
An overview of classical deformation theory

EDOARDO SERNESI

1. GENERALITIES - Deformation theory is closely related to the problem of
classification in algebraic geometry.

If we have a class M of algebro-geometric objects, e.g.

M = {projective nonsingular curves of genus g}/(isomorphism)

M = {closed subschemes of IP r with given Hilbert polynomial}
M = {vector bundles of given rank and Chern classes on a smooth projective variety X}

the problem is: to describe M.
The interest and the difficulty of this problem come from the existence of families.

Roughly speaking, the existence of families of objects in M implies that M is not just a
set but has some kind of “structure”, hopefully will be a scheme, which will be the moduli
space of the classification problem. In most cases M is not a scheme but has a weaker
structure.

In order to make this statement more precise we have to specify the notion of family.
This notion is different for every different class M but in each case it is related to the
natural fact that all objects of algebraic geometry can be “deformed” by varying the
coefficients of their defining equations.

If for example we want to consider a class M of algebraic varieties (curves, varieties
of given dimension and numerical characters, etc.) a family will be a morphism:

X
↓ π
S

whose fibres X (s) = π−1(s), s ∈ S, are elements of M and with at least the extra technical
condition of being flat; if the class M consists of projective and/or nonsingular varieties,
then π will be also required to be proper and/or smooth. Here X and S are called the total
space and the parameter space of the family. If S is connected then π is called a family of
deformations of X (s0) for any s0 ∈ S.

If X and S are complex manifolds with S connected, and π is proper and smooth then
all fibres X (s) are diffeomorphic and we are just considering a family of compact complex
structures on a fixed differentiable manifold.
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If instead we want to consider a class M of closed subschemes of a given scheme Y a
family will be a commutative diagram:

X ⊂ S × Y
↓ π
S

where π is the restriction of the first projection, the inclusion is closed, and all fibres of π
are in M.

Typically, a family of hypersurfaces of degree d in IP r parametrized by an affine space
An = Spec(k[t1, . . . , tn]), k a field, will be a hypersurface H ⊂ An × IP r defined by a
polynomial P (t,X) ∈ k[t1, . . . , tn, X0, . . . , Xr] homogeneous of degree d in X0, . . . , Xr.

A less ambitious goal is the study of local deformations of a given object m ∈ M.
This means to consider deformations of m parametrized by spectra of local rings so that
m is the fibre over the closed point. This will lead to the understanding of the local
structure of M at m. This was the point of view of Kodaira-Spencer who initiated modern
deformation theory in a series of papers published in 1958 on Annals of Mathematics, where
they studied local deformations of compact complex manifolds, i.e. local deformations of
complex structures on a fixed compact differentiable manifold.

In each different case the notion of family has the fundamental property of being
funtorial. Let’s consider, to fix ideas, the case of a class M of isomorphism classes of
projective varieties defined over a fixed algebraically closed field k, and families of objects
in M. For each scheme S we call two different such families over S:

X
↓ π
S

and
X ′
↓ π′
S

isomorphic if there is an isomorphism ϕ : X → X ′ such that π = π′ ◦ ϕ. We can define a
contravariant functor

F : (Schemes/k) → (Sets)

by
F (S) = {isomorphism classes of families of objects of M over S}

For each morphism f : T → S we have an induced

F (f) : F (S) → F (T )

by pulling back families by f :

F (f)([X → S]) = [T ×S X → T ]

where [−] denotes the isomorphism class of − and

T ×S X → X
↓ ↓ π
T

f−→ S
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is the induced pullback diagram.
This observation was the starting point of the development of deformation theory

under the influence of Grothendieck. According to his point of view we may ask whether
this functor is represented by a scheme M , namely if there is an isomorphism of functors:

µ : Hom(−,M) → F

Such an isomorphism will be induced by pulling back a uniquely determined family ξ :
Y → M , called the universal family (Infact [ξ] = µ(M)(idM ) ∈ F (M)). If this is the case
M will be a moduli space for M in the strongest sense. In particular its closed points will
be in one-to-one correspondence with the element of M by the chain of bijections:

M ↔ {families parametrized by Spec(k)} ↔ Hom(Spec(k),M) ↔ {closed points of M}

Such a moduli space very seldom exists. Most of the time M will have a weaker structure
corresponding to a property of the functor F weaker than representability. But let’s
suppose for a moment that M exists in our case. Then in principle all informations
concerning its structure and all its properties are encoded in the functor F . In particular
we can investigate its infinitesimal, local and formal properties around a point m ∈ M
by looking at various special families of deformations of the fibre Y(m) of the universal
family. For example the tangent space TM,m can be recovered considering “first order
deformations”.

