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Introduction 

The ideal defining a canonical  curve was classically studied by Max Nofither, 
Enriques, Petri and Babbage [B]. Recently the subject was again brought  to 
light by Bernard Saint-Donat  and David  Mumford.  

The fundamental  result is that the ideal of  a canonical, non-hyperelliptic, 
curve C, of genus p >3,  is generated by quadratic forms, with the exception of 
two cases: when C lies on a non-singular ruled surface of degree p -  2 in IP p- 1 
(in which case C is trigonal), or else when p = 6  and C is contained in the 
Veronese surface of  IP s (in which case C has a g2). 

More  generally it is natural  to ask what can be said about  the ideal I .  D of an 
irreducible curve C ~ IP ~- 1 of genus p, on which the hyperplanes cut a complete 
linear series IDI. When D is non-special and deg D>3p+ 1 the answer is simple: 
I .  D is generated by quadrat ic  forms (see [M-2]). When D is special the situation is 
more  complicated. 

To this case is devoted the central part  of this paper, which closely follows 
Petri 's approach.  The result is the following. Take a basis x 1 . . . . .  x z of  H~ and 
a basis Yl . . . . .  Yt, of H~ The xiy]s can be naturally viewed as elements of 
H~ spanning a sub-vector space of H~ whose codimension we call r. 
Choos ing  z, . . . . .  z~H~ so that the x~y]s and the z~'s generate H~ we 
consider relations of the following type: 

(1) ~aijxiY~=O , 

(2) ~ P)Z)(x)yj+ ~ P~l)(x)z~=O 

(the P(P)(x)'s are forms of  degree p in the x's). 
It is then possible to show that every element of 1D. can be obtained by 

eliminating the y's and the z's from the above relations. There are few possible 
exceptions to that  rule and they are completely analogous to the ones occurr ing 
in the classical case D = K. 
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This theorem was stated by K. Petri in [P-2]. In its proof a central role is 
played by Petri's analysis of the natural map [P - l ]  

@ SPH~174176 "*_, @ H~ 
p>O p>O 

The kernel I ,  K' D of u,  provides, after natural manipulations, the basic relations of 
type (1) and (2). This kernel is a @ SPH~ in which two different 

p>0 
kinds of data coexist. The intrinsic data coming from the ideal 1, K, of the 
canonically embedded curve, and the extrinsic ones coming from the ideal I ,  D of 
the special curve C c IP ~- 1. 

The study of this "semicanonical ideal" IK, "D is carried out in the first three 
sections. The fourth section deals with the ideal I D and there we analyse the 
particular case of a Klein's canonical curve, (i.e. one for which there exists a 
positive integer d with [dD]=]K[). These curves appear, in a natural way, as 
sections of canonically embedded varieties. 

The study of Klein's canonical curves leads us in fact, in the last section, to 
another generalization of the Max Noether-Enriques-Petri theorem. The follow- 
ing. Given a d-dimensional variety V~IP N, canonically embedded and arithmeti- 
call), Cohen Macaulay the ideal I ,  (V) of V is generated by forms of degree < d + 1, 
with few possible exceptions. The exceptional cases can be easily described, and 
the entire result particularizes to the classical one when V is a canonically 
embedded curve. 

The study of the exceptional cases turned out to be linked with Griffiths and 
Harris '  recent work on extremal varieties [G-HI .  For example we can easily 
show that exceptional Klein's canonical curves are Castelnuovo's curves, (Theor. 
(4.7)). 

At the end of w 4 some parenthetical remarks are made about an old moduli 
problem concerning special divisors. It may be possible that Petri's machinery 
could bring some light to those questions. 

We thank Phillip Griffiths and Joseph Harris for pointing out to us the 
very interesting relations between their extremal varieties and our exceptional 
cases. We also thank Maurizio Cornalba for a number of very useful comments 
on this paper. 

w 1. General Remarks 

Let C be an irreducible complete non-singular algebraic curve of genus p > 0  
defined over an algebraically closed field IK. Given a sheaf L, and a divisor D on 
C we shall briefly denote by HI(D| the cohomology group HI(C, O(D)QL) 
whose dimension will be denoted by hi(D | L). 

The so called "base point free pencil trick" states that, for any pair of 
invertible sheaves L and M, on C, and for any pair of sections s t and s 2 of L, 
having no common zeroes, the kernel of the map 

H~ @ H~ ~ H~ | L) 

( t l ,  t2) " ~  t t st + t 2 s  2 

is isomorphic to H~ | L- t). 
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We shall make frequent use of this elementary fact whose proof is given in 
IS]. 

Throughout the entire paper a canonical divisor will be denoted by K and, as 
usual, the complete linear series containing a divisor D will be denoted by IDI. If 
pK>D, p>l,  the elements of H~ will be thought of as regular p-fold 
differentials having zeros at D. 

Our first aim is to prove a sort of generalized No~ther's theorem in which the 
canonical divisor on C interplays with the extrinsic datum of an arbitrary 
positive divisor D. 

(1.1) Lemma.  Let IDI be a base point free pencil. Then, for every positive integer 
p, the image of the natural map 

up: SP H~174 H~ H~ + pD) 

is of codimension p -  1 in H~ 

The case p = 1 is a straightforward consequence of the base point free pencil 
trick and Riemann-Roch theorem. Let now p = 2 .  We have a commutative 
diagram 

~1~ SZH~174176 - ~ 

H~ @ H~ | H~ : ~  iS, ~ H~ (K + 2 O). 

H~174 H~ + D) 

The case p = l  implies that w is surjective. Obviously ~ too is surjective. 
Therefore dim I m ( u 2 ) = d i m I m ( v  ) and the base point free pencil trick gives 
d i m k e r v = p .  Thus d i m I m v = 2 ( p + n - 1 ) - p = h ~  where n=degD.  
As a consequence of the case p = 2  we can say that H~ +2D)  is generated by 
I m v  and by an element q6H~ Let s l and s 2 be generators for 
H~ Notice that, by Castelnuovo's lemma ([M-2]) applied to the map v: 
H~174176 - 1)D)--*H~ every element in H~ v=>3, may 

p 

be written in the form ~ P/~) ~0~ + pc,.- 2j r/, where pW) denotes a form of degree/a 
i=1 

in s I and s 2, and (01 . . . . .  (0p is a basis of H~ We now prove the lemma by 
induction on p. Assume it is true for the positive integers less than p. Consider 
the following diagram: 

L~ , SP H~ @ H~ -~-~ 
(1.2) H~174 ~-~ H~174176 ~ H ~  +pD). 

