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Introduction

The ideal defining a canonical curve was classically studied by Max Noéther,
Enriques, Petri and Babbage [B]. Recently the subject was again brought to
light by Bernard Saint-Donat and David Mumford.

The fundamental result is that the ideal of a canonical, non-hyperelliptic,
curve C, of genus p>3, is generated by quadratic forms, with the exception of
two cases: when C lies on a non-singular ruled surface of degree p—2 in IP?~!
(in which case C is trigonal), or else when p=6 and C is contained in the
Veronese surface of IP° (in which case C has a g2).

More generally it is natural to ask what can be said about the ideal I2 of an
irreducible curve C<IP'~* of genus p, on which the hyperplanes cut a complete
linear series |D|. When D is non-special and deg D>3p+1 the answer is simple:
17 is generated by quadratic forms (see [M-2]). When D is special the situation is
more complicated.

To this case is devoted the central part of this paper, which closely follows
Petri’s approach. The result is the following. Take a basis x, ..., x, of H*(D) and
a basis y,, ..., y, of H*(K —D). The X;y;'s can be naturally viewed as elements of
HC°(K), spanning a sub-vector space of H°(K) whose codimension we call t.
Choosing z,,...,z.€ H°(K) so that the x,y;s and the z’s generate H°(K), we
consider relations of the following type:

(1) Zaijxiyj:()a
2 Y PPx)y;+Y PV(x)z,=0

(the P (x)’s are forms of degree p in the x’s).

It is then possible to show that every element of I2 can be obtained by
eliminating the y's and the z’s from the above relations. There are few possible
exceptions to that rule and they are completely analogous to the ones occurring
in the classical case D=K.
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This theorem was stated by K. Petri in [P-2]. In its proof a central role is
played by Petri’s analysis of the natural map [P-1]

@ S*H' (D)@ H(K)—— @ H°(pD+K).

p=0 p20
The kernel I§-? of u, provides, after natural manipulations, the basic relations of
type (1) and (). ThlS kernel is a @ S? H°(D)-module in which two different

kinds of data coexist. The mtrmsxc data coming from the ideal I£, of the
canonically embedded curve, and the extrinsic ones coming from the 1deal 17 of
the special curve CcIP'~

The study of this “semicanonical ideal” is carried out in the first three
sections. The fourth section deals with the ideal I2, and there we analyse the
particular case of a Klein’s canonical curve, (i.e. one for which there exists a
positive integer d with |dD|=|K]). These curves appear, in a natural way, as
sections of canonically embedded varieties.

The study of Klein’s canonical curves leads us in fact, in the last section, to
another generalization of the Max Noether-Enriques-Petri thecorem. The follow-
ing. Given a d-dimensional variety V <IP", canonically embedded and arithmeti-
cally Cohen Macaulay the ideal I (V) of V' is generated by forms of degree <d+1,
with few possible exceptions. The exceptional cases can be easily described, and
the entire result particularizes to the classical one when V is a canonically
embedded curve.

The study of the exceptional cases turned out to be linked with Griffiths and
Harris’ recent work on extremal varieties [G-H]. For example we can easily
show that exceptional Klein’s canonical curves are Castelnuovo’s curves, (Theor.
4.7)).

At the end of §4 some parenthetical remarks are made about an old moduli
problem concerning special divisors. It may be possible that Petri’s machinery
could bring some light to those questions.

IKD

We thank Phillip Griffiths and Joseph Harris for pointing out to us the
very interesting relations between their extremal varieties and our exceptional
cases. We also thank Maurizio Cornalba for a number of very useful comments
on this paper.

§ 1. General Remarks

Let C be an irreducible complete non-singular algebraic curve of genus p>0
defined over an algebraically closed field IK. Given a sheaf L, and a divisor D on
C we shall briefly denote by H'(D ® L) the cohomology group H'(C,0(D)® L)
whose dimension will be denoted by h'(D ® L).

The so called “base point free pencil trick” states that, for any pair of
invertible sheaves L and M, on C, and for any pair of sections s, and s, of L,
having no common zeroes, the kernel of the map

H(M)s, @ H*(M)s, » H' (M ®L)
(ty, )t sy 41,58,

is isomorphic to H*(M ® L™ 1).
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We shall make frequent use of this elementary fact whose proof is given in
[S1.

Throughout the entire paper a canonical divisor will be denoted by K and, as
usual, the complete linear series containing a divisor D will be denoted by |D|. If
pK>D, p=1, the elements of H’(pK —D) will be thought of as regular p-fold
differentials having zeros at D.

Our first aim is to prove a sort of generalized Noéther’s theorem in which the
canonical divisor on C interplays with the extrinsic datum of an arbitrary
positive divisor D.

(1.1) Lemma. Let |D| be a base point free pencil. Then, for every positive integer
p, the image of the natural map

u,: S"H(D)Q H(K)—~H°(K+pD)
is of codimension p—1 in H°(K +pD).

The case p=1 is a straightforward consequence of the base point free pencil
trick and Riemann-Roch theorem. Let now p=2. We have a commutative
diagram

«, SPHYD)Q HY(K) - w
PH°(K+2D).

