 has just one point.
Every curve C of genus one is isomorphic to a nonsingular plane cubic

curve (indeed, every D ∈ C (3) defines a g2
3 without base points embedding

C in P2) and the cubic can be reduced to have affine equation y2 = x(x −
1)(x− λ) for some λ 6= 0, 1.



14 EDOARDO SERNESI

It is a classical theorem (due to G. Salmon) that two such cubics C(λ)
and C(µ) are isomorphic if and only if there exists a projectivity of P1

sending the unordered quadruple {0, 1,∞, λ} to the unordered quadruple
{0, 1,∞, µ}. For a given λ there exist six values of µ with this property
(corresponding to the six projectivities permuting 0, 1,∞), namely,

µ1 = λ, µ2 = 1 − λ, µ3 =
1

λ
, µ4 =

λ− 1

λ
, µ5 =

λ

λ− 1
, µ6 =

1

1 − λ
.

The numerical expression

j(λ) = 256
(λ2 − λ− 1)3

λ2(λ− 1)2

assumes the same value j(µ) precisely if µ is one among µ1, . . . , µ6, hence
j(λ) depends only on C(λ) ∈ M1,1. It is called the j-invariant of the curve
C(λ) and it assumes all values in C. Hence M1,1 may be identified to C via
j.

The description of M2 is rather more involved, and it is due to Igusa
[33]. The idea is analogous to the previous case. Indeed, every C ∈ M2

can be realized as a plane curve of equation y2 = g(x), where g(x) is a
polynomial of degree six with distinct roots. Two such curves, say y2 = g1(x)
and y2 = g2(x), are birationally equivalent if and only if there exists a
projectivity of P1 taking the six roots of g1(x) into the six roots of g2(x).
This point of view leads to describe M2 as an irreducible affine variety of
dimension three embedded in C8.

An explicit description of Mg for g ≥ 3 is not known. Nevertheless, Mg

has been extensively investigated and many of its properties are known. The
most important one is certainly that it carries a natural structure of quasi-
projective algebraic variety, as in the cases of g = 0, 1, 2. This structure
exists due to the fact that curves vary in families.

A family of curves is defined as a flat morphism of algebraic varieties
f : C → S such that for every s ∈ S the fiber f−1(s) is a curve. The
base S is then called the variety parametrizing the family f . Flatness is a
technical property which is very weak but strong enough to guarantee that
the arithmetic genus pa(C) = 1 − h0(OC) + h1(OC) and other numerical
characters of the fibers are locally constant as a function of s ∈ S. Hence
if the fibers of f are nonsingular and S is connected, then all curves in the
family have the same genus. In a similar way, one can define families of
projective varieties.

For instance, plane curves of fixed degree n form a family since they are
parameterized by the points of an algebraic variety, namely, the projective
space PN , N =

(

n+2
2

)

−1, having as homogeneous coordinates the coefficients
of a homogeneous polynomial of degree n. In this case, C is the subvariety
of P2×PN defined by the equation P (x0, x1, x2) = 0 where P is the homoge-
neous polynomial of degree n in x0, x1, x2 with varying coefficients, S = PN

and f : C → S the morphism defined by the projection of P2 × PN onto the
second factor.

More generally, a family f : C → S is said to be a family of curves in Pr

if C is a closed subvariety in Pr × S and f is the morphism induced by the
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projection of Pr ×S → S. In this case, flatness is equivalent to the fact that
all fibers have the same Hilbert polynomial.

If f : C → S is a family of nonsingular curves of genus g, then there is a
natural map S → Mg sending s 7→ f−1(s).

The structure of algebraic variety on Mg is defined by requiring that all
maps obtained this way from families of curves are indeed morphisms of
algebraic varieties. Endowed with this structure, Mg is called the moduli
space of curves of genus g.

Proving its existence is rather difficult: in order to do that, the most so-
phisticated tools from algebraic geometry are needed (see Mumford’s proof
in [42] and [44]). It would be interesting to see in detail how deeply the prob-
lem of constructing the moduli space of curves and other algebraic varieties
has influenced the development of algebraic geometry in the last decades.
Unluckily, brevity reasons suggest to drop this subject at all.