H~174 H~ +(p - 1)D) 

We have 

(1.3) dimlm(up)=dimlm(w)-dim(ker(v)~Im(w)). 

By induction 

(1.4) dimlm(w)=2[h~ +(p -1 )D) -p+ 2]=2(p+(p-1)n-p+ l). 
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Also the elements of  H ~ 1 7 4 1 7 6  can be identified with pairs 
(s I | 21, s 2 | 22) where 2 i = ~ P~}P- 1)(oj + Pi (p- 3)r/, i = 1, 2. Clearly the elements of  

J 
I m  w are of type (s 1 | ~ P ~ -  ') ~oj, s 2 @ ~ P ~ -  1) q)j). On the other  hand  the base 

J J 
point  free pencil trick gives 

Ke r (v )={ ( s l  | - s2  @sl h): h~ H~ + ( p -  2)D)}; 

we now prove that  

K e r ( v ) c ~ I m ( w ) =  {(s I Nszh' ,  -Sz|  h'eIm(u o 2)}. 

First observe that  a m o n g  the elements of type Q(p-3)q there are exactly p - 2  
linearly independent  ones. Also, as we noticed, those elements generate H~ 
+ ( p - 1 ) D )  modu lo  Im(up_l) .  It follows then by the induction that  non-zero  
elements of type Q(p-3)q do not belong to Im(up_ 0. Therefore  writing h 
= ~ Q~O- 2) ~o~ + Q(O- 4) t/ and imposing  the condit ion s 2 h ~ I m  (up_ 1) we get h 
= h' ~ I m  (u o_ 2). Therefore  d im Ker  (v) c~ Im (w) = dim Im Up_ z. The l emma  fol- 
lows by using (1.2), (1.3) and the induction hypothesis.  

We shall need the following classical result. 

(1.5) L emma .  Let C be an irreducible curve in IP r, which is not contained in any 
hyperplane. Then, for every s<=r-2, s+ 1 generic points P1 . . . . .  P,+I on C span a 
IP ~ such that IP s . C = P1 +""  + P~ + 1. 

The assert ion is obviously true when r = 3 and s = 1, since, as is well known, a 
non-p lanar  curve in IP 3 does not  possess 00 2 trisecants. The case s =  i, r>__3 can 
be reduced to the preceding by project ing C from a generic IP r-  4 of IP ~, into IP 3. 
The general case is then proved  by induction on s by project ing C on a 
hyperplane,  f rom a generic poin t  of C. 

(1.6) Theorem.  Let ID[ be a complete linear series on C free from base points 
and such that h~ Furthermore assume that [D[ defines a birational 
morphism 

no: C ~ n o ( C ) ~ I P t - L  

Then the natural map 

(~)u,: (~ SP H ~ 1 7 4 1 7 6  (~ H~ + pD) 
p>=o p>=o 

is surjective. 

Let n = d e g D .  Let a = P  3 + - . .  +Pl be a generic positive divisor on C of degree 
1 - 2 .  Then  our hypothesis  on D, together  with L e m m a  (1.5), imply that  I D - a l  is 
a base point  free pencil and that  hl (D)=h1(D-a) .  Let D* =O(D)@O~. 

The exact sequence 

O--)O(D-a) -*O(D)~ D*-*O 
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induces an exact  commuta t ive  d i ag ram ( p >  1) 

3~ H~ - a) | H~ +(p - 1)D)~ H~174 H~ +(p - 1)D)~ H~ *) | H~ +(p - 1 ) D ) ~  

iv 
H ~  ~ H~ --, H~ 

i 1 1 
s (D-a ,K+(p -1 )D)  ~ s(D,K+(p-1)D) ~ s(D*,K+(p-1)D) 

0 0 0 

where s(A, B) = coker  [H~ | H~ ~ H ~ | B)]. We  first consider  the case p 
= 1. The  base point  free pencil  tr ick gives 

d im ker (a) = h ~ (K - D + a) = h~ (K - D) = h 1 (D) 

so that  

d i m s ( D - a , K ) = h ~  

By Cas te lnuovo ' s  l emma  ( [M-2])  s(D*, K ) = 0 ,  so that  s(D, K ) = 0 ,  p roving  the 
surject ivi ty of  u 1. W h e n  p > 2  we have a commuta t ive  d i ag ram of  type (l.2). 
Therefore  it is sufficient, by induct ion,  to show tha t  v is surjective. F o r  this we 
proceed  exact ly as in the case p = 1. 

w 2. The "Semicanonica l  I d e a l "  of  a Special  Curve 

F r o m  now on we shall  assume that  C is non-hyperel l ip t ic .  Let  us fix once and 
for all a special l inear  series ]D[ of  degree n on C free from base points and 
defining a birational morphism 

no: C ~ r c D ( C ) c  IP z - '  

where l = h~ 
W e  set i(D)=hl(D). We fix a divisor  D'elK--DI. We also fix, once and for 

all, l po in ts  P1, . . . ,  Pz on C in generic  pos i t ion  and a basis cp, . . . . .  cpv of,H~ in 
such a way that  the first l e lements  qo 1 . . . . .  ~01 form a basis of  H ~  D )~-H~ 
having the p rope r ty  that  

qoi(Pj)=3ij , i,j= l, ...,1. 

F u r t h e r m o r e  we can assume that  the divisors  (q)l)-D' and  (q0a)-D'  consist,  
each, of  dis t inct  points.  So that  if we set a = P a + . - . + P  t, q01 and (P2 vanish of 
o rder  1 at the points  of  a. 
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(2.1) Notation. Let A be a special divisor. Consider the natural map S~176 
-A)|176 We shall denote by SPtI~ H~ the image of 
this map. 

We have the following 
@ S" H ~ (K -/) ')-modules 

0 > 0  

@ SP+IH~ 
0>-_0 

k.) 

