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Introduction

Let X denote a smooth projective nonsingular curve of genus g and let σ be a nontrivial
line bundle on X such that σ2 = 0. The line bundle L = ωσ, where ω is the canonical
line bundle on X, is called a Prym-canonical line bundle; if L is globally generated and
birationally very ample the curve ϕL(X) ⊂ Pg−2 is a Prym-canonical curve (where ϕL :
X → Pg−2 denotes the morphism defined by the global sections of L). In this paper
we study the linear system of quadrics containing a Prym-canonical curve, proving some
results wich relate its base locus to the Clifford index of the curve.

We consider curves X of Clifford index 3 or more, in which case any Prym-canonical
line bundle is very ample and normally generated. From results of Green and Lazarsfeld it
follows immediately that if Cliff(X) ≥ 5 then ϕL(X) is the intersection of the quadrics
which contain it, in symbols: ⋂

Q⊃ϕL(X)

Q = ϕL(X)

If 3 ≤ Cliff(X) ≤ 4 this does not happen any more in general. If Cliff(X) = 4 then
ϕL(X) can have at most finitely many trisecants and we have⋂

Q⊃ϕL(X)

Q = ϕL(X) ∪ (trisecants)

This is again consequence of a result of Green-Lazarsfeld.
If Cliff(X) = 3 the situation can be more complicated. We study this case and we

prove that if g ≥ 9 then ⋂
Q⊃ϕL(X)

Q ⊂ ϕL(X) ∪ Λ1 ∪ · · · ∪ Λk

where Λ1, . . . ,Λk are proper linear subspaces of Pg−2. We also give examples of Prym
canonical curves of Clifford index 3 and 4 that have trisecants and therefore are not inter-
section of quadrics (remark (2.7)).

The motivation for this work came from an attempt to understand the Torelli problem
for Prym varieties. According to one of the known strategies for the proof of the generic
Torelli theorem (see [D] and [T]) one of the steps of the proof is to show that the Prym
canonical model of a curve X, relative to L = ωσ where σ is the line bundle which
defines a given unramified double cover, can be recovered from the quadrics containing
the curve. Our analysis shows that this is indeed the case if Cliff(X) ≥ 3 because⋂

Q⊃ϕL(X) Q contains only one nondegenerate curve; in particular it contains only one
Prym-canonical curve. We discuss this matter in section 3. In section 1 we recall the
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results of Green-Lazarsfeld that we need. Section 2 deals with Prym canonical curves and
quadrics containing them.

We warmly thank G. Martens for some helpul conversations. This work has been
completed during visits of the first author to the Dipartimento di Matematica della Terza
Università di Roma and of the second author to the Mathematisches Institut der Univer-
sitat Erlangen-Nurnberg. We thank these institutions for their hospitality.

We work over the field C of complex numbers. For all the notation used and not
explained we refer the reader to [ACGH].

1. The results of Green-Lazarsfeld

In this section we introduce the notions and the results we will need in section 2. In
what follows we denote by X a smooth connected projective curve of genus g. The Clifford
index of a line bundle M ∈ Pic(X) is defined as:

Cliff(M) := deg(M)− 2h0(M) + 2

and the Clifford index of X as

Cliff(X) := min{Cliff(M) : h0(M) ≥ 2, h1(M) ≥ 2}

If h0(M) ≥ 2 and h1(M) ≥ 2 then one says that M contributes to the Clifford index of
X. If moreover Cliff(M) = Cliff(X) we say that M computes the Clifford index of X.

Note that Cliff(M) = Cliff(ωM−1) for every M ∈ Pic(X)
It is well known that

0 ≤ Cliff(X) ≤ [
g − 1

2
]

and the second inequality is an equality if X is a sufficiently general curve of genus g (see
[La]).

Let L ∈ Pic(X) be a globally generated line bundle. We denote by |L| the complete
linear system defined by L, and by

ϕL : X → P(H0(L))˘= P(H1(ωL−1))

the morphism defined by L. Recall that L is said to be normally generated if it is very
ample and ϕL(X) is projectively normal, equivalently if the natural homomorphism:

k⊗
H0(L) → H0(Lk)

is surjective for each k.
We will need the following result of Green and Lazarsfeld.

(1.1) Theorem(Green-Lazarsfeld) Let L be a very ample line bundle on X such
that

deg(L) ≥ 2g + 1− 2h1(L)− Cliff(X)
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Then L is normally generated.