»

H(D)®@ H*(D)® H°(K)

H°(D)® H°(K + D)

The case p=1 implies that w is surjective. Obviously n too is surjective.
Therefore dimIm(u,)=dimIm(v) and the base point free pencil trick gives
dimkerv=p. Thus dimImv=2(p+n—1)—p=h*(K+2D)~1 where n=degD.
As a consequence of the case p=2 we can say that H°(K +2D) is generated by
Imv and by an element ne H°(K+2D)~Imuv. Let s, and s, be generators for
H°(D). Notice that, by Castelnuovo’s lemma ([M-2]) applied to the map v:
H°(D)® H°(K +(v—1)D)—> H°(K +vD), every element in H°(K +vD), v 3, may

p
be written in the form Y P ¢,+ P~ %y, where P* denotes a form of degree p

i=1
in s; and s,, and @,, ..., @, is a basis of H°(K). We now prove the lemma by
induction on p. Assume it is true for the positive integers less than p. Consider
the following diagram:

2 S STHUD)YQH(K) %
K)“\,, /,-/'H (K +pD).

H(D)® H*(K +(p—1)D)

(12) H'(D)®S*~' H(D)® H'(

We have
(1.3) dimIm(u,)=dim Im(w)—dim (ker (v) " Im (w)).
By induction

(14) dimIm(W)=2[h°K +(p—1)D)—p+2]=2(p+(p—Dn—p+1).
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Also the elements of H(D)® H°(K +(p—1)D) can be identified with pairs
(5, ®4, 5,®4,) where 4,=) P¥~ Vo, +P?" ¥y, i=1,2. Clearly the elements of

J
Imw are of type (s, ® Y P~V ;, 5, @) P¥~ " ¢)). On the other hand the base
j j

point free pencil trick gjives

Ker(v)={(s, ®s,h, —s,®s,h): he H*(K+(p—2)D)};
we now prove that

Ker()nIm(w)={(s; ®s, /', —5,®sK): Kelm(u,_,)}.

First observe that among the elements of type 9~ ¥y there are exactly p—2
linearly independent ones. Also, as we noticed, those elements generate H°(K
+(p—1)D) modulo Im(u,_,). It follows then by the induction that non-zero
elements of type Q¥~»#n do not belong to Im(u,_,). Therefore writing h
=Y 0¥ ?¢,+Q% Yy and imposing the condition s,helm(u, ,) we get h
=W elm(u,_,). Therefore dimKer(v)nIm(w)=dimImu,_,. The lemma fol-
lows by using (1.2), (1.3) and the induction hypothesis.
We shall need the following classical result.

(1.5) Lemma. Let C be an irreducible curve in IP", which is not contained in any
hyperplane. Then, for every s<r—2, s+ 1 generic points P,,...,P._ on C span a
IP* such that - C=P,+---+P_ ;.

The assertion is obviously true when r=3 and s=1, since, as is well known, a
non-planar curve in IP? does not possess oo? trisecants. The case s=1, r=3 can
be reduced to the preceding by projecting C from a generic IP"~# of IP", into IP3,
The general case is then proved by induction on s by projecting C on a
hyperplane, from a generic point of C.

(1.6) Theorem. Let |D| be a complete linear series on C free from base points
and such that h°(D)=123. Furthermore assume that |D| defines a birational
morphism

np: Cony(C)= P,
Then the natural map

@u,: @ S*H(D)QH(K)— @ H°(K +pD)
pz0

pz0
is surjective.

Let n=degD. Let a=P;+---+ P be a generic positive divisor on C of degree
I-2. Then our hypothesis on D, together with Lemma (1.5), imply that |D —a] is
a base point free pencil and that h'(D)=h*(D —a). Let D*=0(D)® O,

The exact sequence

0-0(D—a)—0(D)—D*—0
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induces an exact commutative diagram (p=1)

0>H(D—a)@H(K+(p~1)D)»H (D)@ H* (K +(p—1)D)» H*(D*) @ H*(K +(p— 1) D)~

0 HO(K +pD —a) - H°(K +pD) & H'D*®(K+(p—1)D) —
| | |
sD—a,K+(p-1)D) —  s(D,K+(p-1)D) —  s(D* K+(p—1)D)

| |

0 0 0

where s(4, B)=coker [H%(4)® H°(B)— H°(4 ® B)]. We first consider the case p
=1. The base point free pencil trick gives

dimker (6)=h°(K —D +a)=h°(K —~D)=h'(D)
so that
dims(D—a, K)=h(K + D —a)—2p+h'(D)=0.

By Castelnuovo’s lemma ([M-2]) s(D*, K)=0, so that s(D, K)=0, proving the
surjectivity of u,;. When p=2 we have a commutative diagram of type (1.2).
Therefore it is sufficient, by induction, to show that v is surjective. For this we
proceed exactly as in the case p=1.

§ 2. The “Semicanonical Ideal” of a Special Curve

From now on we shall assume that C is non-hyperelliptic. Let us fix once and
for all a special linear series |D| of degree n on C free from base points and
defining a birational morphism

fip: Comp(C)= P!

where [ =h°(D).

We set i(D)=h'(D). We fix a divisor D'e|K —D|. We also fix, once and for
all, I points P, ..., B, on C in generic position and a basis ¢, ..., ¢, of H°(K) in
such a way that the first [ elements @,, ..., @, form a basis of H°(K —D")~H°(D)
having the property that

(pi(I)j)z(sij’ i,j=1,.,,,l_

Furthermore we can assume that the divisors (¢,)—D' and {@,)—D’ consist,
each, of distinct points. So that if we set a=P;+---+F, ¢, and ¢, vanish of
order 1 at the points of a.
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(2.1) Notation. Let A be a special divisor. Consider the natural map S? H®(K
—A)® H°(K)—S**1(K). We shall denote by S’ H°(K —A4)- H°(K) the image of
this map.

