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Introduction

A (d1, d2)-correspondence on a projective connected nonsingular curve C can
be defined as a curve D ⊂ C×C of type (d1, d2). The i-th projection restricts
to a morphism of degree di

pi : D → C

for i = 1, 2. These morphisms induce a correspondence in the usual sense,
associating to a point x ∈ C the divisor p2(p

−1
1 (x)) of degree d1. On any

curve C there exist plenty of correspondences, but if the curve is general
they are all correspondences with valency: namely there is an integer N such
that the linear equivalence class of the divisor

p2(p
−1
1 (x)) + Nx

is independent of x. It is more difficult to find correspondences without
valency.
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A (d, d)-correspondence is called symmetric if it is mapped to itself by the
involution on C × C which interchanges the factors. Hence for a symmetric
correspondence D, the involution on C×C induces an involution on the curve
D. If we assume that the correspondence is without fixed points, i.e. it does
not meet the diagonal ∆ ⊂ C × C, the involution on D is fixed-point free.
This is the specific case that we will study in this paper. The interest of such
correspondences comes from their relation with the theory of Prym-Tyurin
varieties. We refer the reader to [1] for details on this theory and on how it
is related with correspondences.

We consider a few geometrical configurations arising from a nonsingular
symmetric fixed-point free (d, d)-correspondence and we study their defor-
mation theory. This gives informations on the deformation theory of Prym-
Tyurin varieties, a subject on which very little is known.

We are able to compute several invariants and to test them on a few
known examples.

1 The second symmetric product

Let C be a complex projective nonsingular connected curve of genus g ≥ 2.
Denote by Cn and Cn the n-th cartesian, resp. symmetric, product of C, for
any n > 0. We will be interested in the case n = 2.

In this section we want to compute the cohomology of TC2 , the tangent
bundle of C2. For this purpose consider the universal divisor

∆2 = {(x, E) : E − x > 0} ⊂ C × C2

and let
C × C2

↓ p ↘ q
C C2

be the projections. We have the well known formula

TC2 = q∗[O∆2(∆2)] (1)

(see [4]). We have an obvious isomorphism

C × C
ε−→ ∆2

(x, y) 7→ (x, x + y)
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and we can identify the natural map σ : C × C → C2 with the composition

C × C
ε−→ ∆2

q−→ C2

Moreover the composition pε : C × C → C gets identified with the first
projection which we will keep calling p. Now, using the identity

ε∗O∆2(∆2) = p∗ω−1
C ⊗O(∆)

(see [4], lemma 1.1. Warning: ∆ is the diagonal in C × C while ∆2 is the
diagonal in C × C2) we can reformulate (1) as follows:

TC2 = σ∗[p
∗ω−1

C (∆)] (2)

Since σ is finite we have canonical identifications:

H i(TC2) = H i(p∗ω−1
C (∆)), i = 0, 1, 2 (3)

Lemma 1.1
h0(p∗ω−1

C ) = 0
h1(p∗ω−1

C ) = 3g − 3
h2(p∗ω−1

C ) = g(3g − 3)

and therefore
χ(p∗ω−1

C ) = 3(g − 1)2

Proof. Follows easily from the Kunneth formula or Leray spectral se-
quence. •

Lemma 1.2 If g ≥ 3 then

h0(R1p∗O(∆)⊗ ω−1
C ) = 0

and
h1(R1p∗O(∆)⊗ ω−1

C ) = 3g2 − 8g + 5

If g = 2 then R1p∗O(∆) ∼= ωC.
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Proof. Assume g ≥ 3. By pushing down by p the exact sequence

0 → O → O(∆) → ω−1
∆ → 0

we obtain the exact sequence on C:

0 → OC → p∗O(∆) → ω−1
C → R1p∗OC → R1p∗O(∆) → 0 (4)

We have R1p∗OC = H1(OC) ⊗ OC and by rank reasons OC
∼= p∗O(∆). We

are left with the exact sequence

0 → ω−1
C → H1(OC)⊗OC → R1p∗O(∆) → 0 (5)

which is a twist of the Euler sequence of IP g−1 restricted to C via the canonical
morphism C → IP g−1; in particular

R1p∗O(∆) ∼= TIP g−1|C ⊗ ω−1
C

Let a = x1 + · · · + xg−2 be a general effective divisor of degree g − 2 on C.
Then there is an exact sequence ( see [3], (2.3): the proof is valid in the
hyperelliptic case as well, see [6], , Lemma 1.4.1)