Having established that Mg is a variety, the condition “C is sufficiently
general among curves of genus g” (or equivalently “C has general moduli”)
means that C can be chosen in a Zariski open subset of Mg, i.e. that no
closed condition is imposed on C. Otherwise, C is said to have “special
moduli”.

The fact that curves, and more generally algebraic varieties, are naturally
distributed into families is a crucial phenomenon and it is essentially the
reason why Mg exists (as an algebraic variety) and why its existence has
always been taken for granted by geometers, even when a proof was out of
reach. The word “moduli” dates back to Riemann, who denoted this way
the continuous parameters on which a curve of genus g depends locally in
Mg. He found that its number (namely, the dimension of Mg) is 3g− 3 for
every g ≥ 2.

A heuristic computation can be easily performed as follows.
Assume g ≥ 2 and fix n ≥ 2g+1. A classical theorem (namely, Riemann’s

existence theorem) states that for any choice of δ = 2(g + n − 1) distinct
points p1, . . . , pδ of P1 it is always possible to construct in a finite number of
ways a curve C of genus g and a base-point free g1

n on C defining a morphism
q : C → P1 of degree n ramified precisely over p1, . . . , pδ. The number of
parameters governing this construction is δ − 3 = 2g + 2n − 5, since every
δ−uple is transformed by the projectivities of P1 into ∞3 others giving rise
to the same curve with the same g1

n. Every curve of genus g is obtained this
way: indeed, for n big enough, every C ∈ Mg has ∞g complete base-point

free gn−g
n , each containing ∞2(n−g−1) g1

n defining a map of C onto P1 of
degree n with δ distinct ramification points. It follows that the birationally
distinct curves obtained via Riemann’s construction depend on

2n+ 2g − 5 − (g + 2n− 2g − 2) = 3g − 3

parameters.
A simple topological argument combined with the above construction

shows that Mg is irreducible. This was done by Klein in [38] by using a
canonical way of representing an n-fold covering of P1 due to Lüroth and
Clebsch. For a very readable version of this approach we refer to [13].

Klein’s method was later extended by Hurwitz [32], who investigated for
every n and g the varieties of moduli of n-fold coverings of genus g of P1,
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Hn,g, whose elements are the pairs (C, g1
n), computed their dimension and

proved their irreducibility. In particular, Hurwitz proved that the locus
M1

g,n ⊆ Mg consisting of all curves carrying at least one g1
n (i.e. the image

of the natural map Hn,g → Mg) is an irreducible closed subset of dimension

min(3g − 3, 3g − 3 + ρ(g, 1, n)) = min(3g − 3, 2g + 2n− 5)

(a gap in Hurwitz proof was pointed out by Severi and filled in by B. Segre in
[58]). For instance, the locus M1

g,2 has dimension 2g− 1 < 3g− 3 for g ≥ 3,
hence hyperelliptic curves of genus g ≥ 3 have special moduli. Analogously,
trigonal curves of genus g ≥ 5 have special moduli because dim(M1

g,3) =
2g + 1 < 3g − 3 for g ≥ 5, and so on.

It was still an open problem to give a purely algebro-geometric proof
(in the style of Clebsch-Noether) of the irreducibility of Mg. Enriques in
1912 touched only marginally this question, while Severi addressed it in a
systematic way. Both of them thought to be able to reduce the problem to
a proof of the irreducibility of the family of plane curves of given genus g
and degree n having only nodes as singularities. This family is parametrized
by a locally closed subset Vn,g of the PN , N =

(

n+2
2

)

− 1, parameterizing all
plane curves of degree n. Every irreducible component of Vn,g has dimension

N − δ = 3n + g − 1, where δ =
(

n+1
2

)

− g is the number of nodes of any
curve in the family. Since for n >> 0 every curve of genus g is birationally
isomorphic to an irreducible plane curve of degree n with δ nodes, from the
irreducibility of Vn,g it would follow that of Mg, because by definition of
Mg there is a surjective morphism Vn,g → Mg.