Proof See [La], theorem 2.2.1.

We will need another result of Green-Lazarsfeld whose proof is outlined in [La], propo-
sition 2.4.2. Since we will state it in a slightly different form from the one given there, we
will give a complete proof of it. We start with a lemma.

(1.2) Lemma Assume that L is a very ample line bundle on X and that the natural
map

H0(L)⊗H0(L) → H0(L2)

is surjective. Let p ∈ P(H1(ωL−1)). Then p ∈
⋂

Q⊃ϕL(X) Q if and only if there is an

extension η ∈ Ext1(L, ωL−1) such that the corresponding coboundary map

δη : H0(L) → H1(ωL−1)

has image equal to the 1-dimensional vector subspace that defines p.

Proof Let P = P(H0(L))˘ be the ambient space of ϕL(X). Consider the commuta-
tive diagram of linear maps:

H0(L)⊗H0(L)
s ↓ ↘ µ

ρ : S2H0(L) → H0(L2)

A hyperplane W of S2H0(L) represents a codimension 1 linear system of quadrics of P.
In particular the linear system of all quadrics through p is represented by the hyperplane
s(Vp ⊗H0(L)) of S2H0(L), where Vp ⊂ H0(L) is the hyperplane corresponding to p.

To a nonzero linear form η : H0(L2) → C corresponds the linear system ker(η · ρ),
which contains all the quadrics containing ϕL(X); this linear system coincides with
s(Vp ⊗H0(L)) if and only if p ∈

⋂
Q⊃ϕL(X) Q.

Under the identification

Ext1(L, ωL−1) = H0(L2)˘

a linear form η on H0(L2) defines an extension

η : 0 → ωL−1 → E → L → 0

The condition that the coboundary map

δη : H0(L) → H1(ωL−1)

has 1-dimensional image equal to the subspace representing p is equivalent to the condition
that

ker(δη) = Vp
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and this is in turn equivalent to the condition that

ker(η · µ) = Vp ⊗H0(L)

This concludes the proof. qed

(1.3) Theorem (Green-Lazarsfeld) Let L be a very ample line bundle on X such
that

deg(L) ≥ 2g + 2− 2h1(L)− Cliff(X) (1)

Then ⋂
Q⊃ϕL(X)

Q = ϕL(X) ∪ (trisecants)

Proof The inclusion ⊃ is obvious. Conversely, let p ∈
⋂

Q⊃ϕL(X) Q, and assume that
p 6∈ X. We will show that p belongs to a trisecant of X. Let

η : 0 → ωL−1 → E → L → 0

be the extension associated to p as in lemma (1.2). Applying Segre’s theorem to E (see
[S] or [L] for a modern proof) we deduce the existence of an extension

0 → A → E → ωL−1 → 0

such that deg(A) ≥ g−2
2 , or equivalently:

deg(A) ≥ [
g − 1

2
] (2)

On the other hand from (1) one immediately computes that:

Cliff(X) ≥ Cliff(ωL−1) + 2

which implies h1(L) ≤ 1 and moreover implies:

deg(ωL−1) ≤ 2h1(L) + Cliff(X)− 4 ≤ [
g − 1

2
]− 2

Therefore in the diagram:

0
↓
A
↓ ↘

0 → ωL−1 → E → L → 0
↓

ωA−1

↓
0
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the diagonal arrow A → L is not zero. It follows that A = L(−D), with D > 0.
Note that the linear span 〈D〉 of D in P contains p: this follows immediately from the

inclusion
H0(L(−D)) ⊂ ker(δη)

and from the fact that ker(δη) is the set of hyperplanes containing p. Computing the
cohomology sequence of both extensions we get:

h0(E)
{

= h0(L) + h0(ωL−1)− 1 = g − Cliff(L)
≤ h0(A) + h0(ωA−1) = g + 1− Cliff(A)

which gives:
Cliff(A) ≤ Cliff(L) + 1 (3)

Writing:
Cliff(A) = deg(L)− deg(D)− 2h0(L(−D)) + 2

Cliff(L) + 1 = deg(L)− 2h0(L) + 3

we deduce from (3) the following inequality:

deg(D) ≥ 2[h0(L)− h0(L(−D))]− 1 = 2ε− 1

where we have defined:
ε := h0(L)− h0(L(−D))