0 → ω−1
C (a) → R1p∗O(∆)∨ →

⊕
OC(−xi) → 0

Dualizing and twisting by ω−1
C we obtain:

0 →
⊕

ω−1
C (xi) → R1p∗O(∆)⊗ ω−1

C → O(−a) → 0

which implies h0(R1p∗O(∆)⊗ω−1
C ) = 0. The other estimate follows also from

this sequence.
The case g = 2 follows from the exact sequence (5). •
The following result is well known (see [2]):

Proposition 1.3 If g ≥ 3 then

h0(TC2) = 0
h1(TC2) = 3g − 3
h2(TC2) = 3g2 − 8g + 5

and therefore
χ(TC2) = 3g2 − 11g + 8

If g = 2 then h0(TC2) = 0, h1(TC2) = 4 and h2(TC2) = 2.
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Proof. The equality h0(TC2) = 0 is an immediate consequence of (3) for
all g ≥ 2.

Assume g ≥ 3. By the Leray spectral sequence for p : C × C → C and
equation (3) we have an exact sequence

0 → H1(ω−1
C ⊗ p∗O(∆)) → H1(TC2) → H0(ω−1

C ⊗R1p∗O(∆)) → 0 (6)

The exact sequence (4) implies that p∗O(∆) = OC so that we have

H1(TC2) = H1(ω−1
C ) ∼= C3g−3

because H0(ω−1
C ⊗ R1p∗O(∆)) = 0 by Lemma 1.2. Thethe Leray spectral

sequence for p : C × C → C and equation (3) again we have

H2(TC2)
∼= H1(R1p∗O(∆)⊗ ω−1

C ) (7)

and again the conclusion follows from Lemma 1.2.
If g = 2 the exact sequence (6) becomes:

0 → H1(ω−1
C ) → H1(TC2) → H0(OC) → 0

by Lemma 1.2. Therefore h1(TC2) = 4. Similarly (7) in this case gives

H2(TC2)
∼= H1(OC) ∼= C2

•

2 The set-up

Let D ⊂ C × C be a symmetric irreducible and nonsingular curve of type
(d, d). Assume that D·∆ = 0, where ∆ ⊂ C×C is the diagonal. In particular
D is a symmetric fixed-point free (d, d)-correspondence on C.

We have the following situation:

C × C
σ−→ C2

∪ ∪
D → D̄
↓ p
C

(8)
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Here p is induced by the projection, σ is the canonical quotient map, D̄ :=
σ(D) is irreducible and nonsingular and the lower horizontal map is an etale
double cover.

Let g(D) and ḡ be the genera of D and of D̄ respectively. By the adjunc-
tion formula on C × C we have:

g(D)− 1 = 2d(g − 1) +
D2

2
= 2d(g − 1) + D̄2

On the other hand by Hurwitz formula applied to p we have

2(g(D)− 1) = 2d(g − 1) + |R|

where |R| is the degree of the ramification divisor R of p : D → C. By
comparing the two formulas we therefore get:

D̄2 = −g(D) + 1 + |R| (9)

But since g(D)− 1 = 2ḡ − 2 we also have:

D̄2 = 2ḡ − 2− 2d(g − 1) = 2− 2ḡ + |R| (10)

From these expressions we get the following Riemann-Roch formula for the
normal sheaf ND̄ of D̄ ⊂ C2:

χ(ND̄) = 3− 3ḡ + |R| (11)

equivalently:
χ(ND̄) = ḡ − 1− 2d(g − 1) (12)

Consider the exact sequence on C × C:

0 → p∗ω−1
C (∆−D) → p∗ω−1

C (∆) → p∗ω−1
C ⊗OD → 0 (13)

(recall that D ·∆ = 0). Taking σ∗ we obtain the following exact sequence on
C2:

0 → σ∗[p
∗ω−1

C (∆−D)] → TC2 → σ∗[p
∗ω−1

C ⊗OD] → 0 (14)

Now, since the sheaf on the right is locally free of rank two and it is supported
on D̄, the last map factors as the restriction TC2 → TC2|D̄ composed with a
surjection of locally free rank two sheaves

TC2|D̄ → σ∗[p
∗ω−1

C ⊗OD] (15)
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which must therefore be an isomorphism. It also follows that

σ∗[p
∗ω−1

C (∆−D)] ∼= TC2(−D̄)

Using the fact that σ is finite we can state the following:

Lemma 2.1 For all i we have:

H i(TC2(−D̄)) ∼= H i(p∗ω−1
C (∆−D))

H i(TC2|D̄) ∼= H i(p∗ω−1
C ⊗OD)

and the cohomology sequence of (13) is isomorphic to the cohomology se-
quence of