Unluckily, both the proofs by Enriques and Severi ([62], Anhang F) are
incomplete as they stand. Both of them are of inductive nature and rely on
the possibility of letting any irreducible plane curve with δ nodes degenerate
to one with δ + 1 nodes (which was not justified by neither Enriques nor
Severi).

The problem of deciding whether Vn,g is irreducible for every n, g or not is
called ”the Severi problem”. A partial result by Arbarello and Cornalba [2]
states that Vn,g is irreducible for all n, g such that the Brill-Noether number
ρ(g, 2, n) = g − 3(g − n+ 2) is positive, i.e. in almost all cases in which the
morphism Vn,g → Mg has dense image (except the case ρ = 0). However,
their proof uses the irreducibility of Mg, hence their result cannot be used
to prove it.

In 1969 Deligne and Mumford [75] proved the irreducibility of Mg for
curves defined over an algebraically closed field of arbitrary characteristic,
by using the classical result topologically proven. A purely algebro-geometric
proof of the irreducibility of Mg was discovered only in 1982 by Fulton [15]:

it makes essential use of the compactification Hn,g, constructed by Harris
and Mumford, of the moduli space Hn,g of n-fold coverings of P1 of genus
g. The paper [16] by Fulton is devoted to the Severi problem.

Severi raised in [63] an important question about the moduli space of
curves, by conjecturing that Mg is rational, or at least unirational.

Recall that the first condition means that there exists a birational iso-
morphism between Mg and P3g−3, while unirational means that for some N

there exists a dominant rational map PN → Mg. Hence the unirationality
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of Mg would essentially correspond to the existence of a family of curves of
genus g parametrized by the points of an affine or projective space, varying
freely without any closed condition. Rationality, on the other hand, is of
course a much stronger property.

Severi’s conjecture relied on the obvious rationality of M1,1
∼= C and on

the unirationality of Mg for g ≤ 10, of which Severi gave a very elementary
proof, exploiting families of irreducible plane curves with nodes.

Here is his argument. Let us suppose (as indeed Severi did) that the
varieties Vn,g are irreducible. We know that if ρ(g, 2, n) ≥ 0, or equivalently
if n ≥ 2g/3 + 2, then Vn,g parameterizes a family of curves with general
moduli.

The idea is to show that if for every g ≤ 10 we take the minimum n
satisfying the above inequality, then the δ nodes of the varying curve vary
generically in P2, i.e. they describe a dense subset of (P2)(δ), the δ-fold
symmetric power of P2.

This is easily checked to be equivalent to the fact that, chosen generically δ
points in P2, there exist curves of degree n singular in those points: indeed,
since every point imposes three conditions on the curves of given degree
having it as a singular point, the above claim immediately follows from the
inequality 3δ <

(

n+2
2

)

holding in all those cases.

From the genericity of nodes and the rationality of (P2)(δ) it immediately
follows that Vn,g is rational, since the map

Vn,g → (P2)(δ)

sending p to the δ-uple of nodes of the curve parameterized by p has dense
image and linear systems (i.e., projective spaces) as fibers. Since Vn,g param-
eterizes curves with general moduli, the natural map Vn,g → Mg has dense
image, hence Mg is unirational. We point out that the irreducibility as-
sumption is easily checked in all considered cases: for instance, the result by
Arbarello and Cornalba quoted above works out all cases with ρ(g, 2, n) > 0,
hence all cases except g = 3, 6, 9 where it can be proven directly (indeed, for
g = 3, 6 is trivially true).

When g ≥ 11 and n ≥ 2g/3+2, the nodes of the curves parameterized by
Vn,g do not vary generically in P2, but they describe a locally closed subset

of (P2)(δ) whose geometry is unknown. For an interesting discussion of this
topic see [57].

For a long time this conjecture by Severi has remained widely open, except
for Igusa’s construction of M2, which implies its rationality.