A first order deformation of a scheme X is a commutative diagram:

X → X
↓ ↓ π

Spec(k) ⊂ Spec(k[ε])

where π is a flat morphism, Spec(k[ε]) = Spec(k[t]/(t2)), and such that the induced mor-
phism

X → Spec(k) ×Spec(k[ε]) X

is an isomorphism. First order deformations can be viewed as derivatives of Y(m) along a
tangent vector of M at m. Infact we have the following chain of bijections:

TM,m ↔ Homm(Spec(k[ε]),M) ↔ {first order deformations of Y(m)}/(isomorphism)

where we have denoted by Homm(Spec(k[ε]),M) the set of morphisms Spec(k[ε]) → M
mapping the unique closed point of Spec(k[ε]) to m, and where the last bijection is
µ(Spec(k[ε])).

More generally an infinitesimal deformation of a scheme X is a commutative diagram

(1)
X → X
↓ ↓ π

Spec(k) ⊂ Spec(A)
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where π is a flat morphism, A is a local artinian k-algebra and the morphism X →
Spec(k)×Spec(A) X induced by the diagram is an isomorphism. Then, in the same vein as
above, infinitesimal deformations of X give informations on the infinitesimal structure of
M at the point m = µ(Spec(k))−1([X]) because we have bijections

Homm(Spec(A),M) ↔ {infinit. deform.s of X parametrized by SpecA)}

An infinitesimal deformation (1) is called trivial if X = X × Spec(A).
Deformation theory is the study of infinitesimal deformations as a tool to understand

the local structure of the moduli space. The goal is to be able to describe the restriction of
the universal family to a small neighborhood of m ∈ M, or, more precisely, its restriction
to the germ of M at m.

What is interesting here is that we can study first order and infinitesimal deformations
even though the functor F is not representable or simply we don’t yet know it is. This is the
most frequent case. Such an investigation will reveal the infinitesimal properties at [X] of
a yet unknown global structure on M which will be hopefully understood at a subsequent
stage of the investigation. In order words it turns out to be possibile and convenient to
separate the global moduli problem from the local moduli problem, and deformation theory
studies the latter, with the purpose of constructing a family of deformations of a given
object parametrized by the spectrum of a local ring, and having properties as close as
possible to a universal property.

2. FIRST ORDER DEFORMATIONS - The first consequence of the local
point of view is that, whenever we want to study infinitesimal deformations of some object,
we don’t need to specify the global class M, i.e. the global moduli problem, inside which
we are going to move it: all we have to do is to define what we mean by an infinitesimal
deformation of it. Of course our definition will often be tailored to some specific global
problem, but not always.

Let’s apply these ideas to the study of first order deformations. We will only consider
algebraic k-schemes where k is an algebraically closed field. We will see that isomorphism
classes of first order deformations are elements of a cohomology vector space. It is a
technical easy fact to check that this vector space structure coincides with the structure
of tangent space in the corresponding moduli problem (whatever this means).

a) Nonsingular affine varieties. Let X = Spec(R) be a nonsingular affine
variety. Then every first order deformation of X is trivial. Infact let

X → X
↓ ↓ π

Spec(k) ⊂ Spec(k[ε])

be such a deformation. We have a commutative diagram:

X ⊂ X
∩ ↓ π

X × Spec(k[ε]) → Spec(k[ε])
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and the nonsingularity of X implies the existence of a morphism φ : X × Spec(k[ε]) → X
such that the diagram