0 → TC2(−D̄) → TC2 → TC2|D̄ → 0

We will need the following exact and commutative diagram:

0 0
↓ ↓

0 → p∗ω−1
C (−D) → p∗ω−1

C → p∗ω−1
C ⊗OD → 0

↓ ↓ ‖
0 → p∗ω−1

C (∆−D) → p∗ω−1
C (∆) → p∗ω−1

C ⊗OD → 0
↓ ↓

0 → ω−2
∆ = ω−2

∆

↓ ↓
0 0

(16)

Lemma 2.2 If ḡ ≥ 2 then

hi(p∗ω−1
C (−D)) = 0, i = 0, 1

h2(p∗ω−1
C (−D)) = (g − 1)[3(g − 1) + 4d] + D̄2

Proof. Set E = p∗ωC(D). Then

E ·D = p∗ωC ·D + 2D̄2 =
= 2d(g − 1) + 2[2ḡ − 2− 2d(g − 1)] = 4(ḡ − 1)− 2d(g − 1)
= D̄2 + 2ḡ − 2 = |R| ≥ 0
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Moreover

E2 = D2 + 2d(2g − 2) = 2D̄2 + 4d(g − 1) =
= 2[2ḡ − 2− 2d(g − 1)] + 4d(g − 1) = 4(ḡ − 1) > 0

Therefore, since E is effective, it is big and nef. Therefore the first part
follows from the Kawamata-Viehweg vanishing theorem.

Since deg(p∗ω−1
C ⊗OD) = 2d(1− g), we have

χ(p∗ω−1
C ⊗OD) = 2d(1− g) + 1− g(D) = 4d(1− g)− D̄2

Using the exact sequence

0 → p∗ω−1
C (−D) → p∗ω−1

C → p∗ω−1
C ⊗OD → 0

and recalling Lemma 1.1 we obtain:

h2(p∗ω−1
C (−D)) = χ(p∗ω−1

C (−D)) =
= χ(p∗ω−1

C )− χ(p∗ω−1
C ⊗OD) = (g − 1)[3(g − 1) + 4d] + D̄2

•

Proposition 2.3 If ḡ ≥ 2 then

h0(TC2(−D̄)) = 0

h1(TC2(−D̄)) = 0

χ(TC2(−D̄)) = h2(TC2(−D̄)) = (g − 1)[3(g − 1) + 4d− 5] + D̄2

Proof. The equality h0(TC2(−D̄)) = 0 is clear. By Lemma 2.1 it suffices to
show that H1(p∗ω−1

C (∆−D)) = 0 in order to prove the second equality. We
will use diagram (16). Note that H0(F) = 0 for all sheaves F in the diagram.
Moreover, since H1(p∗ω−1

C (−D)) = 0 (Lemma 2.2), the first column of (16)
shows that it suffices to prove that

H1(ω−2
∆ ) → H2(p∗ω−1

C (−D))

is injective. This amounts to show that the coboundary map

H1(ω−2
∆ ) → H2(p∗ω−1

C )
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coming from the second column of (16) is injective. But the cohomology
sequence of the second column of (16) is

0 → H1(p∗ω−1
C ) → H1(p∗ω−1

C (∆)) → H1(ω−2
∆ ) → H2(p∗ω−1

C ) → · · ·
‖ ‖

C3g−3 C3g−3

where we used Lemma 1.1, equation (3) and Proposition 1.3; so this proves
that h1(TC2(−D̄)) = 0. The identity for h2(TC2(−D̄)) follows from Lemma
2.1 and the first part and from the cohomology sequence of the first column
of diagram (16). •

We now prove a result which is useful for the computation of the coho-
mology of TC2|D̄.

Proposition 2.4 We have an identity

TC2|D̄ = ω−1
D̄
⊗ σ∗O(R) (17)

and an exact sequence:

0 → ω−1
D̄
⊕ ω−1

D̄
η → TC2|D̄ → t′ → 0 (18)

where t′ is a torsion sheaf with h0(t′) = |R|.

Proof. We have the identifications

p∗ω−1
C ⊗OD = ω−1

D (R) = σ∗ω−1
D̄

(R)

The second one being because D → D̄ is unramified. Then by applying the
projection formula we have

σ∗[p
∗ω−1

C ⊗OD] = ω−1
D̄
⊗ σ∗O(R)

and therefore, after recalling the isomorphism (15), we have the identity (17).
Let η ∈ Pic2(D̄) be the 2-torsion point defining the double cover D → D̄.