We have the following diagram of degree 0 morphisms of graded
@ S?H°(K —D')-modules

pZ0
@57+ HOK)—— @ H(p+ 1K),
P2 g pZ y
@S"HOK D)-H°(K)—=— @OHO (p+1)K—pD",
i v ” )
@ 57+ HO(K =D)—"— @ H((p+ 1) (K ~D).
P2 pz0
Here i, is the natural homomorphism while u, and d, are restrictions of i,.

From Theorem (1.6) it follows that i, and u, are surjective. As usual one says
that nD(C) is projectively normal if d,_ is surjective. We set

@ If,  =Keri,,
K.D __ K.D
I;7= @ I =Keru,,
p=0

=@ I, ,=Kerd,.
p20

IX is the ideal of the canonically embedded curve while I2 is the ideal of
,(C)cP'- .
In this section we shall study the graded @ S”H°(K —D’)-module %P,

=0

which, by abuse of language, we may call the sen;)lcanomcal ideal of the special
curve m,(C). We set IS D—I We shall see that I, is generated by I, and I, if
>4, and it is generated by 12 and I, if [=3. Moreover we shall see that, if =4,
1, is generated by I, with the possible exception of two cases: the case in which
n,(C) lies on a ruled surface of degree [—2 in IP'~% and the case in which (=6
and 7, (C) is contained in the Veronese surface.

This result is essentially due to Petri and the case D=K is exactly the Max
Noéther-Enriques-Petri theorem proved by Bernard Saint-Donat in [S].

Our treatment will follow very closely his paper.
2.2) Notation. Elements in @ S’H°(K) will be written as polynomial

pz0

expressions in the indeterminates ¢, ..., @,. One such polynomial P(¢) is called
a relation if P(p)e Keri,. In this case we write P(¢) =0. As usual P¥(p), 0P (),
.. denote forms of degree p in the ¢’s.

Consider the graded @ S*H°(K—D'—a)-submodule @ S"H*(K—-D’
pz0 pz0
—a)- H(K) of @® S**! H’(K) and the natural map
pz0
1, =@, @ SPHUK—D'—a) H'(K)—» @ H(p+1)K—pD'—pa).

pZz0 p=0
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(2.3) Lemma. Ker(a,) is a IK-vector space of dimension p(i(D)—1). Moreover
kera, is generated, as @ SPH°(K —D’'—a)-module, by i(D)—1 linearly inde-

pz0
pendent relations g,, ..., g, _; of the type

P
(24) g;= Z Pj(il)(Pi
i=1

where P\ are linear forms in ¢, and ¢,.

Clearly dimS?H°(K—~D'—a)- H*(K)=(p+1)(p—2)+p+2 and I°((p+1)K
—pD' —pa)=p+p(n—I1+2) so that the first assertion is a consequence of
Lemma (1.1). Let us now choose i(D)—1 linearly independent relations of the
form (2.4). The second assertion will be proved by induction on p. Consider (p

P
—1)(i(D)—1) linearly independent relations of the form ) P¥~Y¢,, where the
i=1
P#=1rg are forms of degree p—1 in ¢, and @,. We then get 2(p—1)(i(D)—1)
elements in Kera, of type

—1
i(p )(pi’ ()

1 i

(p—1)

(2.3 o, i @;-

'Mv
P

i 1

1l
Il

Since, by induction, we can express these elements in terms of the g/’s, it suffices
to show that they generate Kera,. Suppose we have a linear relation

24 (91(2 Pi(p_ 1)(/’1')-{-/12(92(2 Q- l)wi)zoa

o> A €K. Then Y P¥~ Vg, is divisible by ¢, and ) 0¥~ Ve, is divisible by ¢,.

We therefore get a relation
A Y BY=Pe+1, Y0¥ Pe,=0.

By the first part the number of linearly independent relations of this type is (p
—2)(i(D)—1). Thus among the clements (2.5) at least p(i(D)—1) are linearly
independent; but we already know that there can’t be more.

Let us consider the following elements in H°(K —D") - H*(K).
P35 0F

2) @10 9201 i=3,...,p
<, 5
PLP1P,, 0.

(2.6) Lemma. The elements (2), viewed in H°(2K —D'), generate H°(2K —D").
Since @,(P)=0,;, i,j=3,....1, the elements ¢3,...,p7 are linearly inde-
pendent modulo H°(2K —D'—a). On the other hand, by Lemma (1.1), the

elements (1) generate H°(2K —D’—a). The assertion follows now by counting
dimensions.

Let us fix i and k such that 3<i<p, 3<k<I, i+k. Then ¢,¢,, viewed in
H°(2K —D"), vanishes at P, and P,. Therefore we have relations
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r
O T 2 Ak @by 9 1 9,
s5=3
Where a 'lszk(pl +l"stk(p27 istk’ Nstk’ btke]K If we set

fikz(r')i(pk_zasikq)s—bik(pl 3

we get elements in [,. [t is easy to see that among the f;,’s there are

p— 1) (p —I+ 1)
— o (
72)- ()02
which are linearly independent modulo the g’s.
An easy count of dimenstons, based on Theorem (1.6), gives the following.

(2.7) Lemma. I, is generated by the relations f,’s and g's.

Let now W be the subspace of H°(3 K —2D'—2a) generated by the elements

P1QL 01020, 030,  i=3,...,p,
01, 030, 9,193, 03.

From Lemma (1.1) we deduce that W is of codimension 1 in H°(3K —2D’—2a).
Let # be an element of S2H®(K —D’)- H°(K) whose image in H°(3K —2D’
—2a) does not lie in W.
Consider the following elements in S2H°(K —D')- H°(K)

3 3
P3yees @y

PLP3s s 0107

Q105 01020 030,  1=3,...,p

?3, 9101, 0103, 03

(2.8) Lemma. The elements (3), viewed in H°(3K —2D), generate H*(3K —2D’).

