SEMICONTINUITY OF KODAIRA DIMENSION

BY D. LIEBERMAN¹ AND E. SERENESI

Communicated by Edgar Brown, Jr., January 10, 1975

Let X be a compact analytic space (or a complete algebraic variety) and let L be a line bundle on X and denote by $f_i: X \to \mathbf{P}^N$ the rational map defined by the global sections of $L^{\otimes i}$. The L-dimension of X, K(X, L) is defined by

$$K(X, L) = \overline{\lim_{i \to \infty}} (\dim(f_i(X)))$$

with the convention $K(X, L) = -\infty$ if $L^{\otimes i}$ has no nontrivial sections for all i > 0. In the particular case when X is nonsingular and $L = \Omega$ is the canonical bundle, the invariant $K(X) = K(X, \Omega)$ is called the canonical (or Kodaira) dimension of X and is the fundamental invariant in the classification of surfaces. Recent works by Ueno [4] and Iitaka [1], [2] have studied K(X, L) for higher dimensional varieties. A fundamental open question is the behavior of K(X, L) under deformations of (X, L). When X is a smooth surface the plurigenera (and hence the Kodaira dimension) are deformation invariant [1], and Iitaka has constructed a family of threefolds X_t with $K(X_0) = 0$ and $K(X_t) = -\infty$, $t \neq 0$.

Our main result is

THEOREM. Given X_0 a compact analytic space (or complete algebraic variety) and L_0 a line bundle on X_0 satisfying

- (1) $L_0^{\bigotimes i}$ is spanned by its global sections for some i > 0,
- (2) $K(X_0, L_0) = \dim(X_0)$,

and (X_t, L_t) is any (flat) deformation of (X_0, L_0) , then $K(X_t, L_t) = K(X_0, L_0)$.

When X_0 is a smooth surface and $L_0 = \Omega_0$ it was shown by Mumford [3] that hypothesis (1) on L_0 is implied by (2). For general L_0 hypothesis

AMS (MOS) subject classifications (1970). Primary 14D15, 32G05. Key words and phrases. Kodaira dimension, semicontinuity, deformation. 1Sloan Foundation Fellow, partially supported by NSF GP-28323A3.

Copyright © 1975, American Mathematical Society

(1) is not implied by (2); however when X_0 is smooth and $L_0 = \Omega_0$ the first hypothesis might be unnecessary.

The general line of argument is the following:

Given $\pi: X \longrightarrow S$ proper and flat and $L \longrightarrow X$ a line bundle one defines a relative L-dimension K(X|S, L) as follows. Let $f_i: X \longrightarrow \operatorname{Proj}(\pi_* L^{\bigotimes i})$ be the rational map defined by $\pi^*(\pi_* L^{\bigotimes i}) \longrightarrow L^{\bigotimes i}$. Let

 $K(X|S, L) = \overline{\lim}(\dim f_i(X)) - \dim(S)$

(or $-\infty$ if $\pi_*(L^{\bigotimes i}) = 0$ for all i > 0).

PROPOSITION 1. $K(X_s, L_s) \ge K(X | S, L)$ for all $s \in S$ with equality for $s \in W$ a nonempty c-open subset of S (i.e. W is the complement of a countable union of subvarieties).

As an immediate corollary one sees that the *L*-dimension is upper semicontinuous in the topology defined by *c*-open sets. The set *W* and its complement may both be dense, e.g. taking $X_s \xrightarrow{\sim} X_0$ a curve of genus g > 0, *S* the Jacobian of X_0 and L_s the canonical family of degree zero bundles, one finds $W = S - \{\text{points of finite order}\}.$

The main theorem follows from

PROPOSITION 2. If $K(X_s, L_s) = \dim(X_s)$ and $L_s^{\otimes i}$ is spanned by its global sections for some i > 0 then $s \in W$.

More generally if $d = K(X_s, L_s) \leq \dim(X_s)$ and for some i > 0 the map $f_{i,s} \colon X_s \longrightarrow \mathbf{P}^N$ given by $L_s^{\bigotimes i}$ is everywhere defined, $\dim(f_{i,s}(X_s)) = d$, and $\dim(\operatorname{supp} R^1 f_{is^*}(0)) < d$ then $s \in W$. Thus for pairs (X_s, L_s) satisfying the preceding hypotheses, the L-dimension can only go up under deformation.

REFERENCES

1. S. litaka, Deformations of compact complex surfaces. II, J. Math. Soc. Japan 22 (1970), 247-261. MR 41 #6252.

2. ———, On D-dimensions of algebraic varieties, J. Math. Soc. Japan 23 (1971), 356-373. MR 44 #2749.

3. D. Mumford, The canonical ring of an algebraic surface, Ann. of Math. (2) 76 (1962), 612-615.

4. K. Ueno, On Kodaira dimensions of certain algebraic varieties, Proc. Japan Acad. 47 (1971), 157-159. MR 45 #1911.

DEPARTMENT OF MATHEMATICS, BRANDEIS UNIVERSITY, WALTHAM, MASSACHUSETTS 02154

460