We have the following possibilities:
ε = 0: since L is globally generated this implies D = 0: hence η splits, a contradiction.
ε = 1: since L is very ample this implies that deg(D) = 1 and p ∈ X, a contradiction

again.
ε = 2: the subspace 〈D〉 is a trisecant line containing p.
ε ≥ 3: in this case we have:

deg(A)− 2h0(A) + 2 = Cliff(A) ≤ Cliff(L) + 1 <

< Cliff(X) ≤ [
g − 1

2
] ≤ deg(A)

where the first inequality is (3), the second is implicit in (1), the last is (2). This implies
h0(A) > 1. On the other hand we also have:

h1(A) = h0(L)− deg(L) + g − 1− ε + deg(D) =

= h1(L)− ε + deg(D) ≥ h1(L) + ε− 1 ≥ h1(L) + 2 ≥ 2

We deduce that A contributes to Cliff(X). Therefore:

Cliff(X) ≤ Cliff(A) ≤ Cliff(L) + 1 < Cliff(X)
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where the second inequality is (3) and the third descends from (1). We have a contradiction,
hence the case ε ≥ 3 is impossible. qed

2. Prym canonical curves

In this section we let L = ωσ, where ω = ωX is the canonical line bundle on X and
σ is a nontrivial line bundle such that σ2 = 0. If L is globally generated then the image
of ϕL : X → Pg−2 is a (possibly singular) curve of degree 2g − 2 called a Prym canonical
model of X.

(2.1) Lemma If Cliff(X) ≥ 3 then L is normally generated.

Proof Assume that there is x ∈ X such that h0(L(−x)) = h0(L). Then:

1 = h1(L(−x)) = h0(σ(x))

Therefore there is a point y ∈ X, y 6= x, such that 2y ∼ 2x. This means that X is
hyperelliptic, a contradiction. Therefore L is globally generated.

Assume now that
h0(L(−x− y)) = h0(L)− 1

for some x, y ∈ X. Then:

1 = h1(L(−x− y)) = h0(σ(x + y))

This means that there exist points w, z ∈ X such that

w + z 6∼ x + y, 2(w + z) ∼ 2(x + y)

hence X has a g1
d with d ≤ 4, a contradiction. Therefore L is very ample.

The normal generation of L follows from theorem (1.1). qed

(2.2) Proposition Suppose that L is very ample and that ϕL(X) has a trisecant.
Then Cliff(X) ≤ 4

Proof From the hypothesis it follows that there is an effective divisor x + y + z on
X such that h0(L(−x− y − z)) = h0(L)− 2. Then

1 = h1(L(−x− y − z)) = h0(σ(x + y + z)).

Hence there is an effective divisor u + v + w such that u + v + w 6∼ x + y + z and
2(x + y + z) ∼ 2(u + v + w). This implies that X has a g1

d with d ≤ 6. qed

(2.3) Corollary If Cliff(X) ≥ 5 then

X =
⋂

Q⊃ϕL(X)

Q
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Proof Since L is very ample by proposition (2.1), we are in the hypothesis of theorem
(1.3): then the conclusion follows from proposition (2.2). qed

(2.4) Proposition If 3 ≤ Cliff(X ≤ 4 and g ≥ 9 then ϕL(X) has at most finitely
many trisecants.

Proof From the proof of Proposition (2.2) it follows that each pair of trisecants `, `′

defines linear equivalences

u + v + w − (x + y + z) ∼ σ ∼ u′ + v′ + w′ − (x′ + y′ + z′) (4)

From (4) it follows that the divisor x + y + z + u′ + v′ + w′ defines a g1
d with d ≤ 6,

and we deduce that X has a 2-dimensional family of g1
6 ’s. From Keem’s theorem (see

[ACGH], page 200) and its extension by Coppens to the cases g = 9, 10 ([C]), it follows
that Cliff(X) ≤ 2, a contradiction. qed

(2.5) Corollary If Cliff(X) = 4 then⋂
Q⊃ϕL(X)

Q = ϕL(X) ∪ `1 ∪ . . . ∪ `k

where `1, . . . , `k are the trisecants of ϕL(X).

Proof By theorem (1.3) we have⋂
Q⊃ϕL(X)

Q = ϕL(X) ∪ (trisecants)

The conclusion follows from proposition (2.4). qed

We will next consider the case Cliff(X) = 3.

(2.6) Proposition Assume that Cliff(X) = 3 and g ≥ 9. Then⋂
Q⊃ϕL(X)

Q ⊂ ϕL(X) ∪ Λ1 ∪ · · · ∪ Λk

where Λ1, . . . ,Λk are proper linear subspaces of Pg−2.