3)

The proof is entirely similar to the one of Lemma (2.6). In fact one easily sees
that @3, ..., @}, viewed in H°(3K—2D’), are linearly independent modulo
H°(3K —-2D'—a). Also, since ¢, and ¢, vanish of order 1 at P, i=3,...,[,
0,02, ...,0,0%, viewed in H°(3K-2D’), are linearly independent modulo
H°(3K —2D'—2a). It is then clear that the elements in the first two rows are
linearly independent modulo H°(3K —2D'—2q). On the other hand we noticed
that the elements of the last two rows generate H°(3 K —2 D’ —2a). The assertion
follows now by counting dimensions.

We need the following lemma.

(29) Lemma. Let 3Zi 1. Assume that o=, ¢, +1,9,, 41, A, €IK, has a zero of
order 2 at P. Then the image of a¢} in H*(3 K —2D'—2aq) does not lie in W.
Assume that oc<p, z (ujcp1+v QL@+, 03 @;. Since ¢, and ¢, vanish of

order 1 at B, 4, %0 and A %0, and we can write the above relation in the form
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(2.10) ap =0 p+ap,Y+39, ¢, ¥, deH(K).

By hypothesis the divisor (a) satisfies ()= a+D’. Let (x)=A4+a+D" and (¢,) =4
+a+D'. By hypothesis supp4 nsuppA'=¢. If Q esupp A~ supp(a+D)nsupp4
then relation (2.10) implies that mult,(3) 2 mult,(x). Let now Qesupp(a+D’).
We let s=multy(p,)=multy(p,)=multy(a+D’), r=multy,(a), so that r—s
=multy 4. If Q% F, mult,y(@,)=s and relation (2.10) gives multy(3) + 2527 +s. If
Q=P multy(p,)=0, s=1 so that multy(H+2=r.

Therefore $€ H(K — A+ P)=H’(a+ D'+ P). Since the points P, ..., P of a
are generic, we use Lemma (1.5) to conclude that h°(a+D'+P)=h%a+D").
Therefore 3e H°(K — 4). But this is absurd as one sees by comparing the order
of zero at P, of both sides of (2.10).

Consider ‘now the element 5. From its definition and from the preceding
Lemma it follows that, for each i=3,...,! there exists a unique

21D w=4y @1 +4i,0,
vanishing of order 2 at P, and such that
2 __
% Q; ;’H'Oi
where 0, belongs to S> H*(K —D'—a)- H°(K).
If3<h, k<1, h+k we set
G =%, 05 — %08 + 0, — 0.

The G,,’s obviously belong to Iy and are not defined for I=3. Also the following
relations hold

G+ G =0,
Gt G,;=Gy;.

We can now prove the main result of this section.

(2.12) Theorem. (i) If 1=4 IX-? is generated, as @ S* H*(K —D')-module, by the
pz0

g;s, the f,’s and the G,’s.
(i) If 1=3, 15D is generated by the g;’s, tlfze fi3’s, and by at most one degree 4
relation of the type F=FV@3+F? 92+ ¥ F¥¢,, where FV, F®, F* are

i=1

homogeneous polynomials in @, ¢, of degree 1,2, 3 respectively.

We shall prove the theorem for each homogeneous component I, of I
=150,

Lemma (2.7) settles the case p=2. Let us prove the theorem for I;. Consider
an element of I;:

R= Z Vijk(Pi(Pj(Pk?O’ VijkeIK-

—
IA
A

i<p
1=sjksl

fIA,
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Let us perform the following substitutions:
{a) for every triple of indices i, j, k such that i=j, i,j =3, we use the equality

P
i PP = (fij+ Z asij(ps+bij(p1(p2) Dy -
s=3

Afterwords, if k=3, sk we use the equality

p
A ;PP =0dg;; (fsk+ Z a0 +by 0, ‘Pz)-
t=23

(b) According to (2.11) we substitute the terms of type
vio,07,  3=isl with viAn (=4, 0,) 0.

After these substitutions R can be written in the form

i ! !
R= Z3yiii(pi3+zy£jk(pifjk+ Z 5i‘P1‘PiZ+ Z .“i“iq’iz“"W
i= iZ3 ;

13

I=

where we H*(K — D' —a)- H°(K). The properties of the system of elements (3)
imply that y,,;=9,=0. If I=3 it follows that also pu;=0, therefore w is a relation
which can be expressed in terms of the g;’s (Lemma (2.3)). Assume /= 4. For each
i=4, ...,]1 we make the substitution

ﬂi“i(pizzﬂiGi3+uia3(p%+Aui9i_ui03
and we obtain

! !
R=ZV§jk(Pifjk+ Z wGis+ (Z .ui) a3(p§+w’
i—4 i

i=3

where w'e H®(K — D’ —a)- H°(K). It follows that ) p;=0, and therefore w' is a
relation which, by Lemma (2.3), can be expressed in terms of the g;’s. This proves
our assertion for I.

Consider now the elements

o5, 0f
005 o0l
(5) R AN
R N Y NN
@ {00 0 0 2020005 Ty i=3,.p
A PN

(2.13) Lemma. For each p=4, the elements (5), viewed in H°(pK —(p—1)D"),
generate H*(pK —(p—1)D").