@ SPH~ -D'). H~ 
p>O 

LJ 

@ S ~ 1 7 6  ') 
p>o 

diagram of degree 0 morphisms of graded 

i. , @ HO((p+ l)K) ' 
0>0 

k9 

"* , @ H~ I )K-pD' ) ,  
0>=0 

k.) 

n, -~ @ nO((p+ 1)(K-D')).  
0 > 0  

Here i ,  is the natural homomorphism while u, and d,  are restrictions of i , .  
From Theorem (1.6) it follows that i ,  and u,  are surjective. As usual one says 
that no(C ) is projectively normal if d, is surjective. We set 

I t =  (~ I K Ker i, 
* p=>'~O p + l =  

IK,  D = K,D - -  , @ Keru , ,  Ip+  1 - -  
p>=O 

I D, = @ I~+ 1 = Ker d, .  
p=>O 

I K is the ideal of the canonically embedded curve while I ,  D is the ideal of 
nD(C) ~ IP l- 1 

In this section we shall study the graded @ S~176 K D, 
p > O  

which, by abuse of language, we may call the semicanonical ideal of the special 
curve no(C ). We set I ~'D I We shall see that I ,  is generated by 12 and I3, if , ~ , .  

l>4,  and it is generated by 12 and 14 if l--3. Moreover we shall see that, if 1>4, 
I ,  is generated by 12 with the possible exception of two cases: the case in which 
nD(C ) lies on a ruled surface of degree l - 2  in IW -1, and the case in which l=6  
and nD(C ) is contained in the Veronese surface. 

This result is essentially due to Petri and the case D = K is exactly the Max 
No~ther-Enriques-Petri theorem proved by Bernard Saint-Donat in [S]. 

Our treatment will follow very closely his paper. 

2.2) Notation. Elements in @ SOH~ will be written as polynomial 
p>O 

expressions in the indeterminates rpl . . . . .  pp. One such polynomial P(~o) is called 
a relation if P(~o)s Ker i , .  In this case we write P(~o)= 0. As usual P~P)(~o), Q(~ 

C 
... denote forms of degree p in the ~0's. 

Consider the graded @ SPH~ @ S ~ 1 7 6  ' 
p>__O o=>O 

-a). H~ of @ SP+IH~ and the natural map 
p__>O 

c~, =@c~o: (~ S P H ~  �9 H~ @ H~ 1 ) K - p D ' - p a ) .  
0>=0 0>=0 
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(2.3) Lemma. Ker(%) is a N-vector space of dimension p(i(D)-1). Moreover 
k e r %  is generated, as @ SPH~ by i ( D ) - I  linearly inde- 

p>=O 

pendent relations gl, .-., gi(D)-1 of the type 

p 

(2.4) g j=  Z P)I1)(Pi 
i = 1  

where P)i 1) are linear forms in qo 1 and qo 2. 

Clearly dimS~ H ~  H~ l) (p-2)+ p+ 2 and h~ l)K 
- p D ' - p a ) = p + p ( n - l + 2 )  so that the first assertion is a consequence of 
Lemma (1.1). Let us now choose i(D)-1 linearly independent relations of the 
form (2.4). The second assertion will be proved by induction on p. Consider (p 

p 

-1)(i(D)-1) linearly independent relations of the form ~ Pi ~~ 1)~oi, where the 
i = l  

Pi(P-1)'s are forms of degree p - 1  in qo I and r We then get 2(p-1)( i (D)- l )  
elements in Ker % of type 

p p 

(2.5) q)l ~ Pi(~ q)2 Z Pi(P-uq~ �9 
i = 1  i = i  

Since, by induction, we can express these elements in terms of the gj's, it suffices 
to show that they generate Ker %. Suppose we have a linear relation 

:~, ~oi (Z  p~ (~- ') ~o,) + & ~o2(Z Q~ ~- 1~o,) = 0, 
i i 

20, 21 6IK. Then ~ P/(P-1)(p~ is divisible by (P2 and ~ QIp-~)(& is divisible by (&. 
i 

We therefore get a relation 

i i 

By the first part the number of linearly independent relations of this type is (p 
- 2 ) ( i ( D ) - l ) .  Thus among the elements (2.5) at least p(i(D)-l) are linearly 
independent; but we already know that there can't be more. 

Let us consider the following elements in H~ H~ 

~'(pl q~i, q02 (pl , i=3,  . . . ,p  
(2) (l) ~(~01,2 (P l  ( P 2 '  (p2'2 

(2.6) Lemma. The elements (2), viewed in H~ generate H ~  

Since q)~(Pfl=a~j, i , j=3,. . . , l ,  the elements (p2 . . . . .  q0 2 are linearly inde- 
pendent modulo H~ On the other hand, by Lemma(1.1), the 
elements (1) generate H ~  The assertion follows now by counting 
dimensions. 

Let us fix i and k such that 3<=i<p, 3<k<l,  i+k. Then ~oiq)k, viewed in 
H ~  vanishes at P1 and P2. Therefore we have relations 
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P 

(PlCPk c 2 aslk (Ps + bik q)l (P2 
s = 3  

where asik=~sik ~01 ~-~tsik ~02, ~sik, ]'Lsik, big EIK" If we set 

fik = q~i ~Ok -- ~, asik q~ s -- bik q~ l q~ 2 

we get elements in 12. It is easy to see that  among  the fig'S there are 

which are linearly independent  modu lo  the gj s. 
An easy count  of  dimensions,  based on Theorem (1.6), gives the following. 

(2.7) L e m m a .  I 2 is generated by the relations fig'S and gj's. 

Let  now W be the subspace of H ~  generated by the elements 

2 r 1 qgi, q91 q~2 q~i, ~o2 q~g, i = 3 ,  ... ,  p, 

F r o m  L e m m a  (1.1) we deduce that  W is of codimension 1 in H ~  
Let t/ be an element of  S 2 H ~ 1 7 6  whose image in H ~  

- 2  a) does not  lie in W. 
Consider  the following elements in S 2 H ~  H~ 

I (P3, " " ,  r 
2 2 

(3) 
2 - | r l ,~91~i ,  fPlq92~i, q92qgi, . . . . .  P i = 3  

/ 3 2 2 
Lq )  l ,  ~91 ~O 2,  ~01 ~O 2,  q)23 �9 

(2.8) L emma .  The elements (3), viewed in H~ K -  2O'), generate H~ K -  2D'). 

The  proof  is entirely similar to the one of L e m m a  (2.6). In fact one easily sees 
that  ~03,...,~p 3, viewed in H ~  are linearly independent  modu lo  
H ~  Also, since q~l and r vanish of order  1 at Pi, i = 3  . . . . .  l, 
~ol~p~ , ...,(0,r 2, viewed in H ~  are linearly independent  modu lo  
H ~  It is then clear that  the elements in the first two rows are 
linearly independent  modu lo  H~ K -  2 D ' -  2 o). On the other  hand  we noticed 
that  the elements of the last two rows generate  H~ K -  2 D ' - 2  a). The assertion 
follows now by count ing dimensions.  