X ⊂ X
∩ φ↗ ↓ π

X × Spec(k[ε]) → Spec(k[ε])

is still commutative. One easily checks that φ is an isomorphism, and this proves that the
given deformation is trivial.

b) Nonsingular varieties.
LEMMA: Let π : X → S be a morphism of schemes, φ : X ⊂ X a closed embedding

defined by a sheaf of ideals J ⊂ OX such that J2 = 0. Then there is a canonical 1 − 1
correspondence:

{S-automorphisms of X inducing the identity on X} ↔ HomOX
(φ∗Ω1

X/S , J)

Proof
The question is local. Therefore we may assume that everything is affine and we have a
commutative diagram:

B → B/J
↑ π̃ ↑
A

π̃−→ B

Every A-automorphism ψ of B inducing the identity on B/J is of the form ψ = 1B +D,
where D : B → J is A-linear and satisfies:

D(b1b2) = (ψ − 1B)(b1b2) = ψ(b1b2) − ψ(b1)b2 + ψ(b1)b2 − b1b2 =

= ψ(b1)(ψ(b2) − b2) + (ψ(b1) − b1)b2 = ψ(b1)D(b2) +D(b1)b2 = b1D(b2) +D(b1)b2

In other words D is an A-derivation of B in J . Therefore the set of A-automorphisms of
B inducing the identity on B/J is in 1 − 1 correspondence with

DerA(B, J) = HomB(ΩB/A, J) = HomB/J(ΩB/A ⊗B B/J, J)

q.e.d.

Consider now a nonsingular variety X and a first order deformation of X:

(2)
X → X
↓ ↓ π

Spec(k) ⊂ Spec(k[ε])

Let {Uα} be an affine open cover of X. Then by the previous case there are Spec(k[ε])-
isomorphisms:

θα : X|Uα
∼= Uα × Spec(k[ε])
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inducing the identity on the central fibre Uα = Uα × Spec(k). Therefore by the lemma:

θβθ
−1
α ∈ Γ(Uαβ , Hom(Ω1

X/Spec(k[ε]) ⊗OX ,OX)) = Γ(Uαβ ,ΘX)

where we denote, as usual, Uαβ = Uα ∩ Uβ . It follows that the system {θαβ = θβθ
−1
α }

defines a Cech 1-cocycle in ΘX and this defines an element of H1(X,ΘX). One easily
checks that this element is independent of the chosen affine cover. Therefore we have
defined a map

TM,[X] → H1(X,ΘX)

which is easily seen to be a bijection.
Another equivalent way to define this map is the following. To a first order deformation

(2) we can associate the exact sequence:

0 → π∗Ω1
Spec(k[ε]) → Ω1

X → Ω1
X/S → 0

which tensored by OX (i.e. restricted to X) gives the exact sequence:

0 → OX → Ω1
X ⊗OX → Ω1

X → 0

This is an element of Ext1(Ω1
X ,OX) = H1(X,ΘX) which can be checked to be the same

as the one defined above.
If π : X → S is an infinitesimal deformation of X = π−1(0) then the differential at 0

of the functorial morphism S → M is a linear map

KS : TS,0 → H1(X,ΘX)

called the Kodaira-Spencer map of π, and KS(v) ∈ H1(X,ΘX) is the Kodaira-Spencer
class of v ∈ TS,0.

It follows that if H1(X,ΘX) = (0) then every first order deformation of X is trivial.
It turns out that every infinitesimal deformation of X is trivial as well, i.e. X is rigid. For
example IP r is rigid because H1(IP r,ΘIP r ) = (0).

c) Line bundles on a fixed nonsingular projective variety. Let L be a line
bundle on a nonsingular projective varietyX. A first order deformation of L is a line bundle
Lε on X×Spec(k[ε]) which restricts to L on the closed fibre X = (X×Spec(k[ε]))×Spec(k[ε])