This lemma is a straightforward generalization of Lemma (2.8). We sketch its
proof. One first shows that the elements @} @577, ..., @ 0?7, j<p—2, viewed in
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H°(pK —(p—1)D"), are linearly independent modulo H(pK—(p—1)D' —(j
+1)a). Then, by induction, as in the proof of Lemma (1.1), one shows that the
elements (4), viewed in H°(pK —(p—1)D’), generate H°(pK —(p—1)(D’' +a)).
The final step consists in counting dimensions.

We are now going to prove Theorem (2.12) for I,. Let us first suppose /=4,
We must show that I, is generated by the f;;’s, the g;'s and the G,,’s.
Let us consider a relation in I:

R= Z Vijkr(Pi(Pj(Pk‘Pr?O-
SiZp
k <

IV\ -

1 1

We make the following substitutions.
(@) if i=j, i, j=3, in every term @,¢;@,¢,, we set

f;j+ Z as11¢s+b1](pl(p2

s=3

Then if k=3 and s=k, we set

p
A j PP Pr = A (fsk+ 2. atsk(Pr+bsk€01<P2) Py
t=3
We can continue till all the terms containing ¢, @,, h=k, h,k=3 will disappear.
(b) In every term of type w,@,@,02% v;0307, m@,0;}, i=3,...,1, we set @,
=22 (=41 @y).
We then get:

(214 R Z yllll(pl +ZE€jka+ Z 5 (Pl(pl + Z 6’(p1(P,

+Ze (pl +28(p1 1¢1+28”a2(p1+w

where B, is a form of degree 2 in ¢, ..., ¢, and weS*H*(K —D'—q)- H°(K).
The properties of the elements (5), for p=4, give y,;;,;=06,=0,i=3, ..., L

(c) When i=4, ..., 1, we substitute the terms of the form €007 w1th & 0,(G;4
+o,03—0 +6,), we then use (a) and (b), if necessary, and we get

!
R :ZEc,jﬁcj+zLi3Gi3+Z(ﬂi(Pl + oY@ +w + Y 8 ot o}
i=3
where the L,;’s are linear in ¢, ..., ¢, and w' is as before. The properties of the
clements (5), for p=4, give §; =0. Substituting o, ? with G,;+a303+0,—0; we
get

Rzzgc’jﬁcj+zﬂi3Gi3+Z(ﬁi(Pl + o)y @3 +w'
Clearly Y (B;¢, + B;2;)=0, and, according to Lemma (2.3), w" can be expressed
in terms of the g;s.

Let us now consider the case [=3. Proceding as before we reduce R to the
form (2.14) with 7y,,;,=0. We then have a relation

it
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p
(215) PYpI+PPgi+ Y By,

i=1

where P, P PO are forms in ¢, ¢, of degree 1, 2, 3 respectively.

We now observe that there exist 3i(D)—2 linearly independent relations of
the form (2.15). In fact the 4p+3 elements @3, ¢,03, 0,03, 0?03, Pi03,
P192103, P10 QL0201 @1 @30;, @39, i=1,...,p generate H*(4 K —3D’) which
is of dimension p+3n—1. Therefore among them there are 3i(D)—2 linearly
independent relations. But, by Lemma (2.3) there are only 3i(D)—3 linearly
independent relations of type (2.15) having P"=P®=0. This means that in
order to generate I,, we must add to the g;’s and the f;,’s at most one additional
relation.

P

F=Fg3+ P93+ Y. iV,
i=1

This proves the theorem for 1.

The general case (p>4) can be treated exactly with the same methods used
for the case p=4. Any further detail would be a useless repetition.

§ 3. The Exceptional Cases

We keep the assumptions and the notation of the preceding sections and we let
I' denote the canonical image of €. The main result of this section is the
following.

(3.1) Theorem. If [=4 the “semicanonical ideal” IXP is generated, over
@ SPHY(K —D’), by I5? with two possible exceptions: when n,(C)<IP'~! lies
pz0

on a ruled surface of degree 1—2, or else when |=6 and n,(C) lies in the Veronese

surface of P°. If 1=3 I%:P is generated by I5'° and 1}7.

The assertion relative to the case =3 is a restatement of Theorem (2.12). Let
[=4. We shall prove the theorem by showing that, if C is not exceptional, then
I%P is generated by the f;,’s and the g/s.

Let us write the relations f;,’s in the form

p
(3.2) Z (015 0x = A5i) P =biy @1 @5+ A1 04,
Fi
where J,, is the Kronecker symbol and i=3,...,p, k=3, ..., 1, i+k.
We fix a particular k, 3<k=<I. Let 4% be the determinant of the (p—3) X (p
—3) matrix

(5is(pk—asik)a 3§1§P, 3§S§p, l=f=k, S:*:k

Since 4®(B)+0, the hypersurface 4% =0 in IP?~! does not contain the canoni-
cal image I' of C. Let V, be the algebraic variety defined by (3.2). By using
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Cramer’s rule for the system (3.2), it follows that there exists a unique irreducible
rational component F, of V, containing I By construction F, is birationally
equivalent to the plane having homogeneous coordinates ¢, @,, @,.

(3.3) Lemma. The gs vanish on F,. for every k, 3sk<l.

Fix k. We can write g;=¢,C;+¢,D;, j=1,...,i(D)—1, fu=0,0,— ¢4,
—@,B;, where C;, D, A;, B, are linear forms in ¢, ..., ¢,. Clearly, for each j, we
can write

(PkgjzzAjifik+ (P%‘Dj*‘(PNPz lpj"’ﬁ”%}f,’,

where A4, are linear in ¢,,¢, and &, ¥, y; are linear in ¢,,...,¢,. From
Lemma (2.3) it then follows that

i(D)—1

P10+, 0, ¥ +031,= Y. Bjg,
s=1

where the B, s are linear forms in ¢, and ¢,. We can therefore write

P
Z(éjs‘Pk"‘Bjs)gs:_Z3 Ajij;’k'
itk

By using Cramer’s rule we get

P
(3.4) ng=Z H;; fu

i
where the H;’s are forms and H =det(d;,¢,— B;,). Since H does not vanish at
F,, H does not contain F,. But the f;;’s do. Thus the g;s vanish on F.

