A smoothing criterion for families of curves

E. Sernesi

Abstract

We study some of the general principles underlying the geometry
of families of nodal curves. In particular: i) we prove a smoothing
criterion for nodal curves in a given family, ii) we derive from it the
existence of nodal curves on a general K3 surface according to Mum-
ford.

1 Introduction

This aim of this paper is to give a clear statement and proof of a
smoothing result for families of nodal curves which has been used,
and sometimes proved, in several special cases (see e.g. [3], [9] and [1],
§23) and which voz populi considers to be true more or less by obvious
general reasons. It states in precise terms that in a family of projective
curves with at most nodes as singularities the locus of d-nodal curves,
if non-empty, has codimension < § and if equality holds then the family
contains smooth curves among its fibres (Theorem 6.3).

The reason for writing down a version of its proof is that the prin-
ciple underlying this result is very likely to hold in more general situ-
ations like, just to mention a few: a) for families of projective curves
with more complicated singularities than just nodes; b) for families of
surfaces with ordinary double points.

This expectation calls for a transparent explanation of why the
theorem holds, which could serve as a starting point for its general-
izations. This is what Theorem 6.3 hopefully does.

As an illustration of the applications of Theorem 6.3 we give a
proof of the well known (see [1], §23) existence of irreducible nodal
curves with any number of nodes between 0 and the maximum on a
general primitively polarized K3 surface.



2 Multiple-point schemes

All schemes will be defined over k = k of characteristic 0, and noethe-
rian.

Definition 2.1 A morphism f : X — Y is called curvilinear if the
differential
[y (z) — Qx (x)

has corank <1 at every point x € X.
A more manageable condition is given by the following:

Proposition 2.2 (i) A morphism f : X — Y is curvilinear if and
only if every point x € X has an open neighborhood U such that the
restriction fi factors through an embedding of U into the affine Y -line
AL,

(i) The property of being curvilinear for a morphism is invariant
under base change.

Proof. (i) See [6], Prop. 2.7, p. 12. (ii) follows immediately from
(i) or from the definition. O

Let f: X — Y be a finite morphism. We can define the first
iteration f1 : Xo — X of [ as follows:

Xy =1P(Ipn), fi:Xo—XxyX 22X

where A C X xy X is the diagonal. X3 is the so-called residual scheme
of A; its properties are described in [5], §2. Moreover we define:

N.(f) = Fitt)_,(£.0x), M, = fY{(N.(f))

(see [10], p. 200). N,(f) is called the r-th multiple point scheme of f.
We will need the following;:

Proposition 2.3 If f is finite and curvilinear then fy is also finite
and curvilinear and

M, (f) = Nr—1(f1)

Proof. See [6], Lemma 3.9 and Lemma 3.10. O



Proposition 2.4 Assume that f : X — Y is finite and curvilinear,
local complete intersection of codimension 1. Assume moreover that
f is birational onto its image and that X and Y are local complete
intersections and pure-dimensional. Then:

(1) fi1: X2 — X is a local complete intersection of codimension 1,
finite and curvilinear, birational onto its image and X is a pure-
dimensional local complete intersection.

(ii) Each component of M, (f) (resp. Ny(f)) has codimension at most
r—1in X (resp. at mostr inY ).

(iii) Assume moreover that Y is nonsingular. If N.(f) # 0 and has
pure codimension r in'Y for some r > 2, then Ng(f) # 0 and
has pure codimension s in'Y for all1 < s <r —1. Moreover:

Np(f) C Nea(F)NN:(f) € - C Na(F)\Na(f) (1)

Proof. (i) See [6], Lemma 3.10. (ii) See [6], Theorem 3.11.

(iii) by induction on r. The assumption that f is birational onto
its image implies that Nj(f) has pure codimension 1 and that Na(f)
has pure codimension 2 in Y ([6] , Prop. 3.2(ii)). Therefore the
dimensionality assertion is true for » = 2. Assume r > 3 and that
N, (f) has pure codimension r in Y. Then N,_1(f1) = M,(f) has
pure codimension r — 1 in X. By part (i) we can apply the inductive
hypothesis to f1: it follows that M(f) = Ns—1(f1) # 0 and has pure
codimension s —1in X for all 1 < s —1 < r — 2. This implies that
Ns(f) # 0 and has pure codimension s in Y for all such s. The chain
of inclusions (1) is a consequence of the fact that the non-emptyness
of all the Ny(f)’s is local around every point of N,(f) because the
argument holds for the restriction of f above an arbitrary open subset
of Y. O

Assume now that f : X — Y is finite and projective with X,Y
algebraic. Then we have two stratifications of Y. The first one is
defined by the multiple-point schemes of f:

M TN D\Ne (1) — Y

r>0
The second one is the flattening stratification of the sheaf Ox:

o: [[wi—Y
>0



Lemma 2.5 If f : X — Y is a finite and projective morphism of
algebraic schemes, then the stratifications M and ® coincide.