Then we have σ∗OD = OD̄ ⊕ η and the exact sequence on D̄

0 → OD̄ ⊕ η → σ∗O(R) → t → 0

where t is a torsion sheaf with h0(t) = |R| obtained by pushing down the
obvious sequence on D:

0 → OD → OD(R) → OR(R) → 0

Tensoring with ω−1
D̄

and using (17) we obtain (18). •
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Example 2.5 (The classical Prym varieties) Let C have a fixed-point
free involution ι and let D ⊂ C × C be the graph of ι. In this case d = 1,
R = 0, D = C, and g = g(D) = 2ḡ − 1. Assume ḡ ≥ 2, i.e. g ≥ 3. Using
(10) we get deg(ND̄) = −g + 1 < 0 and, by (11):

h0(ND̄) = 0, h1(ND̄) = −χ(ND̄) = 3ḡ − 3

Moreover by (18) we have

h1(TC2|D̄) = h0(ω⊗2
D̄

) + h0(ηω⊗2
D̄

) = 6ḡ − 6

On the other hand
h1(TD̄) = 3ḡ − 3

and, by Proposition 1.3:

h1(TC2) = h1(TC) = 3(2ḡ − 1)− 3 = 6ḡ − 6

Therefore, since h1(TC2(−D̄)) = 0 (Proposition 2.3), we see that the restric-
tion map

H1(TC2) → H1(TC2|D̄)

is an isomorphism, and that:

H1(TC2)
∼= H1(TC2|D̄) ∼= H1(TD̄)⊕H1(ND̄) (19)

3 Deformations of the correspondence

Let the notation be as in the last section. Let

TC2〈D̄〉 ⊂ TC2

be the inverse image of TD̄ ⊂ TC2|D̄ under the natural restriction homomor-
phism:

TC2 → TC2|D̄

The deformation theory of the pair (D̄, C2) is controlled by the sheaf TC2〈D̄〉.
Precisely the tangent and the obstruction space of the deformation functor of
the pair are H1(C2, TC2〈D̄〉) and H2(C2, TC2〈D̄〉) respectively (see [7], §3.4.4).
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For the computation of these two vector spaces we consider the following
exact sequences on C2:

0 → TC2(−D̄) → TC2〈D̄〉 → TD̄ → 0 (20)

and
0 → TC2〈D̄〉 → TC2 → ND̄ → 0 (21)

which fit into the commutative diagram with exact rows and columns:

0 0
↓ ↓

TC2(−D̄) = TC2(−D̄)
↓ ↓

0 → TC2〈D̄〉 → TC2 → ND̄ → 0
↓ ↓ ‖

0 → TD̄ → TC2|D̄ → ND̄ → 0
↓ ↓
0 0

(22)

As a consequence of Proposition 1.3 we obtain

h0(TC2〈D̄〉) = 0 (23)

In view of Proposition 2.3 if ḡ ≥ 2 then the cohomology of this diagram is
the following:

0 0
↓ ↓

H1(TC2〈D̄〉)
β1−→ H1(TC2)

α−→ H1(ND̄)
↓ ↓ ‖

H1(TD̄)
γ−→ H1(TC2|D̄) → H1(ND̄) → 0

↓ ↓
H2(TC2(−D̄)) = H2(TC2(−D̄))

↓ ↓
H2(TC2〈D̄〉)

β2−→ H2(TC2) → 0
↓ ↓
0 0

(24)
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Note that
ker(β2) = coker(α)

ker(β1) = H0(ND̄) = ker(γ)

In general we have
h1(TC2|D̄) 6= 0 6= h1(ND̄)

so that D̄ is neither stable nor costable in C2 (see [7], §3.4.5, for the definition
of stability and costability).

Lemma 3.1

χ(TC2〈D̄〉) = 1− ḡ + (g − 1)(3g + 2d− 8)

Proof. From the exact sequence (20) we deduce the following identity:

χ(TC2〈D̄〉) = χ(TC2(−D̄)) + χ(TD̄)

Using Proposition 2.3 and (10) we obtain:

χ(TC2〈D̄〉) = D̄2 +(g−1)(3g +4d−8)+3−3ḡ = 1− ḡ +(g−1)(3g +2d−8)

•

Remarks 3.2 If we denote by µ(D̄, C2) the number of moduli of the pair
(D̄, C2) (see [7]) then we have:

−χ(TC2〈D̄〉) ≤ µ(D̄, C2) ≤ h1(TC2〈D̄〉)

The second inequality is an equality if and only if the pair (D̄, C2) is unob-
structed. Since χ(TC2〈D̄〉) tends to be positive, the lower bound is negative
in general and therefore it does not give any useful information about the
deformations of the pair.