We need the following lemma.  

(2.9) L e m m a .  Let 3<_i<_1. Assume that ~ = / ] . 1 ~ 0 1 - ~ - , ~ 2 ~ 0 2 ,  )h,)Lz~IK, hasazero of 
order 2 at Pi. Then the image of ~tp 2 in H ~  does not lie in W. 

P 
- ~1 (#jq92 + vj~~ q~2 + ~tj~ ~ r Since q~l and r vanish of Assume that  ~ o  2 c j= 

order  1 at P~, 2, # 0  and 22 # 0 ,  and we can write the above relat ion in the form 
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(2.10) a ~0~2 c ~ ~p, ~0 + a q~2 ~ + ~02 0, q~,~,O~H~ 

By hypothesis  the divisor (,) satisfies (~)>a+D'. Let (~)=A +a+D' and (~02) = A '  

+ a + D'. By hypothesis  supp A c~ supp A' = 4). If Q e supp A "-- supp (a + D') c~ supp A 
then relation (2.10) implies that  multa(O)>multa(~ ). Let now Qesupp(a+D'). 
We let s=multa(~ol)=multa(q~2)=multe(a+D'), r=multQ(~) ,  so that  r - s  
= multQ A. If Q 4: P/, multQ (qh) > s and relat ion (2.1 0) gives mul t  a (0) + 2 s > r + s. If  
Q=Pi  multe(~Pi)=0, s =  1 so that  multa(O)+2>r. 

Therefore  Or176176 Since the points /93 . . . . .  Pz of a 
are generic, we use Lemma(1 .5 )  to conclude that  h~176 
Therefore  OeH~ But this is absurd  as one sees by compar ing  the order  
of  zero at P~ of both  sides of  (2.10). 

C o n s i d e r ' n o w  the element q. F r o m  its definition and from the preceding 
L e m m a  it follows that, for each i = 3 . . . . .  l there exists a unique 

(2.11) O~i=~il (~01 -}- 2i 2 q?2 

vanishing of order  2 at P~ and such that  

where 0 i belongs to Sa H ~  . H~ 
If3__<h, k<l, h4:k we set 

Ghk=%(p2 2 - -  O~ k (49 k -~ O k - -  O h . 

The Ghk'S obviously belong t o  1 3 and are not defined for l =  3. Also the following 
relations hold 

Gkh d - G h ~ = O ,  

Gkh d- G h j =  Gk j .  

We can now prove the main  result of  this section. 

(2.12) Theorem. (i) I f  1>4 IK, "D is generated, as @ SP H~ by the 
p>_o 

gjs,  the f/k'S and the Gk,'s. 
(ii) I f / = 3 ,  I r'~ is generated by the gfs,  the fa 'S ,  and by at most one degree 4 

p 
relation of the type F=F(1)~o33+Ft2)(p2+ ~, Fi~3)tpi, where F ~1), F (2), F/~3) are 

i=1 
homogeneous polynomials in q~l, (t92 of degree 1, 2, 3 respectively. 

We shall prove  the theorem for each homogeneous  componen t  I o of I ,  
= I g,o , �9 

L e m m a  (2.7) settles the case p = 2. Let  us prove  the theorem for 13. Consider  
an element  of  13: 

R= ~ ~ijk (Pi~Ojq)k cO, Yijk (~r 
l <=i <=p 

l <-j,k<l 
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Let us per form the following substi tut ions:  
(a) for every triple of  indices i,j, k such that  i@j, i,j >= 3, we use the equality 

q~q)jq~k = j+ ~ asijq~s+bij~o~~ ~Ok. 
s = 3  

Afterwords,  if k > 3, s + k we use the equali ty 

asijq~sq)k=aslj(fsk+t~3at~k~Ot+b~k~Olq~2 ) �9 

(b) According  to (2.11) we substi tute the terms of type 

V 2 i~02q)i, 3<i<--1 w i t h  vi1~21(0~i-2i1(]21)~92. 

After these subst i tut ions R can be writ ten in the form 

l l l 

R= Z + fj + + y +w 
i = 3  i = 3  i = 3  

where w E H ~ 1 7 6  The propert ies  of the system of elements (3) 
imply that  ?,~ = 61 = 0. If l =  3 it follows that  also ~L 3 = 0, therefore w is a relation 
which can be expressed in terms of  the gSs ( L e m m a  (2.3)). Assume l >  4. For  each 
i = 4  . . . . .  l we make  the subst i tut ion 

],liO~i(,O 2 = # i G i 3  q- [,lioc3 (p 2 .-.}- [,,liO i - -  [,,liO 3 

and we obtain  

R = 2 ~ / ; j k f P i f j k " J c  ~l iGi3d-  #i o~3q ) 2 + w '  
i = 4  i _  

where w ' ~ H ~  . H~ It  follows that  y, /~i=0,  and therefore w' is a 
relat ion which, by L e m m a  (2.3), can be expressed in terms of the gj's. This proves 
our  assert ion for 13. 

Consider  now the elements 

p - - 1  1 
q~lq~3 . . . . .  r r 

(5) 

(2.13) 

( p p - 2  2 . . . . .   oC- 
p--3 p-4 p--3 [ ~~ q,q~l tPz~/ . . . . .  q~2 r/ 

(4) 0 - 1  p -  2 p -  1 / (P l  ~Oi, (~ 1 (D2 ~01, . . . ,  (p2 qgl, i=3, . . . ,p  
p p - -1  p 

L~Pl, q~l ~~ . . . . .  ~~ 

Lemma .  For each p>4, the elements (5), viewed in H~  
generate H ~  1)D'). 

This l e m m a  is a s t ra ightforward general izat ion of L e m m a  (2.8). We sketch its 
proof.  One first shows that  the elements  tp~ r ..., "el'e~"J ,"P-J, j < p - 2 ,  viewed in 
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H ~  are linearly independent modulo  H ~  
+ 1)a). Then, by induction, as in the proof  of Lemma(1.1),  one shows that the 
elements (4), viewed in H ~  generate H ~  
The final step consists in count ing dimensions. 

We are now going to prove Theorem (2.12) for 14. Let us first suppose 1>4. 
We must  show that 14 is generated by the f~k'S, the g]s  and the GRr'S. 