Proof. Recalling that a finite morphism g : V' — U is flat if and
only if g.Oy is locally free, the strata W; of ® are indexed by the
nonnegative integers, corresponding to the ranks of the locally free
sheaves f.(Ox -1 (w,)) = (f«Ox)w, (see [10], Note 6 p. 205 for this
equality). On the other hand the stratification M is the one defined
by the sheaf f,Ox in the sense considered in [10], Theorem 4.2.7, p.
199, and its strata are also characterized by the fact that f,Ox has a
locally free restriction to each of them. Therefore M and ® are equal.
O

Remark 2.6 Assume that f : X — Y is projective, finite and bira-
tional onto its image. Then Zariski’s Main Theorem implies that its
image f(X) = Ni(f) cannot be normal unless f is an embedding, i.e.
unless N,.(f) = 0 for all » > 2. This means that, in presence of higher
multiple point schemes, we must expect that f(X) has non-normal
singularities.

Definition 2.7 Let q : C — B be a flat family of projective curves.
Assume that all the fibres of q are reduced curves having locally planar
singularities, and let qu be the first relative cotangent sheaf of q. Then
qu = Oy for a closed subscheme Z C C. We will call Z the critical
scheme of q.

It is well known and easy to show that, under the conditions of
the definition, Z is finite over B and commutes with base change
([10], Lemma 4.7.5 p. 258). It is supported on the locus where ¢ is
not smooth. We will be interested in the multiple-point schemes of
f:Z — B, the restriction of g to Z.

Example 2.8 Planar double point singularities are those l.c.i. curve
singularities whose local ring O, has as completion:

@p ~ k([z,y]]/(y* + 2™), for some m > 2

The semiuniversal deformation of O, is

K[t stm—1,2,9]]
Kl tmeal] — ezl



We will denote by 7 : C — B the corresponding family of schemes, by
Z C C the critical scheme of 7w, and by f : Z — B the restriction of .
The special cases of nodes, cusps and tacnodes are respectively:

_ k[[z,y]]/(z? + %) (node)
Op = ¢ K[[z,y]]/(y* +2°) (cusp) (3)
k([z,y]]/(y* + 2?) (tacnode)

The corresponding semiuniversal deformations are:

k[[t]] — K[t z,y]]/(2* + v + 1) (node)
k([u1, ua]] — klfur, uz, 2,9]]/ (4> + 2° + w1z + uz) (cusp)

k([[v1,v2, v3]] = k[[v1,v2,vs, 2, 9]]/(y? + 2% + v12? + vaz + v3) (tacnode)

For the deformation (2) of the general planar double point, Z is
defined by:

k[[t1,.. ., tm—1,x]]

(2™ + ™2 4 b0 + b1, ma™ T + (M — 2) 8 a3 4 )
In the special cases Z is defined by the following family:

k[[t, 2, y]]/(2* +y* + t,2,y) = k (node)
k([u1, uz, z]] /(@ + vz + ug2, 32% + uq) (cusp)

k[[v1,v2,v3, 2]]/(2* + v12? 4+ vox + v3, 423 4 2v12 + v2)  (tacnode)

All these are clearly finite and curvilinear and moreover Z is nonsin-
gular of relative dimension —1 over B.