In 1982 Harris and Mumford in [28] proved that for infinitely many values
of g (namely, all odd g ≥ 23) Mg is not unirational (we refer to [9] for an
exposition of the work by Harris and Mumford). Their result has been later
extended to all g ≥ 23 by Harris [26] and Eisenbud-Harris [10] with similar
methods. Indeed, at least for g ≥ 24 much more is true: as a function of h,
the dimension dim(H0(Mg,K

⊗h) increases as a polynomial of degree 3g−3,
thus meaning that Mg is a variety “of general type”, in a certain sense the
opposite of a unirational variety. For small values of g (g = 11, 12, 13) it has
instead been proven that Mg is unirational: see [8] and [60].

We also mention the seminal paper [45].
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Update. The Severi problem was finally solved by Harris [86] in the affir-
mative.

As far as the birational geometry of Mg is concerned, we report that the
unirationality of M14 was established by Verra in [98] and a proof that M22

is of general type was announced by Farkas [82].
The pioneering paper [45], computing the Chow ring of M2, opened the

road to further research by Faber (who addressed the cases g = 3, 4 in [80],
[81]) and by Izadi (who worked out the case g = 5 in [90], see also [84] for a
simpler proof).

In [85] Harer proved that the degree k rational cohomology group of Mg

is independent on g as soon as g >> k. These stable cohomology groups
form a graded commutative algebra, which Mumford [45] conjectured to be
generated by certain tautological classes κi of (real) dimension 2i. Such a
statement was finally proven by Madsen and Weiss [91] via algebraic topol-
ogy, but a purely geometric argument seems to be still elusive.

We point out that the moduli spaces Mg,n admit a natural compactifica-

tion Mg,n parameterizing isomorphism classes of pointed Deligne-Mumford
stable curves, which have at most simple nodes as singularities and a fi-
nite automorphism group. The computation of the rational cohomology
of Mg,n is still a widely open problem: a beautifully simple inductive ap-
proach, which turns out to be effective at least in low degree, was proposed
by Arbarello and Cornalba in [67].

9

Finally we turn to families of embedded projective curves. Classical ge-
ometers deeply investigated curves in P3. Both Noether and Halphen had
discovered that the curves of given degree n in P3 vary in different irreducible
families each of which has dimension ≥ 4n: the components of dimension 4n
were called regular, and the others irregular. The classification of these fam-
ilies and the investigation of their properties immediately turned out to be
a difficult problem: Halphen tried in vain to determine numerical invariants
discriminating the various irreducible families.

Some attempt was also tried by Severi, who was looking for standard
types of singular curves (polygonal curves, i.e. union of lines) to which any
nonsingular curve of P3 and more generally of Pr, could degenerate, thus
reducing to them the classification of families. This idea was very suggestive
but the claims made in in [62] and [63] were not corroborated by rigorous
arguments. The most important among the results stated by Severi claims
that nonsingular curves of degree n and genus g in Pr form one irreducible
family for ρ(g, r, n) ≥ 0.

Indeed, the Vorlesungen by Severi represent the last systematic attempt
to address the most relevant questions in the theory of algebraic curves with
the methods of classical geometry. We can say that they are the crowning
achievement of the program started by Clebsch and Noether, or at least of
its first phase. From hence on, geometers had to realize the inadequacy of
the geometric language of Severi and his predecessors. The main efforts were
thus focused for a long time to the foundations of algebraic geometry and
several classical problems were almost neglected. This is the reason why the
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investigation of families of projective curves was essentially stagnant until
the beginning of the sixties.

In 1961 Grothendieck proposed a new approach, exploiting the language
of schemes and functorial methods [23]. For every fixed numerical polyno-
mial p(X) ∈ Q[X] (i.e., such that p(d) ∈ Z for every d ∈ Z), he defined in
a functorial way a projective scheme Hilbrp(X), the so-called Hilbert scheme,

parametrizing the family of all closed subschemes of Pr having p(X) as
Hilbert polynomial (the universal family). These schemes are generaliza-
tions of Grassmannians, to which they reduce for suitable choices of p(X)

(namely, p(X) =
(

X+k
k

)

for the Grassmannian G(k, r) of subspaces of pro-
jective dimension k of Pr).