Proof Let p ∈
⋂

Q⊃ϕL(X) Q. By lemma (2.1) the hypotheses of lemma (1.2) are
satisfied and therefore, as in the proof of theorem (1.3), we can find extensions:

0
↓
A
↓ ↘

0 → ωL−1 → E → L → 0
↓

ωA−1

↓
0
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with A such that inequality (2) is satisfied. We may choose A as a subbundle of E of
maximal degree. Since deg(ωL−1) = 0 the diagonal arrow A → L is not zero. Therefore
A = L(−D) with D > 0 and p ∈ 〈D〉. By [LN], lemma 2.1, the line bundle A determines
the divisor D and thus the linear span 〈D〉 uniquely. As in the proof of theorem (1.3) one
shows that inequality (3) is satisfied, which in this case takes the form:

Cliff(A) ≤ 3 (5)

Therefore we obtain the following chain of inequalities:

deg(A)− 2h0(A) + 2 = Cliff(A) ≤ 3 =

= Cliff(X) ≤ [
g − 1

2
] ≤ deg(A) (6)

From (6) we immediately deduce that h0(A) ≥ 1 and if h0(A) = 1 then 7 ≤ g ≤ 8 which
contradicts our assumptions. Therefore we may assume h0(A) ≥ 2.

From (5) we deduce the inequality:

deg(D) ≥ 2[g − 1− h0(L(−D))]− 1 = 2ε− 1 (7)

where we have defined

ε := g − 1− h0(L(−D)) = dim(〈D〉) + 1

.
The cases ε = 0, 1 are impossible as above because L is very ample. If ε = 2 then

〈D〉 is a trisecant line containing p: by proposition (2.4) we know that there are at most
finitely many trisecants.

Assume now that ε ≥ 3. Then we obtain:

h1(A) = h0(A)− deg(A) + g − 1 = h0(L)− ε− [deg(L)− deg(D)] + g − 1 =

= deg(D)− ε ≥ ε− 1 ≥ 2 (8)

It follows that A contributes to Cliff(X) and actually computes it. Therefore

Cliff(A) = Cliff(X) = 3

and we have the following equalities, deduced from (7) and (8):

deg(D) = 2ε− 1

h1(A) = deg(D)− ε = ε− 1 = dim(〈D〉)

and:
3 = deg(A)− 2h0(A) + 2
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which follows from (6).
Assume deg(A) ≤ g − 1. Then by [CM], theorem C, we have deg(A) ≤ 10 and it

follows that one of the following cases occurs:

|A| dim(〈D〉)
g1
5 g − 4

g2
7 g − 5

g3
9 g − 6

From the hypothesis Cliff(X) = 3 it follows that in all cases |A| is base point free and
simple. By [C] there are finitely many |A|’s as above on X unless X is a plane sextic,
which is impossible because Cliff(X) = 3. Therefore only finitely many such spaces 〈D〉
can occur in this case.

Assume finally that deg(A) ≥ g. Then deg(ωA−1) ≤ g − 1 and theorem C of [CM]
applies again to ωA−1. We deduce that deg(ωA−1) ≤ 10 and it follows that one of the
following cases occurs:

|ωA−1| dim(〈D〉)
g1
5 2

g2
7 3

g3
9 4

As already shown, there are finitely many such linear series on X and it follows that also
in this case finitely many such spaces 〈D〉 can occur.

Summarizing we see that, since the point p is contained in one of the spaces 〈D〉 and
since there are only finitely many such spaces, all of dimension strictly smaller than g− 2,
the conclusion follows. qed

(2.7) Remark One might ask whether for Cliff(X) = 3, 4 the curve ϕL(X) ac-
tually admits trisecants. The following examples show that this is the case. Consider a
smooth plane curve Y of degree 7 (and genus 15) having two distinct tritangent lines λ1, λ2

concurring at a point p ∈ Y . Assuming for a moment the existence of this curve, let x, y, z
(resp. u, v, w) be the points of contact of Y with λ1 (resp. with λ2). Then we have the
linear equivalence

p + 2x + 2y + 2z ∼ p + 2u + 2v + 2w

from which we deduce that the line bundle σ := O(x + y + z− u− v−w) satisfies σ2 = 0.
The curve ϕL(Y ) ⊂ P13, where L = ωσ, has the two trisecants 〈x+y + z〉 and 〈u+v +w〉.
We have Cliff(Y ) = 3.