3 The generic deformation of a curve

Let C be a connected, reduced projective local complete intersection
(L.c.i.) curve of arithmetic genus p,(C). Then we have:

Ext?(Q,00) =0

and Defc(k[e]) = Ext!(Q%, Oc) so that Defc is unobstructed and C
has a versal formal deformation

X — Specf (k[[z1,. .., 2n]])



where
n = dimy [Bxt' (2, Oc)| = 3pa(C) = 3+ h(T0)

and where T = Hom(Q%, O¢) (see [10]). By Grothendieck’s effectiv-
ity theorem ([10], Theorem 2.5.13, p. 82) & is the formal completion
of a unique scheme projective and flat over M := Spec(k[[z1,. .., z4]]),
which we will also denote by X. We thus obtain a deformation

C X
Lk
Spec(k) —— M

which we call the generic deformation of C, conforming to the termi-
nology introduced in [8], p. 64.
Let p € C be a closed singular point. Since ExtQ(Q@p/k, 0p) =0,

the local ring O, = O¢,, has a semiuniversal formal deformation 0,
which is an algebra over the smooth parameter algebra

Ap = k[[tla e ,tr(p)]]

The number of parameters is equal to
r(p) := dimy [Eth(Q@p/k, Op)}

because Extl(Qop/k,(’)p) = T(lgp is the first cotangent space of O,
which is naturally identified with the space of first order deformations
of Op,. We have an obvious restriction morphism of functors

Defg — Defo,
which corresponds, by semiuniversality, to a homomorphism
vy Ap = k[[21,. .., 2]
inducing an isomorphism
Oxp = @p ®a, k[[z1,. .., 2]

Putting all these local informations together we obtain a morphism of
functors:
U : Defo — H Defo,
peC



which corresponds to a morphism we will denote with the same letter:
U= H Spec(¢p) : M — My, = Spec(k[[t1, ..., tr]]) = Spec(®,A4,)

peC
(4)
where

r=h(C, Ext' (04, 0c)) = B(T4) = D r(p)
peC

Lemma 3.1 The morphism ¥ is smooth. Therefore, up to a change
of variables, it is dual to an inclusion

K[t oo ] K[t st 2rts e s Zrtm]

Proof. Because of the smoothness of its domain, the smoothness of
¥ is equivalent to the surjectivity of its differential. But

d¥ : Ext'(Q, 0c) — H(C, Ext'(QL, O¢))

is a hedge-homomorphism in the spectral sequence for Ext’s, and it is
surjective because H?(C, Ext’(Q}, O¢)) = 0. O

Remark 3.2 Lemma 3.1 is Proposition (1.5) of [4]. It holds for any
reduced curve, without assuming that C is a l.c.i.. For obvious reasons
the number m of extra variables z; appearing in the statement of the
lemma is

m = dim(ker(d¥)) = r'(C, Ext®(Q, Oc)) = hH(C, T¢)

= 3pa(C) — 3+ h(Tc) — hO(T})
They correspond to the locus ¢t} = --- = ¢, = 0 in M, parametrizing

locally trivial deformations of C.

4 Local properties of families of curves
Consider a flat projective family of deformations of C:

L]

Spec(k) . pB

(5)

7



Denote by Z C C the critical scheme, and by f : Z — B the restriction
of ¢:
Z“——=c¢C (6)

N

B

Let Oy the completion of the local ring Opy, let T := Spec(@b)
and denote by b the closed point of T" too. Pulling back the family
(5) by the morphism h : T'— B induced by Opj — @b we obtain a
family

:TXBC (7)

Spec(k) bt
whose fibre over b is again C. Let
zZ—C

N

T

be the critical scheme of ¢.

By versality there is a morphism p : T — M with uniquely deter-
mined differential such that C = T x M X, so that we also have the
composition:

‘Ilo,u:T*'u>Mi>M10

Infinitesimally p and W o u can be described as follows. We have
an exact sequence of locally free sheaves on C:

O—>¢*Q}3—>Qé—>9é/3—>0

(see [10], Theorem D.2.8) which dualizes as:

0 Te/s Tc ¢*Tp —> Extt (5, Oc) —= 0 (8)

Oz



and this gives a global description of Tj; ! = Oy as the structure sheaf of
the critical scheme. If we push u down to B we obtain a factorization:

[0z = f*Extc(Qc/Ba Oc)

\/

and at the point b € B this gives:

d(Pop)
[£:0Z](b) = HO(T)
EXt Qc, OC
Here we used the fact that the critical scheme commutes with base
change for a l.c.i. morphism (generalizing [10], Lemma 4.7.5 p. 258).
The right diagonal arrows are edge homomorphisms of the respective
spectral sequences. Here we are especially interested in the differential

of oy, so we will not insist in investigating du. The map d(Popu) can
be analyzed by means of the restriction of (8) to the fibre C' = C(b):

u(b
0 Tc Teic TyB @ Oc TH—=0  (9)
Neyse
which gives:
d(® o p) = H(u(b)) : TyB — [f.0z](b) = H*(T¢) (10)