Spec(k). Assume that L is given by a system of transition functions {fαβ} with respect to
an open covering {Uα} of X, fαβ ∈ Γ(Uα ∩ Uβ ,O∗X). Then Lε can be represented, in the
same covering {Uα} of X × Spec(k[ε]) by transition functions:

f̃αβ ∈ Γ(Uα ∩ Uβ , O
∗
X×Spec(k[ε]))

such that

(3) f̃αβ f̃βγ = f̃αγ
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and wich restrict to the fαβ ’s modulo ε.
Since O∗X×Spec(k[ε]) = O∗X + εOX we can write

f̃αβ = fαβ(1 + εΦαβ)

for suitable Φαβ ∈ Γ(Uα ∩ Uβ ,OX). Identity (3) gives

Φαβ + Φβγ = Φαγ

and therefore the system {Φαβ} defines an element of H1(X,OX). It is easy to check that
this element does not depend on the choices made and that conversely each element of
H1(X,OX) defines a first order deformation of L.

The class of all line bundles on X has the structure of a locally finite type scheme,
denoted Pic(X), and we have computed its Zariski tangent space at L:

TPic(X),L
∼= H1(X,OX)

3. HIGHER ORDER DEFORMATIONS - OBSTRUCTIONS - So far we
have discovered that we can compute various tangent spaces to deformation problems as
cohomology vector spaces. This is of course only a first step towards the description of the
local structure of our moduli problems. For the next step we need to push the local point
of view a little further.

Suppose that we need to study infinitesimal deformations of a geometrical object X
inside a class M. Let’s assume that a moduli space M for M exists and let ξ ∈ F (M)
be the universal family. Then letting [X] = m ∈ M be the point corresponding to X, to
every infinitesimal deformation of X there corresponds a morphism

ϕ : Spec(A) → M
closed pt �→ m

which induces the given deformation by pullback. In turn ϕ corresponds to a homomor-
phism of local k-algebras

ϕ̃ : O = OM,m → A

Since A is artinian, ϕ̃ factors through the completion O → Ô with respect to the maximal
ideal and therefore the properties of O detected by the study of infinitesimal deformations
will be analytic properties, i.e. properties preserved under completion.

For example, if A = k[ε] then F (Spec(k[ε])) is the Zariski tangent space of O, which
coincides with that of Ô.

We can rephrase all the above by considering the category

A = (local artinian k-algebras with residue field k)

and saying that our deformation problem defines a covariant functor

FA : A → (Sets)
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i.e. a functor of Artin rings, defined by

FA = {infinitesimal deformations of X over Spec(A)} = Hom(O, A)

The most important analytic property is nonsingularity. We can investigate the non-
singularity of M at m by means of the functor FA and applying the following

LEMMA Let O be a local noetherian k-algebra with residue field k. The following
conditions are equivalent:

(i) O is a regular local ring.

(ii) Ô is a regular local ring.

(iii) There is an isomorphism

Ô ∼= k[[X1, . . . , Xd]]

where d is the Krull dimension of O, and X1, . . . , Xd are indeterminates.

(iv) For every commutative diagram:

k → A′

↓ ↓
O → A

where the right vertical arrow is a surjection of local artinian k-algebras, there is a
k-algebra homomorphism O → A′ keeping the diagram

k → A′

↓ ↗ ↓
O → A

commutative.

Condition (iv) of the Lemma states that Hom(O, A′) → Hom(O, A) is surjective for
all surjections A′ → A in A. This condition has an immediate translation into a property
of the functor FA:

PROPOSITION M is nonsingular at m if and only if for every surjection A′ → A in
A the corresponding map

FA(A′) → FA(A)

is surjective.

If this condition is satisfied the functor FA is said to be smooth.
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The condition of the Proposition has the following deformation-theoretic interpreta-
tion. Given a surjection A′ → A in A and any deformation (1) there is a deformation

(3)
X → X ′
↓ ↓ π

Spec(k) ⊂ Spec(A′)

extending (1), i.e. such that (1) is induced by (3) by pulling it back via Spec(A) →
Spec(A′). If the extension (3) exists for each surjection A′ → A the deformation (1) is
called unobstructed; otherwise it is obstructed.

If all infinitesimal deformations of X are unobstructed then X is called unobstructed;
otherwise X is obstructed.