Let us consider a relation in 14: 

R =  ~ 7ijkr(Pi~gj(Pk(PrcO. 
1 <i<p 

l <j,k,r<l 

We make the following substitutions. 
(a) if i~=j, i , j > 3 ,  in every term ~P~P/Pk%, we set 

P 

r q- E asij~ps+bljCPl (q92 �9 
s = 3  

Then if k > 3 and s =1= k, we set 

t = 3  

We can continue till all the terms containing ~o h ~Pk, hee k, h, k > 3 will disappear. 
(b) In every term of type } - / i (P l (P2 (p? ,  V 2 2 7I' 3 iq)2~9i, ifP2~Oi, i=3 , . . . , 1 ,  we set ~P2 

= 2i-21 ( a i -  *~il (/91)" 

We then get: 

1 I I 

(2.14) R =  E ~iiii~9~'4-2 Pkjfkj Af- 2 (5'~01 q)3JI- E (~i (~2(p2 
i = 3  i = 3  i = 3  

3 , /3" 2 ~ ?  q'- W~ -~- Z F'i ai (P i -[- 2 gi (P l ai (,O ? -}- 2 i ai 

where PRj is a form of degree 2 in ~Pl . . . . .  ~Pt and w e S S H ~ 1 7 6  
The properties of  the elements (5), for p = 4 ,  give y..=ai=0, i = 3 ,  ..., 1. 

(c) When  i = 4  . . . . .  l, we substitute the terms of  the form 8iaiq)3i with ei~Pi(Gi3 
+ a s q92 - 0 z + Oi), we then use (a) and (b), if necessary, and we get 

1 
, 2 , t, 2 

' a i  (P l  n=EPkj f k j+2Li3Gi3A-E( f l i~ ,+ f l ia l )a i~ i  +w + E ~2 
i = 3  

where the Li3's are linear in ~Pl . . . . .  ~0 t and w' is as before. The properties of the 
elements (5), for p =4 ,  give 6';' = 0 .  Substituting a~p~ with Giz + a3~,o 2 + 0~-03 we 
get 

' fliai)a3q) 3 n=EPkjfkjh-~L' i3Gi3q-Z(f l lcplq-  ' 2+w,," 

Clearly ~(filq91 +fl'iai)=O, and, according to Lemma(2.3),  w" can be expressed 
in terms of the gfs. 

Let us now consider the case l =  3. Proceding as before we reduce R to the 
form (2.14) with 2nii=O. We then have a relation 
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p 
(2 .15)  P(1)q)  3 -t'- /9(2) rrh2 -L --  3 - - - -  W 3 "  Z p/c3)(])/ 

i=1 

where pI,), p(2), p/(3) are forms in ~1, (f)2 of degree 1, 2, 3 respectively. 
We now observe that there exist 3 i ( D ) - 2  linearly independent relations of 

2 2 2 2 the form (2.15). In fact the 4 p + 3  elements q~, ~01q~ 3, ~o2~ 3, ~o1r ~2(~3, 
(~ 1 (p2 (~032, (p3 (~i, 2 2 3 cpL ~o2~o i, ~o~ q~2~oi, ~ozq~, i=1  . . . . .  p generate H ~  ') which 
is of dimension p + 3 n - 1 .  Therefore among them there are 3 i (D)-2  linearly 
independent relations. But, by Lemma(2.3) there are only 3 i ( D ) - 3  linearly 
independent relations of type (2.15) having P(1)=pI2 )=0 .  This means that in 
order to generate 14, we must add to the gfs and the fig'S at most one additional 
relation. 

p 
F=F(1)q~3+F(2)q~2+ ~ F (3) - i t,Oi" 

i=1 

This proves the theorem for 14 . 
The general case (p >4) can be treated exactly with the same methods used 

for the case p = 4. Any further detail would be a useless repetition. 

w 3. The Exceptional  Cases 

We keep the assumptions and the notation of the preceding sections and we let 
F denote the canonical image of C. The main result of this section is the 
following. 

(3.1) Theorem. I f  1>=4 the "semicanonical ideal" IK, "D is generated, over 
@) SPH~ by I~ '~ with two possible exceptions" when ~ZD(C)~IP z- 1 lies 

p>O 
on a ruled surface of degree 1-2,  or else when l = 6  and ~zo(C ) lies in the Veronese 
surface of IP 5. I f  l= 3 It, '0 is generated by I~ 'D and If '  o. 

The assertion relative to the case l=  3 is a restatement of Theorem (2.12). Let 
1>=4. We shall prove the theorem by showing that, if C is not exceptional, then 
I r'D, is generated by the f/k'S and the gj's. 

Let us write the relations f k'S in the form 

p 

(3.2) ~, (~isq~k--a~ik)~Os=bikCpacP2+akikq~k, 
S=3 
s~k 

where 6i~ is the Kronecker  symbol and i = 3 . . . .  , p, k = 3 . . . . .  l, i 4= k. 
We fix a particular k, 3<_k<_l. Let Atk) be the determinant of the ( p - 3 ) •  

- 3) matrix 

(6isq)k--asik),  3<i<p,  3<=s<p, i#k ,  s # k .  

Since A(k)(Pk)@O , the hypersurface A(k)=0 in IP p- ~ does not contain the canoni- 
cal image F of C. Let V k be the algebraic variety defined by (3.2). By using 
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Cramer 's  rule for the system (3.2), it follows that there exists a unique irreducible 
rational component F k of V k containing E By construct ion F k is birationally 
equivalent to the plane having homogeneous  coordinates q~l, q~2, ~0k" 

(3.3) Lemma.  The gj's vanish on F k. for  every k, 3 <-k < 1. 

Fix k. We can write gj=q)lCj+(pzDj, j = l  . . . .  , i ( D ) - I ,  fik=q)iq?k--(~91Ai 
- q~2Bg, where Cj, D j, A~, B i are linear forms in ~0 l . . . . .  q~p. Clearly, for each j, we 
can write 

qOkgj=Z Ajifik+qOZci)j+qOlqO tlJj+ 2 ~02Zj,  

where Aj~ are linear in ~ol,~o 2 and ~), Tj, Zj are linear in ~ol . . . .  ,q~v" F rom 
Lemma (2.3) it then follows that 

i(D)-- 1 
qO21(~)j~-~Ol@21lJJ-~O2Zj = Z B j ~ g s  

s = l  

where the Bj,'s are linear forms in ~0~ and 92- We can therefore write 

P 

E(6Jsq~k--Bjs)g~ = E AjiJlk" 
s i = 3  

i*k  

By using Cramer 's  rule we get 

P 
(3.4) g j H =  ~ Hj i f i  k 

i = 3  
i3-k 

where the Hi fs  are forms and H = d e t ( 6 j , ~ O k - B j s  ). Since H does not  vanish at 
Pk, H does not contain F k. But the f~k'S do. Thus the gfs  vanish on F k. 