Exactly in the same manner as in [S] (except that for the presence of the g;s,
for which one uses the preceding Lemma) one can now prove the following
results.

(3.5) Proposition. Let [=4.
A) Let i, k,r be distinct indices such that, 3Zi<p, 35k, rZ1. Then there exist
linear forms in ¢, and @, By, ;. j=1,...,i(D)—1 such that

P i(Dy—1
S, — S o= 23 (@gir fik = Agin Jo) F Prir G + '21 Bkirjgj-
S= Jj=

where fi, = f;=0 and a,;, = py;, %, k, L,¥ distinct. Moreover p,;, = p,-

B) Fix k and v, kv, 3=k, r 1. Then p,;,=0 for every i=3,...,p, i%k,r, if
and only if F,=F,.

C) If there exists one py;, different from zero then I, =Keru, is generated by
the quadratic relations g;'s and f;’s.

In order to complete the proof of Theorem (3.1) we must interpret geometri-
cally the vanishing of the p,;’s. If all the p,;,’s vanish, then, in particular, we
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have
Sk = @ik X O~ At @i — by 0,1 0.

(I-2)(-3)
2
independent quadrics in IP'~! containing a surface F, which in turn contains
7p(C). Keeping this in mind the theorem can now be proved by repeating, word
by word, the argument given in [S], pag. 173, where the “g” should be replaced

by a “I”.

For 3Zi, k<1, i<k, the equations f;,=0 represent linearly

§4. The Ideal of a Special Curve

We keep the assumptions of Sections 2 and 3 and we make the following change
in notation. We fix a basis

of H°(K —D"), and a basis
Yis - yp,  I'=iD)

of H%(D"). The elements of H°(D’) will be thought of as rational functions f such
that (f)+D’'=0. We assume that y, =1.
We consider the natural homomorphism

v: H9(K-D)®H® (D) — H*(K)
X, QY X, ;.

Let t=codim(Imv). If >0 we complete the set {x;y;} to a system of
generators of H°(K) by adding to it t regular 1-forms

zy,...,2,€ HY(K)

which are linearly independent modulo Imuv.
Letting V be the subspace of H°(K) spanned by z,, ..., z, we have a natural
surjective map, which we also call v,

v: HYK~D)®@ H*(D)® V- H°(K).

We now consider indeterminates X,,...,X,, Y,,...,Y., Z,,...,Z and we
identify K[X]=K[X,, ..., X,] with @ S°’H°(K—D’) in the obvious way. We
pz0
also define a graded IK[ X ]-module M = (P M, by setting

pz1

I T
M={ T P00+ ¥ R0z,
j=1 v=1

where, as usual, P(X), and P~ "(X) denote homogeneous polynomials of
degree p and p—1 respectively in X, ..., X,.
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We have a natural degree zero IK[ X]}-homomorphism
& M—> @ HpK)
pz1

P(X,Y,Z)w P(x,, 2).

Let A be the degree one part of Ker @; A consists of all polynomials of the
form

Y, X, Y, o;eK

such that Zoc” x;¥;=0. We denote by (A4) the graded IK[X]-submodule of M
generated by A. Consider the following commutative diagram of degree zero
maps of graded IK[ X ]-modules:

M

@

M) —5— @ H(pK)

pz1

g Uy

@ §*~'H*(K —D')- H°(K)
pz1

where @ is the obvious map and ¢ is defined as follows. Being v surjective each
element of S*~' H°(K —D’)- H°(K) can be expressed in this way

P(p) Z p(p 1) xiyi_’_ZPv(pfl)(x)Zv

jz2

then we set

. (P(")(x)+ Z Pi(jf’—”(x)xiyj+sz(p-l)(x)Zv)
jz2
=PPX)Y, + ) BY"D(X)X,Y,+Y PP 1(X)Z,.

jz2

Let us briefly say that C is exceptional if n,(C) lies on a ruled surface of
degree [—2 in IP'~! (I=4) or else if I=6 and =,,(C) lies on the Veronese surface
of IP°,

(4.1) Proposition. If =4 Ker® is generated, as a IK[ X ]-module by its elements
of degree 1,2,3. If C is not exceptional Ker® is generated by its elements of
degree 1 and 2. If 1=3 Ker® is generated by its elements of degree 1, 2 and 4.

This follows immediately from Theorems (2.12) and (3.1) by chasing the
above diagram.

We shall express the fact that P(X, Y, Z)e Ker @ by writing P(X, Y, Z)— 0 or
simply P(x, y, z)=0.

By the preceding proposition we can say that, when /=4, Ker & is generated
by relations of the following types:
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(1) Y @,X,%,=0,

I T
() Y PPX) Y+ Y PIX)Z,=0,
j=1 ve=1
I T
3 Y PPX) Y+ Y PP(X)Z,=0.
j=1 v=1

If C is not exceptional the relations of type (3) are not needed. When /=3
one must add to the relations (1) and (2) at most one fourth degree relation of
the type

v T
4 Y POX)Y+ Y R,‘”(X)Zv?O.
j=1 v=1

If we consider the injection H([X]Ci—vM, given by i(P(X))=P(X)Y, it follows,
from the definition of @, that Ker(®oi) is the ideal I? of the curve n,(C)< P~ 1.
As a consequence of Proposition {4.1) we may therefore conclude that:

(4.2) Theorem. A system of generators for 12 can be obtained, from the relations
of type (1), (2), (3) and (4) by eliminating the Y's and the Z’s. When 124 and C is
not exceptional it suffices to use relations of type (1) and (2).