It turns out that in order to check (un)obstructedness it suffices to consider surjections
q : A′ → A in A such that ker(q) ∼= k (called small extensions).

Let’s denote by tR the Zariski tangent space (mR/m
2
R)∨ of a local ring (R,mR). We

have the following

DEFINITION Let (R,mR) be a complete local k-algebra with residue field k. Write
R = k[[X1, . . . , Xn]]/J where J ⊂ (X)2. Then the k-vector space

o(R) := (J/(X)J)∨

is called the obstruction space of R.

Clearly o(R) = 0 if and only if R ∼= k[[X1, . . . , Xn]]. We have the following inequalities:

dim(tR) ≥ dim(R) ≥ dim(tR) − dim(o(R))

Moreover for each A in A and for each ϕ : R→ A there is a map which associates to each
small extension q : A′ → A an element v(q) ∈ o(R) which is 0 if and only if ϕ can be lifted
to ϕ′ : R→ A′.

If we have a “sufficiently well behaved” deformation functor FA then it is possible to
define the obstruction to find an extension in FA(A′) of a given η ∈ FA(A); this obstruction
is usually an element of a cohomology vector space H. The deformation η will then
be unobstructed precisely if the obstruction vanishes for each small extension q. If the
deformation functor is FA = Hom(O,−) where O = OM,m as above, then it follows by
general nonsense that o(Ô) ⊂ H. This implies that M is nonsingular at m if the vector
space H vanishes and, more generally, that

dim(O) ≥ dim(tO) − dim(H) = dim(FA(k[ε]) − dim(H)

Let’s illustrate this principle with an example.
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Nonsingular varieties Assume that we have a class M of nonsingular varieties
for which the moduli space M exists. Let X be in M. Assume that we have a small
extension A′ → A and an infinitesimal deformation (1) of X. We want to find conditions
for the extendability to a deformation of X over Spec(A′).

Let {Uα} be an affine open cover of X, θα : X|Uα
∼= Uα × Spec(A) be Spec(A)-

isomorphisms inducing the identity on Uα, and let

θαβ = θαθ−1
β : Uαβ × Spec(A) → Uαβ × Spec(A)

be the induced Spec(A)-automorphisms. Then the existence of a deformation π′ : X ′ →
Spec(A′) extending (1) is equivalent to the existence of a system of automorphisms

θ′αβ : Uαβ × Spec(A′) → Uαβ × Spec(A′)

which restrict to the automorphisms θαβ on Uαβ × Spec(A), and such that

(4) θ′αβθ
′
βγ = θ′αγ

on Uαβγ . Let’s choose arbitrarily automorphisms θ′αβ which extend the θαβ ’s (they ex-
ist by the nonsingularity of the affine varieties Uαβ), and let’s consider the Spec(A′)-
automorphisms of Uαβγ × Spec(A′):

θ′αβγ := θ′αβθ
′
βγ(θ′αγ)−1

Each of these restricts to the identity on Uαβγ × Spec(A) and therefore, by the Lemma, is
an element of Γ(Uαβγ ,ΘX). The system {θ′αβγ} is therefore a 2-cocycle with coefficients
in ΘX and defines an element θ ∈ H2(X,ΘX).

Another choice of the automorphisms θ′αβ is of the form

θ̄′αβ = θ′αβδαβ

for some δαβ ∈ Γ(Uαβ ,ΘX). Therefore:

θ̄′αβγ = θ′αβγδαβδβγ(δαγ)−1

and therefore {θ′αβγ} and {θ̄′αβγ} define the same cohomology class in H2(X,ΘX).
The class θ ∈ H2(X,ΘX) is the obstruction to extend the deformation (3) to Spec(A′).
In particular we see that if H2(X,ΘX) = 0 then M is nonsingular at [X]. For

example, nonsingular projective curves are unobstructed.