The local properties of Hilbrp(X) (which for brevity sake will be denoted by

Hilb whenever r and p(X) are inessential) at a closed point z correspond to
properties of the scheme X(z) ⊆ Pr parametrized by z. The Zariski tangent
space to Hilb at z is canonically isomorphic to H 0(X(z), N), where N is
the normal sheaf to X(z) in Pr, defined as N = Hom(I/I2,OX(z)), where
I ⊆ OPr is the ideal sheaf ofX(z) in Pr. For instance, ifX is a line in Pr, then
its normal sheaf is isomorphic to O(1)r−1 and H0(N) has dimension 2(r−1),
according to the fact that G(1, r) is nonsingular of dimension 2(r − 1).

The Hilbert scheme can be singular and even nonreduced, even at points
parameterizing irreducible and nonsingular curves or varieties: several patho-
logical examples are known, the first one due to Mumford [40]. A sufficient
criterion in order that Hilb is nonsingular in z is that H 1(X(z), N) = 0, but
this condition is not necessary at all, as very simple examples show (e.g.,
complete intersections of type (a, b) in P3, with a+ b ≥ 6).

In general, H1(X(z), N) contains the “obstructions” to the nonsingularity
of Hilb at z (in a technical sense which is possible to make precise), but not
all of its elements are necessarily obstructions: X(z) is said to be obstructed
if H1(X(z), N) contains nonzero obstructions, i.e. if Hilb is singular at z.

Both the local structure of Hilb and its global properties remain rather
mysterious. For example, conditions of local reducedness or analytic irre-
ducibility are not known. Our ignorance about the local properties of Hilb
makes the study of the global ones even more difficult.

A very general result by Hartshorne [29] states that, for every r and p(X),
Hilbrp(X) is connected. However, an explicit description of its irreducible

components turns out to be difficult from the very beginning (for instance,
[52] is devoted to a detailed study of Hilb33X+1).

Even the following simple question has no answer yet: do there exist irre-
ducible and nonsingular curves in P3 which are specializations of complete
intersections without being complete intersections?

The most interesting Hilbert schemes from the point of view of curves
are those corresponding to Pr and to polynomials p(X) = nX + 1 − g such
that n ≥ (r/r + 1)g + r, i.e. parameterizing curves of degree n and arith-
metic genus g with ρ(g, r, n) ≥ 0. A refinement of the theorem by Kleiman-
Laksov [37] and Kempf [35] guarantees that on every sufficiently general
curve C ∈ Mg there exists an L ∈ W r

d defining an embedding in Pr if
ρ(g, r, n) ≥ 0 (see [11] and [61]). Hence it easily follows that in this case
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there exists an irreducible component I r
n,g of Hilbrp(X) parametrizing a fam-

ily of curves generically nonsingular and with general moduli. The question
left unsolved by Severi translates into the problem of checking if there exists
another irreducible component of Hilbrp(X), besides Ir

n,g, generically param-

eterizing nonsingular and irreducible curves. It is known that I r
n,g is the

unique irreducible component consisting of curves with general moduli. In
the case ρ(g, r, n) > 0 this follows from a result of Fulton and Lazarsfeld
[17] combined with one by Gieseker [19], and in the case ρ(g, r, n) = 0 it has
been shown by Eisenbud and Harris.

It is clear that another component cannot exist if n is big enough with re-
spect to g, precisely if n ≥ 2g−1 (this easily follows from the irreducibility of
Mg and from the fact that the hyperplane section of every curve in the fam-
ily is necessarily nonspecial). This condition has been improved by Harris
[27] to n > (2r−1)g/(r+1)+1. Even in these cases, when the irreducibility
is known, the problem of proving it directly, without using the irreducibility
of Mg, remains. If instead ρ(g, r, n) < 0 there are many examples showing
that Hilbrp(X), p(X) = nX + 1− g, can have several irreducible components

of different dimensions, generically parametrizing irreducible and nonsingu-
lar curves. No estimates, even conjectural, are known about the number
and the dimension of such components. We only know that, due to general
reasons, each of them has dimension ≥ n(r + 1) − (g − 1)(r − 3).