Exact ly  in the same manner  as in IS]  (except that  for the presence of the gfs, 
for which one uses the preceding Lemma) one can now prove the following 
results. 

(3 .5 )  P r o p o s i t i o n .  Let 1>4. 
A) Let  i, k, r be distinct indices ,such that, 3 <= i < p, 3 _<= k, r <= I. Then there exist 

linear forms in ~o 1 and qo 2 flkirj, J = 1 . . . . .  i ( D ) -  1 such that 

p i(D) 1 

fk~o,--f~,q)k = ~ (a~,J;k--as,kf~,.)+Pk,rGk,+ ~ flkirjgj" 
s = 3  j = l  

where fkk = f n = O  and akir= DkirO~k, k, i, r distinct. Moreover Pkir= [,)rik . 
B) Fix  k and r, k + r ,  3<=k, r< l .  Then Pkir=O for  every i = 3  . . . . .  p, i4=k,r, if 

and only if F k = F r. 
C) I f  there exists one Pkir different Ji'om zero then I ,  = Ker u,  is generated by 

the quadratic relations gj's and Jlk'S. 

In order  to complete the proof  of  Theorem (3.1) we must  interpret geometri-  
cally the vanishing of the Pkir'S. If all the pkir'S vanish, then, in particular, we 
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have 

f ik = q? i ~l)k - -  a k i k  ~Ok - -  a i l k  q) i - -  b ik (P 1 (19 2" 

For 3_-<i, k__<l, i<k,  the equations 
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(l - 2)(l - 3) 
fig = 0 represent 2 linearly 

independent quadrics in IP l-~ containing a surface F, which in turn contains 
~D(C). Keeping this in mind the theorem can now be proved by repeating, word 
by word, the argument given in [S], pag. 173, where the "g" should be replaced 
by a "/". 

w 4. The  Ideal o f  a Specia l  Curve 

We keep the assumptions of Sections 2 and 3 and we make the following change 
in notation. We fix a basis 

X 1 . . . .  , X l ,  l=l(D) 

of H~ -D'), and a basis 

Yl . . . . .  Yr, l'=i(D) 

of H~ The elements of H~ ') will be thought of as rational functions f such 
that (f)+D'>O. We assume that Yl =1. 

We consider the natural homomorphism 

v: H ~ 1 7 4 1 7 6  ') ~ H~ 

xi | Yj " ~  x i y  j . 

Let z=codim(Imv).  If z>O we complete the set {xiYj} to a system of 
generators of H~ by adding to it z regular 1-forms 

Zl . . . . .  z~ l l~  

which are linearly independent modulo Im v. 
Letting V be the subspace of H~ spanned by z 1, ..., z~ we have a natural 

surjective map, which we also call v, 

v: H ~ 1 7 4  H~ V-,  H~ 

We now consider indeterminates X 1 ..... Xt, YI ..... Yv, Z1, ...,Z~ and we 
identify IK[X] = IK[ X 1, . . . ,Xl]  with @ SOH~ ') in the obvious way. We 

p>O 

also define a graded IK[X]-moduleM = @ M o by setting 
p=>l 

Mp = Pj(P)(X) Yj+ P~("- J)(X)Z~ 
j v = l  

where, as usual, P)P)(X), and P~("-1)(X) denote homogeneous polynomials of 
degree p and p -  1 respectively in X 1 . . . . .  X v 
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We have a natural degree zero lK[X]-homomorphism 

4: M ~ @ H~ 
p>=l 

P(X, Y, Z) ,,~ P(x, y, z). 

Let A be the degree one part of Ker (/); A consists of all polynomials of the 
form 

Z ~ Yj, ~ 

such that 20:ijxiYj=O. We denote by (A) the graded IK[X]-submodule of M 
generated by A. Consider the following commutative diagram of degree zero 
maps of graded IK [X]-modules: 

M 

M/(A) ~ p~>= l H~ K) 

@ s o- ' ~/~ -D ' ) .  N~ 
p>l  

where ~ is the obvious map and a is defined as follows. Being v surjective each 
element of SP-IH~ H~ can be expressed in this way 

P(P)(x)+ ~, Pi(~- l)(x)x, yi + 2 P,(, ~ 1)(X)Zv 
j>2 

then we set 

z ,)(x>xiyj+z . ,,(x>z.) O" 
j_>_2 

=P(P)(X)  Y, + ~ Pi!f- 1)(x) Xi Yj§ 2 P-,!P - 1)(X)Zv" 
j>2 

Let us briefly say that C is exceptional if uD(C ) lies on a ruled surface of 
degree 1 - 2  in IP z- '  (l>__4) or else if 1=6 and up(C) lies on the Veronese surface 
of IF s. 

(4.1) Proposition. I f  1>=4 Ker~  is generated, as a IK[X]-module by its elements 
of degree 1, 2, 3. I f  C is not exceptional Ker(/) is generated by its elements of 
degree 1 and 2. I f  l=  3 Ker �9 is generated by its elements of degree 1, 2 and 4. 

This follows immediately from Theorems (2.12) and (3.1) by chasing the 
above diagram. 

We shall express the fact that P(X, Y, Z ) e K e r ~  by writing P(X, Y, Z)=  0 or 
simply P(x, y, z)=0.  c 

By the preceding proposition we can say that, when I>= 4, Ker �9 is generated 
by relations of the following types: 
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(1) 7 o, 
1' 

(2) ~ pj(2)(X)Yj-[- ~ P(1)(X)Zvc O, 
j=1 v=l  

1' 

(3) E Z e!2'(x)z 7 0. 
j=l v=I 

If C is not exceptional the relations of type (3) are not needed. When l= 3 
one must add to the relations (I) and (2) at rnost one fourth degree relation of 
the type 

l' 
(4) E P)'}(X)Y~+ ~ P,!3)(X)Z,,cO. 

j = l  v=l 
�9 �9 �9 i 

If we consider the rejection IK[X]~--~M, given by i (P(X))=P(X)  Y1 it follows, 
from the definition of O, that  Ker (Oo  i) is the ideal I ,  D of the curve no(C)~IP z- 1 
As a consequence of Propos i t ion  (4.1) we may  therefore conclude that" 

(4.2) Theorem. A system of generators for 1~, can be obtained, from the relations 
of type (1), (2), (3) and (4) by eliminating the Y's and the Z's. When I>4 and C is 
not exceptional it suffices to use relations of type (1) and (2). 