Similarly consider a plane irreducible curve Z of degree 8 and genus 20 having an
ordinary double point p and two tritangent lines λ1, λ2 concurring at p. Assuming the
existence of Z, let x, y, z (resp. u, v, w) be the points of contact of Z with λ1 (resp. with
λ2). On the normalization Ẑ of Z consider the line bundle σ := O(x + y + z − u− v−w).
Then σ2 = 0, and the curve ϕL(Ẑ) of P18, where L = ωσ, has the two trisecants 〈x+y+z〉
and 〈u + v + w〉. We have Cliff(Ẑ) = 4.
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The existence of the curve Y is shown as follows. Start with three distinct lines
λ1, λ2, λ in P2 with a common point p. Then consider irreducible conics C1, C2, C3 tangent
to λ1 and to λ2, and sufficiently general with this property, and a general cubic curve E.
Now let

Y ′ = C1 + C2 + C3 + λ, Y ′′ = 2λ1 + 2λ2 + E

Then a general curve Y belonging to the pencil of Y ′ and Y ′′ has the required properties.
Infact all the base points of the pencil are smooth for either Y ′ or Y ′′: therefore Y is
smooth. Moreover Y is tangent λi at the three points C1 ∩λi, C2 ∩λi and C3 ∩λi because
Y ′ and Y ′′ are.

The existence of Z is proved similarly, replacing E with a general quartic F , and λ
with two general lines λ′, λ′′ through p.

3. Relation with the Torelli problem for Prym varieties

Let Rg denote the moduli space of connected etale double coverings f : X̂ → X with
X of genus g, and by Ag−1 the moduli space of principally polarized abelian varieties of
dimension g − 1. Associating to a double cover f : X̂ → X its Prym variety one defines a
morphism

pg : Rg → Ag−1

called the Prym map (see [LB]). The Torelli problem is the following:

(3.1) Question At which points of Rg is pg injective ?

A complete answer to this question is not known. The following generic result is
known:

(3.2) Generic Torelli theorem for Prym varieties: For g ≥ 7 the Prym map
pg is generically injective.

Proofs of theorem (3.2) have been given by Friedman-Smith in 1982 ([FS]),by Kanev
for g ≥ 9 in 1983 ([K]), by Welters in 1987 ([W]), and by Debarre in 1989 ([D]).

On the negative side R. Donagi showed in [Do] that injectivity of pg fails at the double
covers of curves having a base point free g1

4 . He also conjectured that this is the only case
where injectivity of pg fails. Subsequently Verra showed in [V] that pg is not injective also
at the double covers of plane nonsingular sextics, thus giving a counterexample to Donagi’s
conjecture. The results of Donagi and Verra are summarized in the following statement:

(3.3) pg is not injective at double covers of curves X such that Cliff(X) = 2.

It is natural to ask whether the following modified form of Donagi’s conjecture is true:

(3.4) Modified Donagi’s Conjecture: pg is injective at double covers of curves
X such that Cliff(X) ≥ 3.
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One of the strategies of proof of theorem (3.2), proposed in [T] (but not completely
carried out), and in [D], and analogous to the proof of a generic version of the classical
theorem of Torelli given by Green in [G], consists of two main steps.

The first step is to show that for a given unramified double cover f : X̂ → X defined by
a nontrivial line bundle σ such that σ2 = 0, the projectivized tangent cones at the double
points of the theta divisor of the Prym variety generate the linear system of quadrics
containing the Prym canonical curve ϕL(X), where L = ωσ. This step has been carried
out by Debarre for generic double covers using a degeneration argument; it parallels the
result proved by M. Green in [G] for the tangent cones of the theta divisor of any non
hyperelliptic jacobians.

The second step consists in proving that ϕL(X) can be recovered from
⋂

Q⊃ϕL(X) Q.
This has also been shown by Debarre for generic Prym canonical curves.

Our results of section 2 show that the second step can be carried out for the unramified
double covers of every curve X having Clifford index 3 or more. Infact our analysis shows
that ϕL(X) is the only nondegenerate curve contained in

⋂
Q⊃ϕL(X) Q and therefore can be

recovered from the quadrics containing it. This implies that conjecture (3.4) can fail only
if the first step just described fails for some curve of Clifford index 3 or more. Therefore
our results give some new evidence for conjecture (3.4).
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