A typical example of a family (5) is when C' is contained in a pro-
jective scheme X, B is the Hilbert scheme of X and ¢ is the universal
family. In this case TyB = H°(C, N¢yx) and the map (10) is induced
by the natural map of sheaves

Nejx — Té

Proposition 4.1 Assume that the fibres of ¢ have at most planar
double point singularities. Then f is finite, projective and curvilinear.

If r = h9(T}) then b € No(f)\Ny+1(f) and
Ty[N: ()] = ker[H (u(b))] (11)



Proof. Z is supported at the singular points of the fibres of ¢,
therefore it is a closed subscheme of X, projective over B, and having
a zero-dimensional intersection with every fibre. This implies that f
is finite and projective.

It suffices to prove curvilinearity locally above b and, since h is
etale, it suffices to prove it for f. Locally around a point z € Z,
¢ is the pullback of the semiuniversal deformation of a locally pla-
nar singularity. Since for such singularities taking the critical scheme
commutes with base change ([10], Lemma 4.7.5 p. 258), it follows that
Z is locally the pullback of one of the families described in Example
2.8, which are curvilinear.

Since [fOz](b) = HY(T}), then b € N, (f)\Ny+1(f) by definition
of the support of N,.(f). We are left to prove (11). Consider a tangent
vector 0 € T, B and the pullback of (6) over Spec(k[e]) via 6:

Z @k kle] ——C @k k[e] ——C

©o ®

Spec(kle) —"~ B
The usual deformation-theoretic interpretation of the exact sequence
(9) shows that a tangent vector 6 € T,B is in ker[H°(u(b))] if and only
if g is a first order deformation of C' which is trivial locally at every
singular point. In turn this is equivalent to the flatness of fy (see [13],
Lemma 3.3.7). But this means precisely that 6 is a tangent vector to

the stratum containing b of the flattening stratification of Oz over B.
By applying Lemma 2.5 we conclude. |

5 The stratification of the generic de-
formation - nodal case

Consider the simplest case, in which C' has nodes p1,...,ps and no
other singularities. Then
M, = Spec(k|[[t1, ..., ts]]), M = Spec(K[[t1, ... t5, 2541, - - Z5+m]]

tj is the parameter appearing in the versal deformation :U2+y2+tj =0
of the j-th node. The union of the coordinate hyperplanes t; ---t5 =0
is a normal crossing divisor defining a stratification

M= [ V (12)

r=0,...,0

10



where V" is the locally closed nonsingular subscheme supported on the
set of points which belong to exactly r coordinate hyperplanes. The
stratum V" has pure codimension 7 and is in turn a disjoint union:

V= I vou.....g

1<1<-<gr <0

where V(j1,...,Jr) is the locus of points where precisely the coordi-
nates ji, ..., j, vanish. Obviously V(ji,...,j,) is the linear subspace
V(tj,. .- t,).

The stratification (12) pulls back to M to an analogous one, de-
fined by the union of the coordinate hyperplanes t;---t5 = 0, and
having nonsingular strata:

M= ][ V) (13)
r=0,...,0
with

Vim) = [T VG- 0w (14)

1<1<-<r <0

The V" (7)’s and the V(ji,...,Jr)(7)’s are defined by the same condi-
tions as the V"’s and the V(j1,...,jr)’s, and share with them the same
properties of codimension and nonsingularity, being obtained from
them by taking the cartesian product with Spec(k|[[z541, - -, Zs1m]])-
The following statement is an obvious consequence of the previous
analysis (compare also with [4], Corollary (1.9)).

Theorem 5.1 Let Z C X be the critical scheme of the generic de-
formation w: X — M. Denote by ¢ : Z — M the restriction of .
Then:

(1) (13) is the flattening stratification of ¢.
(ii) Fach stratum V" () is nonsingular of pure codimension r.
(iii) Let R be a complete local k-algebra R with R/mp = k and let

k[[tl, R 7 157 A P ,Z§+m]] — R

be a local homomorphism. The induced morphism Spec(R) — M
factors through V(j1,...,3-)(m) if and only if the flat family of
deformations of C':

C Spec(R) x p X

| |

Spec(k) ——— Spec(R)

11



is locally trivial at the points pj,,...,pj,..