The other question addressed by Severi, if any irreducible and nonsingu-
lar curve in Pr can be degenerated to a polygonal curve, is equivalent to
establishing if any irreducible component of Hilb generically parametrizing
nonsingular curves contains points corresponding to unions of lines.

In general, it is easier to decide if a singular curve in Pr can deform in Pr

becoming nonsingular (i.e., if it is “smoothable”): for smoothability criteria
of projective curves we refer to [30] and [61].

A very nice problem concerning the component I r
n,g ofHilbrp(X) in the case

ρ(g, r, n) ≥ 0 is the maximal rank conjecture (essentially due to Noether). It
claims that for all curves C(z) parametrized by a sufficiently general z ∈ I r

n,g

and for every d the restriction map

H0(Pr,O(d)) → H0(C(z),O(d))

has maximal rank (namely, it is either injective or surjective). In other
words, this means that if a curve contained in a hypersurface of degree d
has incomplete the linear series cut out by the hypersurfaces of degree d then
it is a special curve in the family. For instance, a curve of type (2, 4) on a
quadric (both nonsingular) is not of maximal degree because quadrics cut
out an incomplete linear series, but by moving it in Hilb we can deform it
outside the quadric and make it to be of maximal rank. This conjecture can
be stated for every component of Hilb, not necessarily with general moduli,
but rather easy examples show that it does not hold in such a general form.
Partial results about the conjecture have been proven in [31] and [4].

For an interesting discussion of problems concerning the Hilbert scheme
see [27]. Many of the arguments mentioned in this notes are fully dealt with
in the book [68] by Arbarello, Cornalba, Griffiths, and Harris.
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Update. A self-contained thorough introduction to algebraic deformation
theory providing the tools needed in the local study of Hilbert schemes is
now available [96].

The local structure of Hilbert schemes can be arbitrarily bad: indeed, as
shown in [97], every singularity of finite type over Z appears on the Hilbert
scheme of curves in projective space.

As far as the fundamental connectedness property of the Hilbert scheme,
a few remarks are in order (see [89]). First of all, as noted by Halphen and
Weyr already in 1874, the Hilbert scheme of smooth curves of given degree
and genus in P3 need not to be connected. Next, Hartshorne’s connected-
ness theorem is rather unsatisfactory in that, even to connect one smooth
curve to another smooth curve, one cannot avoid passing by way of nonre-
duced schemes with embedded points and isolated points. So the following
question sounds natural: is the Hilbert scheme of locally Cohen-Macaulay
curves (namely, one dimensional schemes with no embedded points or iso-
lated points) of degree d and arithmetic genus g in P3 connected? For a
survey of partial answers we refer to [89].

Unluckily, both statements of Severi discussed above turn out to be false.
Indeed, examples by Ein and Harris ([76] and [77]) show that the Hilbert
scheme of curves of degree d and genus g in Pr can be reducible for d ≥ g+r
and exceptional components arise for positive values of the Brill-Noether
number (see for instance [79]).

On the other hand, the problem of deciding if every family of space curves
contains limit curves which are composed of lines is usually referred to as
Zeuthen’s problem and was actually proposed in 1901 as a prize problem
by the Royal Danish Academy, which remained without a winner. Nodal
curves whose irreducible components are lines are now called stick figures
and a negative answer to Zeuthen’s problem was provided by Hartshorne in
[88] as an application of the already mentioned theory of generalized divisors.

Finally, the maximal rank conjecture in Pr was proved by Ballico and
Ellia for any d ≥ g + r (see [69] for r = 3, [70] for r = 4, and [71] for
r ≥ 5). Then, in the subsequent paper [72], they find a component of the
Hilbert scheme such that the generic member satisfies the maximal rank
condition in a much wider range (d, g, n). Roughly speaking, they borrow
from Hirschowitz the so-called méthode d’Horace to construct a suitable
reducible curve X in Pr satisfying the conjecture. Next, they apply [61] to
deform X to a nonsingular curve having the same degree and arithmetic
genus. In the case of space curves, further results are obtained in [83] via a
clever application of stick figures.
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