4. VERSAL AND UNIVERSAL FORMAL FAMILIES - We have seen
how one can study the infinitesimal properties of a moduli space M at a point m using
functorial methods and cohomological techniques. We now want to consider a local moduli
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problem and see whether it is possible to study its infinitesimal properties and to give it a
local structure of some kind. From an infinitesimal point of view a local moduli problem
corresponds to a (covariant) functor of Artin rings

F : A → (Sets)

such that F (k) consists of one element. In the best possible case there will be a local
k-algebra O with residue field k and an isomorphism of functors

Hom(O,−) = Hom(Ô,−) → F

(the equality on the left is because, as we observed already, A = Â for every A in A.
Since Ô is not in A, such a functor is not quite representable: it is called prorepresentable.
Representable functors of Artin rings are not so interesting in this context, but prorep-
resentable ones are, and prorepresentability is the reachest structure such a functor can
have.

Weaker structures can be introduced by requiring that there exists a morphism of
functors (a “natural transformation”)

f : Hom(R,−) → F

for some complete local k-algebra R with residue field k, which is not quite an isomorphism,
but has some weaker property. Before discussing these properties let’s see for a moment
how a morphism f as above can be interpreted.

Let’s denote by Â the category of complete local k-algebras with residue field k. Every
functor of Artin rings F : A → (Sets) can be extended to a functor

F̂ : Â → (Sets)

by letting, for every (R,m) in Â:

F̂ (R) = lim
←−
F (R/mn+1)

and for every ϕ : (R,m) → (S, p):

F̂ (ϕ) : F̂ (R) → F̂ (S)

to be the map induced by the maps F (R/mn) → F (S/pn), n ≥ 1.
An element û ∈ F̂ (R) is called a formal element of F . By definition û can be rep-

resented as a system of elements {un ∈ F (R/mn+1)}n≥0 such that for every n ≥ 0 the
map

F (R/mn+1) → F (R/mn)

induced by the projection R/mn+1 → R/mn sends

(5) un �−→ un−1
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If for example F is the functor of infinitesimal deformations of a nonsingular varietyX, each
un is an infinitesimal deformation ofX parametrized by Spec(R/mn+1). The compatibility
condition (5) is that un pulls back to un−1 under the closed embedding

Spec(R/mn) ⊂ Spec(R/mn+1)

In this case the formal element û is also called a formal family of deformations of X.

If f : F → G is a morphism of functors of Artin rings then it can be extended in an
obvious way to a morphism of functors f̂ : F̂ → Ĝ.

LEMMA Let R be in Â. There is a 1− 1 correspondence between F̂ (R) and the set
of morphisms of functors

(6) Hom(R,−) −→ F

Proof
To a formal element û ∈ F̂ (R) there is associated a morphism of functors (6) in the
following way. Each un ∈ F (R/mn+1) defines a morphism of functors Hom(R/mn+1,−) →
F . The compatibility conditions (5) imply that the following diagram commutes:

Hom(R/mn,−) → Hom(R/mn+1,−)

↘ ↓

F

for every n. Since for each A in A

Hom(R/mn, A) → Hom(R/mn+1, A)

is a bijection for all n� 0 we may define

Hom(R,A) → F (A)

as
lim

n→∞
[Hom(R/mn+1, A) → F (A)]

Conversely each morphism (6) defines a formal element û ∈ F̂ (R), where un ∈ F (R/mn+1)
is the image of the canonical projection R→ R/mn+1 via the map

Hom(R,R/mn+1) → F (R/mn+1)

q.e.d.
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If û ∈ F̂ (R) is such that the induced morphism (6) is an isomorphism, then F is
prorepresentable, and we say that F is prorepresented by the pair (R, û). In this case û is
called a universal formal element for F , and (R, û) is a universal pair.

If for example F is the functor of infinitesimal deformations of a nonsingular variety
X belonging to a class M which has a moduli space M , then the universal family Y →M
induces by restriction to the schemes Spec(Ô/mn+1) a universal formal element for F (or
a universal formal family).

Note that all prorepresentable functors have the following property:

N0) F (k) contains exactly one element.

All functors we will consider will have property N0 and from now on this will be
implicitly assumed unless otherwise specified.

DEFINITION Let f : F → G be a morphism of functors of Artin rings. f is called
smooth if for every surjection µ : B → A in A the natural map:

F (B) → F (A) ×G(A) G(B)

induced by the diagram:
F (B) → G(B)
↓ ↓

F (A) → G(A)

is surjective.