We now apply this result to the so called “Klein's canonical curves”.
The curve C is a Klein’s canonical curve of type d if there exists a positive
integer d such that

|dD|=|K].

For example a non-singular curve in IP" which is the complete intersection of
r—1 hypersurfaces of degree n,,...,n,_,, respectively, is a Klein’s canonical
curve of type d=n,+---+n,_;—r—1L

If C 1s a Klein's canonical curve of type d, for each p=1 we set [,=1(pD), I
=1, and we denote by n,: C—»IP'»~! the rational map induced by |pD|, (1, =np).

(4.3) Theorem. Let C be a Klein's canonical curve of type d. Assume that for
each p>0, the natural map S# H°(D)—H%(p D) is surjective. Then if 124, the ideal
12 of np(C) in P'~1 is generated by forms of degree <d+2. If C is not
exceptional, IY is generated by forms of degree <d+1. If 1=3 n,(C) is a plane
non-singular curve of degree n=d+3.

First observe that for p»0, n,: C—n,(C)<IP*~' is an embedding. On the
other hand being S” H°(D)— H®(p D) surjective we can write n,=Aony, where 1 is
a Veronese map. Therefore n, is a birational isomorphism of C onto 7, (C).

The case /=3 is trivial. Suppose [=4. Let us use the notation introduced in
the beginning of this section. Set D'=(d—1)D~K~—D. Consider the basis
Xy, .., X; of HY(K —D’). We may assume that (x,)=dD=D'+D. We then have a
isomorphism

H%(d~-1)(K—-D")) —» H°(D)
b 4

s
x@=1

¥
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By hypothesis we have surjective maps
(@) S“"'H°(D)=S* 'H°(K—-D)— H°((d—1)(K—D")=H°D,
(b) S‘H°(D) - H°(K).

From (a) it follows that there exist /' forms, of degree d—1, f,(X), ..., fi.(X)
such that

(44 x{7ly=filxy,nx), j=1 0

From (b) it follows that H°(K —D)® H°(D')— H°(K) is surjective so that t
=0.
Recalling (1), (2), (3) we get, in I2, elements of the following types

(1y Zo‘ijxifj(x),
2y Y PP(X)f;(X),
3) Y PIX) f(X).

These are forms of degree d, d+ 1, d +2 respectively. Let F(X)elf, p=d.
With an obvious multiindex notation we write

FX)= Y FX)X’.

ll=d—1

For every multiindex J we have, by virtue of (a),
(45 x'=xi"'L,(y)

where L; is a linear form in y,,...,y,. Let

GX,Y)= ¥ FOL,Y).

J]=d—1

Clearly G(X, Y)eKer®. Setting f(X)=(f,(X), ..., fi(X)), it then follows from
Proposition (4.1), that G(X, f(X)) can be expressed as a combination of forms of
types (1), (2) and (3) (the forms of type (3) are not necessary when C is not
exceptional). On the other hand

FX)-GX, f(X)= ) FX)X —L(f(X).
|J]=d—1
From (4.4) and (4.5) it follows that X’ — L,(f(X)) is an element of degree d
—1in I2, proving the assertion.

(4.6) Remark. In the preceding theorem the hypothesis that z,(C) is pro-
jectively normal is certainly redundant; we only used the surjectivity of the maps
(a) and (b). On the other hand the surjectivity of the latter is necessary as the
following example shows.

Let Q be a non-singular quadric in IP3, let I and m be two non-equivalent
lines on Q. Let I' be an irreducible curve in |4/+5m| having, as its only
singularities, two ordinary double points on the line m. The normalization C of
I', together with the pull-back D of a plane section is a Klein's canonical curve
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of type d =2 for which the map (b) is not surjective. On the other hand the ideal
of I'=n,(C) can not be generated by forms of degree less or equal than d+2.

(4.7) Theorem. Let C be a Klein's canonical curve of type d=2 and genus p.
Assume n,(C)<P'~ 1, 124, Then

®) p1+(—1)d+(-2) (‘;)

Equivalently, for the degree n=(2p—2)/d of n,(C) we have
(xx) n22(I-1)+(-2)(d—1).

If equalities hold C is a “Castelnuovo’s curve” (i.e. a curve in IP'~! of maximal
genus with respect to its degree); in particular C is exceptional. On the other hand
if C is exceptional and projectively normal then C is a Castelnuovo’s curve.

In case np(C)=IP? then n2d+3 and the equality holds if and only if C is
non-singular.

The statement about plane curves is obvious. So let [=4. By Castelnuovo’s
bound (see [H]), if & is the lowest integer such that hAD is non-special, then h <(n
—2)/(1—2), so that

(n=2/(1-2)=zd+1.

This inequality is equivalent to () and (xx). Suppose we have equality in (x); then
one easily sees that

p= Y max(0,n—(p+1){I-1)+p).

pz0
Hence n,(C) is a Castelnuovo’s curve (see [G-H]); since d 22 n,(C) is excep-
tional (see [C]}).