Remarks 3.3 The sheaf TC2(−D̄) controls the deformations of (D̄, C2) which
induce a trivial deformation of D̄. The fact that H1(TC2(−D̄)) = 0 (Propo-
sition 2.3) means that there are no such infinitesimal deformations. This can
be explained geometrically as follows.

To deform (D̄, C2) without deforming D̄ is the same as deforming (D, C2)
without deforming D (because D is etale over D̄). This means to deform C
without deforming its cover D and this is not possible because it would
contradict the theorem of de Franchis for D.
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4 Examples

We consider a few examples and we apply the previous calculations.

1. The classical Prym varieties - This is the example considered at the
end of §2. By comparing the expressions given by Propositions 1.3 and 2.3
we get

h2(TC2(−D̄)) = h2(TC2)

and from this it immediately follows that

H1(TC2〈D̄〉) = H1(TD̄)

In particular the space of first order deformations of the pair (D̄, C2), i.e.
those which preserve the involution ι on C, has dimension 3ḡ−3 = 3 dim(P ),
where P is the Prym variety of the pair (C, ι), a very well known fact. The
map β2 of diagram (24) is bijective because α is surjective.

2. Let f : X → X ′ be an unramified double cover, ι : X → X the
involution, and assume given a g1

5 X ′ → IP 1 with simple ramifications. Then
[1] in the induced map

f (5) : X5 → X ′
5

we have
f (5)−1(g1

5) = C ∪ C̃

with C and C̃ nonsingular and ι(C) = C̃. Define a correspondence D ⊂ C×C
by

D = {(x1 + · · ·+ x5, ιx1 + · · ·+ ιx4 + x5) ∈ C ×C : f (5)(x1 + · · ·+ x5) ∈ g1
5}

It is a fixed-point free nonsingular correspondence with d = 5 of exponent
e = 4 (see [1]). Moreover P = Prym(X, ι) so that dim(P ) = g′ − 1 where
g′ = g(X ′). Therefore

g(C) = g = d + e dim(P ) = 4g′ + 1

By a computation one finds

|R| = 8|r| = 16(g′ + 4)
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where r is the ramification divisor of the g1
5. Moreover

2g(D)− 2 = 5(2g − 2) + 16(g′ + 4) = 40g′ + 16(g′ + 4) = 56g′ + 64

and it follows that
g(D) = 28g′ + 33

and
ḡ = 14g′ + 17

We have

deg(ND̄) = −g(D) + 1 + |R| = −28g′− 33 + 1 + 16(g′ + 4) = −12g′ + 32 < 0

if g′ ≥ 3 and
h1(ND̄) = −χ(ND̄) = 26g′ − 16

Therefore we obtain

h1(TC2|D̄) = h1(ND̄)+h1(TD̄) = (26g′−16)+(42g′+48) = 68g′+32 = 6ḡ−6−|R|

which is compatible with the exact sequence (18).

3. Let X be hyperelliptic of genus γ ≥ 3, f : X̃ → X an etale 3 : 1
morphism, and let C = f (2)−1(g1

2) where f (2) : X̃2 → X2. It can be shown
that for general choice of X and f the curve C is irreducible and nonsingular
(see [5]). The induced map

f (2) : C → IP 1 = g1
2

is of degree 9. If x = y ∈ g1
2 then we have:

f (2)−1(x + y) = {Pij := xi + yj : i, j = 1, 2, 3}

where {x1, x2, x3} = f−1(x) and {y1, y2, y3} = f−1(y). Define a correspon-
dence D on C by

D(P12) = P11 + P13 + P22 + P32

etc. Then one can show that this is a symmetric nonsingular and irreducible
correspondence of degree d = 4, exponent e = 3, the corresponding Prym-
Tyurin variety P is of dimension γ− 3 and g = g(C) = 3γ− 5. Moreover the
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number of moduli in this case can be computed to be 2γ − 1 [5]. It is pretty
clear that R = 0 so that

2g(D)− 2 = 4(2g − 2) = 24γ − 48

thus:
g(D) = 12γ − 23

ḡ = 6γ − 11

We have
deg(ND̄) = −g(D) + 1 = −12γ + 24 < 0

so that
h1(ND̄) = −χ(ND̄) = 18γ − 36

and we get
h1(TC2|D̄) = h1(ND̄) + 3ḡ − 3 = 2(18γ − 36)

which is compatible with the value given by the exact sequence (18).
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