We now apply this result to the so called "Klein's canonical curves". 
The curve C is a Klein's canonical curve of type d if there exists a positive 

integer d such that  

IdDJ=IKI.  

For  example  a non-singular  curve in IP r which is the complete  intersection of 
r - 1  hypersurfaces of degree nl,  . . . , n r _ l ,  respectively, is a Klein 's  canonical  
curve of type d=n  l + . . . + n  r_ l - r -  1. 

If  C is a Klein's  canonical  curve of type d, for each p=> 1 we set Ip=l(pD), 11 
= l, and we denote  by np: C--*IP lP- 1 the rat ional  m a p  induced by JpDI, (n 1 = nD). 

(4.3) Theorem. Let C be a Klein's canonical curve of type d. Assume that for 
each p > 0 ,  the natural map SP H ~ 1 7 6  D) is surjective. Then if t>_4, the ideal 
I~ of no(C ) in IP l-1 is generated by forms of degree =<d+2. U" C is not 
exceptional, I D is generated by forms of degree <-d + 1. I f  1=3 nD(C ) is a plane 
non-singular curve of degree n = d +  3. 

First  observe that  for p>>0, np: C ~ n p ( C ) c I P  1~-1 is an embedding.  On the 
other  hand  being SPH~176 surjective we can write np=  2 o n D where 2 is 
a Veronese map. Therefore  n ,  is a bira t ioual  i somorph ism of C onto  nv(C ). 

The case l =  3 is trivial. Suppose  1=>4. Let  us use the nota t ion  in t roduced in 
the beginning of this section. Set D ' = ( d - 1 ) D ~ K - D .  Consider  the basis 
x 1 . . . . .  x I of  H ~  We may  assume that  (x l ) =  d D = D ' +  D. We then have a 
i somorph ism 

H~ - 1)(K - D ' ) )  -o H~ ') 

T 
x~d- 1) " 
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By hypothesis we have surjective maps 

(a) S d- 1H~ I H~ --* H~ - I)(K-D'))~-H~ 

(b) Sd H~ --+ H~ 

From (a) it follows that there exist 1' forms, of degree d - 1 ,  f l (X)  . . . . .  fr(X) 
such that 

(4.4) xal-lyj=fj(Xl . . . . .  x,), j = l  . . . . .  l'. 

F rom (b) it follows that H~174176176 is surjective so that  r 
=0 .  

Recalling (1), (2), (3) we get, in I ,  v, elements of the following types 

(1)' y~%x,fj(x), 
(2)' 2 PJE)(x) f j(X),  

(3)' ~ PJ3)(X) f j(X).  

These are forms of degree d, d + 1, d + 2 respectively. Let F(X) e I~, p > d. 
With an obvious multi index nota t ion we write 

F(X)= y~ FAX)X'. 
IJl=d 1 

For  every multiindex J we have, by virtue of (a), 

(4.5) x'l=xa-l La(y) 

where L j  is a linear form in Yl . . . .  , Yr. Let 

G(X, Y)= ~. F,(X)L,(Y). 
ISl=a 1 

Clearly G(X, Y)~KerO.  Setting f ( X ) = ( f l ( X  ) . . . . .  fr(X)),  it then follows from 
Proposi t ion (4.1), that G(X,f(X)) can be expressed as a combinat ion of forms of 
types (1)', (2)' and (3)' (the forms of type (3)' are not  necessary when C is not  
exceptional). On the other  hand 

F ( X ) - G ( X , f ( X ) ) =  ~ F,(X)(XJ-Lj( f (X))) .  
IJl=d- 1 

F r o m  (4.4) and (4.5) it follows that X ' - L , ( f ( X ) )  is an element of degree d 
- 1 in I ,  D, proving the assertion. 

(4.6) Remark. In the preceding theorem the hypothesis that rco(C ) is pro- 
jectively normal  is certainly redundant ;  we only used the surjectivity of the maps 
(a) and (b). On the other  hand the surjectivity of the latter is necessary as the 
following example shows. 

Let Q be a non-singular quadric  in IP 3, let 1 and m be two non-equivalent  
lines on Q. Let  F be an irreducible curve in 14/+5ml having, as its only 
singularities, two ordinary double points on the line m. The normal izat ion C of 
F, together with the pull-back D of a plane section is a Klein's canonical curve 
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of type d = 2 for which the map (b) is not surjective. On the other hand the ideal 
of F = r t , ( C )  can not be generated by forms of degree less or equal than d+2 .  

(4.7) Theorem. Let C be a Klein's canonical curve of type d > 2  and genus p. 
Assume ~D(C)cIP z- 1, l>4. Then 

(*) p > l + ( l - 1 ) d + ( l - 2 ) ( d 2 ) .  

Equivalently, for the degree n = ( 2 p - 2 ) / d  of ~o(C) we have 

(**) n > 2 ( l - 1 ) + ( l - 2 ) ( d - 1 ) .  

I f  equalities hold C is a "Castelnuovo's curve" (i.e. a curve in IP 1-1 of maximal 
genus with respect to its degree); in particular C is exceptional. On the other hand 
if C is exceptional and projectively normal then C is a Castelnuovo's curve. 

In case rcD(C)~IP 2 then n > d + 3  and the equality holds if and only if C is 
non-singular. 

The statement about plane curves is obvious. So let 1>4. By Castelnuovo's 
bound (see [HI), if h is the lowest integer such that hD is non-special, then h <(n 

- 2)/ ( l -  2), so that 

(n - 2) / ( l -  2) > d + 1. 

This inequality is equivalent to (,) and (**). Suppose we have equality in (,); then 
one easily sees that 

p =  ~ max(0, n - ( p + l ) ( l - 1 ) + p ) .  
p > o  

Hence nD(C ) is a Castelnuovo's curve (see [G-H]) ;  since d > 2  nD(C ) is excep- 
tional (see [C]). 