On the other hand assume C is exceptional. Then 7,(C) is contained in a
surface F of degree |—2 which is either a non-singular ruled surface, or a cone
over a rational normal curve in '~ 2, or else the Veronese surface in IP°. In all
cases the Hilbert polynomial of F is

AW =1+(=D)v+(~2) (;)
Since C is projectively normal we have a surjective map
H(F,04(d)-»H°(C,K()
so that
d
p<2(d)=1+(—1)d+(-2) (2)

Therefore, be the first part, we get equality, proving that C is a Castelnuovo’s
curve.

We end this section by making some parenthetical remarks about an old
conjecture of Brill and M. No&ther.
We first remind the geometrical significance of the number

r=codim Im(v: H*(K —D")® H°(D")— H°(K)).
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For this we let ¥, ,={DeC": I(D)1}. 1t is then well known that
dim (Zariski tang. space to V, ,at Dy=t4[—1.

Let now 4, = # (linearly independent relations of type (1)} we have
Ai=li—p+r.

The conjecture is that if A,>7t then C is special in the sense of moduli.
(Classically the conjecture was stated by saying that C is special in the sense of
modauli if there exists, on C, a g} with (r+1)(n—r)—rp<0). Petri in [P-2] states,
as a fact, that C is special in the sense of moduli if 4, >0. This too is a natural
conjecture.

One natural way of looking at this problem is to consider the 4, relations as
a basis of H°(QL® Q}.-.|) and see if the natural map

HO(QL® Qb -il)—HO2K )

IS not zero.

§ 5. The Ideal of a Certain Class of Projective Varieties

In what follows V<IP¥, N=2, will denote a normal projective (irreducible)
algebraic variety and L =0Opx(1) ® O, the hyperplane bundle. We assume that N
+1=h%V, L).

As is well known V is said to be arithmetically Cohen-Macaulay if the
following conditions hold

(2) HY(V,I[?)=0, peZ, 1<q=dimV—1,
(b) for every p=0, the map H°(IPY, O(p))=S H(V, L)—»H(V, IF) is sur-
jective.

When only condition (b) holds then V is said to be projectively normal.
The following lemmas are standard. They follow at once by examining the
cohomology of the following exact commutative diagram

0 0 0
|

0—— Iy(p—1) I,(p) Iy y(p)—0
|

00— Opnl(p—1) Opx(p) Oylp) ——0
|

0—— I I 1.y ——0
‘ |



118 E. Arbarello and E. Sernesi

(5.1) Lemma. Let V be projectively normal. Let H be a hyperplane in PN,
Suppose that the graded ideal I (V~H) of V~H is generated by its homogeneous
components of degree <v. Then the ideal I (V) is also generated by its homo-
geneous components of degree <v.

(5.2) Lemma. Let V be arithmetically Cohen-Macaulay, dimV =22. Let H be a
hyperplane in TP, then VA H is arithmetically Cohen-Macaulay.

We now prove the following generalized version of the Max Noéther-
Enriques-Petri theorem.

(5.3) Theorem. Let V <IP" be a non-singular, irreducible, arithmetically Cohen
Macaulay, variety of dimension d. Let w,, be the canonical bundle on V. Let L be
the hyperplane bundle. Assume that there exists an integer e such that [F=w,.
Then the ideal I (V) of V in @S”H°(V, L) is generated by elements of degree
<d+e, with the exception of the following cases

1) V is a hypersurface of degree n=2, so that n=e+d+2,

1) V is a hypersurface on an irreducible variety W <IPY which has the
minimal degree: N —d=codim W+ 1.

When e+d =3 this is the same as saying that the intersection of V with a
generic PV ~4*1 js q Castelnuovo’s curve.

In this case 1.(V) is generated by elements of degree <e+d+1.

II) e+d=1 in which case 1, (V) is generated by quadrics, (unless we are in
case 1) withn=13,

Let IP be a generic (N —d + 1)-dimensional linear subspace of IPY. Consider
the non-singular curve C=VnIP. By adjunction

wcz(LIC)e-HI‘ 1.

If N—d+1=2 we are in case I). Let’s assume N —d+1=3. After a repeated
application of Lemma (5.2) it follows that C is arithmetically Cohen Macaulay.
Suppose e+d—12=1. Then C is a projectively normal Klein’s canonical curve of
type e+d—1 in IP. We now apply Theorem (4.3). If C is not exceptional the
ideal I(C) in @ S”H°(IP, Op(1)) is generated by elements of degree <d+e and

pz0
the theorem follows by a repeated application of Lemmas (5.1) and (5.2). If C is
exceptional it is contained in a surface F of minimal degree N —d in IP, which is

N—d
the intersection of hz( ) ) linearly independent quadrics Q,,...,Q, in IP.

Chasing the diagram, in the beginning of the paragraph, one finds h linearly
independent quadrics Q,, ..., §, in IP" containing V and such that §,nIP=Q,.
These quadrics define a variety W of dimension d+1 and degree N —d,
containing ¥, and so we are in case II). Of course Theorem (4.7) gives the
equivalent version of case II). From Theorem (4.3) and Lemmas (5.1) and (5.2) it
follows that, in this case, the ideal I (V) is generated by elements of degree
Sd+e+1.

Let now e+d—1=0, so that C is an elliptic curve. Since we are assuming
that C is not a plane cubic, it follows from [M-2] that we are in case III).
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Finally it is easy to see that the case e +d <0 can occur only if V is a quadric
hypersurface, and we are in case I).

Remarks. The above theorem gives that the ideal of a regular projectively
normal canonical surface, is generated by quadrics and cubics; the only excep-
tions being the quintic surface in IP? and the canonical surfaces for which ¢? is
minimal (i.e. ¢ =3p,—7).

Examples for which e+d—1=1 are canonical curves, K=3 surfaces, Fano
threefolds and fourfolds.
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