Note that the smoothness condition applied to the surjection k[ε] → k states that the
map

F (k[ε]) → G(k[ε])

is surjective. This map is denoted df and called the differential of f .

Let F be a functor of Artin rings. A formal element û ∈ F̂ (R), for some R in Â,
is called versal if the morphism Hom(R,−) → F defined by û is smooth; û is called
semiuniversal if it is versal and moreover the differential Hom(R,k[ε]) → F (k[ε]) is an
isomorphism.

We will call the pair (R, û) a versal pair (respectively a semiuniversal pair, a universal
pair) if û is versal (respectively semiuniversal, universal).

It is clear from the definitions that:

û universal ⇒ û semiuniversal ⇒ û versal

but none of the inverse implications is true.
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What does it mean that a functor F has a versal pair (R, û)? Frome the definition of
smoothness it follows easily that the map

(7) Hom(R,S) → F̂ (S)

induced by û is surjective for every S in Â. This means that every formal element v̂ ∈ F (S)
is induced by û ∈ F (R) by pullback. So we see that this is a property, weaker than
universality, which is a sort of “completeness” of the formal element û, in the sense that
it induces every other by pullback.

Semiuniversality is stronger than versality: the bijectivity of the differential implies a
sort of minimality among all possible versal pairs.

A theorem of Schlessinger gives conditions, easy to verify in practise, for the existence
of a formal semiuniversal element for a functor F . It turns out that most functors of
Artin rings arising in deformation theory satisfy Schlessinger’s conditions, even though
they seldom have a universal formal element; therefore all such functors have a structure
weaker than prorepresentability, but very close to it.

Examples of functors satysfying Schlessinger conditions are:

F = Pic(X)L = deformations of a line bundle L on a fixed scheme X
(the local Picard functor of X at L)

F = deformations of a projective scheme X

F = deformations of an affine variety with isolated singularities

F = HilbYX = the local Hilbert functor of a closed embedding X ⊂ Y

F = QuotFG = the local Quot scheme of a quotient F → G of sheaves on a scheme X

5. ALGEBRIZATION - Suppose we know that a functor of Artin rings F has
a (semi)universal pair (R, û), and that F extends to the category A∗ of local noetherian
k-algebras. Then we should ask if there is a pair (S, u), where u ∈ F (S), having the
following properties:
i) S is in A∗, and has some finiteness properties (e.g. it is essentially of finite type, it is
henselian, etc.).
ii) Ŝ = R.
iii) u induces û.

This question is an abstract version of a natural problem in local deformation the-
ory. Consider for example a projective nonsingular variety X. We can consider local
deformations of X, i.e. families of the form

ξ :
X
↓ π

Spec(S)
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where (S,mS) is in A∗, and with an isomorphism X ∼= X (mS). Then we want to know
if there is a (semi)universal such family ξ, i.e. a family which induces every other by
pullback, and has a (semi)universal property. Applying the theory outlined before to the
functor of Artin rings defined by X we obtain a formal (semi)universal pair (R, û), and we
now want to see if we can lift this pair to a pair (S, u) as above.

This is an algebraic version of the original problem studied and solved by Kodaira,
Niremberg, Spencer and Kuranishi in the analytic case. Their final result is the following.

THEOREM Let X be a compact complex manifold. Then there is a germ of complex
space (B, 0), with dim(B) ≥ h1(X,ΘX) − h2(X,ΘX) and a smooth and proper family

ξ :
X
↓ π
B

such thatX ∼= X (0), which is a semiuniversal family of deformations ofX. IfH2(X,ΘX) =
0 then B is nonsingular of dimension h1(X,ΘX). If H0(X,ΘX) = 0 then ξ is universal.

In the algebraic case there is no such general result. The most general algebrizability
result is due to M. Artin. It gives sufficient conditions for the existence of a pair (S, u) as
above with S an henselian ring, i.e. the local ring of an algebraic space (for an exposition
see Artin(1971)).
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