On the other hand assume C is exceptional. Then no(C ) is contained in a 
surface F of degree l - 2  which is either a non-singular ruled surface, or a cone 
over a rational normal curve in IP ~- 2, or else the Veronese surface in IP 5. In all 
cases the Hilbert polynomial of F is 

)~(v)= l + ( I - 1 )  v + ( l -  2) (~) . 

Since C is projectively normal we have a surjective map 

H~ Ov(d))--* H~ C, Kc) 

so that 

p< z(d)= l + (1 -1 )d  + ( 1 -  2) (d2) . 

Therefore, be the first part, we get equality, proving that C is a Castelnuovo's 
curve. 

We end this section by making some parenthetical remarks about an old 
conjecture of Brill and M. Nofither. 

We first remind the geometrical significance of the number 

z = codim Im (v: H ~ (K - D') | H ~ (D')--* H ~ (K)). 
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For this we let Vt,,={b~C~"): I(D)>I}. It is then well known that 

dim(Zariski tang. space to V~,, at D ) = r + l -  1. 

Let now 21 = 4t= (linearly independent relations of type (1)) we have 

21 = l i - p + z .  

The conjecture is that if 2 1 > r  then C is special in the sense o f  moduli. 
(Classically the conjecture was stated by saying that C is special in the sense of 
moduli if there exists, on C, a g~, with ( r+  1 ) ( n - r ) - r p  <0). Petri in [P-2] states, 
as a fact, that C is special in the sense of moduli if 21 >0.  This too is a natural 
conjecture. 

One natural way of looking at this problem is to consider the 21 relations as 
a basis of H~174 t2~,-,Ic) and see if the natural map 

0 1 1 0 H (tlc| (2Kc) 

is not zero. 

w 5. The Ideal of a Certain Class of Projective Varieties 

In what follows V~IP N, N > 2 ,  will denote a normal projective (irreducible) 
algebraic variety and L = Ow,(1 ) | 0 v the hyperplane bundle. We assume that N 
+ I = h ~  

As is well known V is said to be arithmetically Cohen-Macaulay if the 
following conditions hold 

(a) Hq(K LQ=O, pe ig ,  l__<q__<dimV-l, 

(b) for every p>0 ,  the map H~ O ( p ) ) ~ - S P H ~ 1 7 6  p) is sur- 
jective. 

When only condition (b) holds then V is said to be projectively normal. 
The following lemmas are standard. They follow at once by examining the 

cohomology of the following exact commutative diagram 

0 0 0 

0 + Iv( p -  1) , Ivfp)  , Ivan(p)  --+ 0 

0 , O ~ ( p -  1) -~ O~,~(p) , Ou(p) -~ 0 

0 -~ U' l , L;' - - +  LPvmf , 0  

0 0 0 
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(5.1) Lemma. Let V be projectively normal. Let H be a hyperplane in IP N. 
Suppose that the graded ideal I , ( V  c~ H) of V c~ H is generated by its homogeneous 
components of degree <v. Then the ideal I , (V)  is also generated by its homo- 
geneous components of  degree < v. 

(5.2) Lemma. Let V be arithmetically Cohen-Macaulay, dim V>2.  Let H be a 
hyperplane in IP N, then V c~H is arithmetically Cohen-Macaulay. 

We now prove the following generalized version of the Max No~ther- 
Enriques-Petri theorem, 

(5.3) Theorem. Let V ~ I P  N be a non-singular, irreducible, arithmetically Cohen 
Macaulay, variety of dimension d. Let ~o v be the canonical bundle on V. Let L be 
the hyperplane bundle. Assume that there exists an integer e such that Le~-O3v . 
7hen the ideal I , (V)  of  V in @SPH~ is generated by elements of  degree 
< d + e, with the exception of the following cases 

I) V is a hypersurface of degree n > 2, so that n = e + d + 2, 

II) V is a hypersurface on an irreducible variety W ~ I P  N which has the 
minimal degree: N - d = codim W+ 1. 

When e + d > 3  this is the same as saying that the intersection of V with a 
generic IP N-d+1 is a Castelnuovo's curve. 

In this case I , (V )  is generated by elements of degree < e + d +  1. 

III) e + d = l  in which case I , (V)  is generated by quadrics, (unless we are in 
case I )  with n = 3. 

Let IP be a generic ( N - d +  1)-dimensional linear subspace of IP N. Consider 
the non-singular curve C = Vc~IP. By adjunction 

- -  e + d -  1 COc - (Llc) 

If N - d + l = 2  we are in case I). Let's assume N - d + l > 3 .  After a repeated 
application of Lemma (5.2) it follows that C is arithmetically Cohen Macaulay. 
Suppose e + d -  1 > 1. Then C is a projectively normal Klein's canonical curve of 
type e + d - 1  in IP. We now apply Theorem (4.3). If C is not exceptional the 
ideal I(C) in @ SPH~ O~(1)) is generated by elements of degree <=d+e and 

p>__0 
the theorem follows by a repeated application of Lemmas (5.1) and (5.2). If C is 
exceptional it is contained in a surface F of minimal degree N - d  in IP, which is 

the intersection of h= (N;d)" - linearly independent quadrics Q 1 . . . . .  Q h i n l P .  

Chasing the diagram, in the beginning of the paragraph, one finds h linearly 
independent quadrics (~1, ..., (~h in IP N containing V and such that (~i ~ IP= Qi. 
These quadrics define a variety W of dimension d + l  and degree N - d ,  
containing V, and so we are in case II). Of course Theorem (4.7) gives the 
equivalent version of case II). From Theorem (4.3) and Lemmas (5.1) and (5.2) it 
follows that, in this case, the ideal I , (V)  is generated by elements of degree 
< d + e + l .  

Let now e + d - 1  =0,  so that C is an elliptic curve. Since we are assuming 
that C is not a plane cubic, it follows from [M-2] that we are in case III). 
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Finally it is easy to see that the case e + d < 0  can occur only if V is a quadric 
hypersurface, and we are in case I). 

Remarks. The above theorem gives that  the ideal of a regular projectively 
normal  canonical surface, is generated by quadrics and cubics; the only excep- 
tions being the quintic surface in IP 3 and the canonical surfaces for which c 2 is 
minimal (i.e. c 2 = 3 p . -  7). 

Examples for which e + d - 1  = 1 are canonical curves, K - - 3  surfaces, Fano  
threefolds and fourfolds. 
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