6 Families of nodal curves

In this section we will consider a flat projective family of curves ¢ :
C — B parametrized by a scheme B. We will assume that all fibres of
© have at most nodes as singularities. Let f : Z — B be the restriction
of v to its critical scheme Z C C. By Proposition 4.1 f is projective,
finite and curvilinear and we can consider the multiple-point schemes

of f.

Definition 6.1 For any r > 0 the r-th stratum Ny(f)\Nr+1(f) of the
multiple-point stratification of f is called the Severi variety of curves
with r nodes of the family ¢, and denoted by V. The stratification

v
-
is called the Severi stratification of B.
Lemma 6.2 Let \: Y — B be any morphism, and let:
Cy —=C
o e
y —2>B
be the induced cartesian diagram. Then
AT VL) =Y

foa all r > 0. In other words forming the Severi stratification com-
mutes with base change.

Proof. The lemma is a rephrasing of the fact that the critical
scheme and the multiple-point stratification both commute with base
change. O

The following result is a generalized version of Theorem 2.2 of [3].

Theorem 6.3 Let ¢ : C — B be a flat projective family of curves
having at most nodes as singularities, with B algebraic and integral.
Assume that b € B is a k-rational point such that the fibre C' = C(b)

12



has precisely § > 0 nodes and no other singularities, so that b € V:Z.
Then
codimp(V3) < 6

Assume moreover § > 1 and that one of the following conditions is
satisfied:

i) Vf; has pure codimension ¢ in B at b.

(ii) b is a nonsingular point of B and the map (10) is surjective.

Then there is a neighborhood U of b where V, is non-empty and
of pure codimension r for all 0 < r < §. Moreover in case (ii) all the
Severi varieties Vg, are nonsingular in a neighborhood of b € U. In
particular the general fibre of ¢ is nonsingular.

Proof. Consider the scheme T' = Spec(@ Bb) and the deformation
(7) induced by . Since multiple-point stratifications commute with
base change, the Severi stratification of ¢ pulls back to the Severi
stratification of @. Since T' — B is an etale neighborhood of b, the
hypothesis and the conclusion are valid on T if and only if they are
valid on B. Hence it suffices to prove the theorem for ¢. We have an
induced morphism

Po Qe T — Mlo

whose differential is (10). The Severi stratification [], V7 is obtained
by pulling back the stratification [[, V" of M), by ® o p. Since this

stratification is defined by the regular system of parameters t1,...,ts,
the Severi stratification is defined by
(©op)*(tr),. ... (o u)(ts) (15)

This implies in particular that Vg cannot have codimension larger
than 6. If Vg has codimension ¢ then (15) is a regular sequence, and
therefore each stratum V; is non-empty and of pure codimension 7.
This proves the theorem in case (i).

The hypothesis that the map (10) is surjective and that B is non-
singular at b implies that ® o p is smooth. It follows that (15) is a
regular sequence, and moreover that all the strata of the Severi strat-
ification are nonsingular. O

Definition 6.4 If Vf; is monsingular and of codimension § at a k-
rational point b we say that Vf, s regular at b; otherwise we say that

13



Vf; is superabundant at b. If an irreducible component V of Vf, 15
reqular at all its k-rational points then V is called regular. Otherwise
V is called superabundant.

With this terminology, we can say that Theorem 6.3(ii) gives a
criterion of local regularity for the Severi varieties V.

When one needs to apply Theorem 6.3, in practise it often happens
that one can construct a subvariety ¥ C V:Z of codimension § in B such
that the restriction py : Y xpC — Y is a family of reducible curves
having § nodes and not contained in a larger such family. In order to
apply Theorem 6.3 one would need to know that dim(Y’) = dim(Vg),
i.e. that the family (y is not contained in a larger family generically
parametrizing irreducible curves having the same number § of nodes.
This is guaranteed by the following useful result, classically called
splitting principle (“principio di spezzamento”).

Proposition 6.5 Let ¢ : C — B be a flat projective family of curves,
with B a mormal connected algebraic scheme. Suppose that all the
geometric fibres of p have precisely 6 nodes and no other singularities
for some § > 0. Then the number of irreducible components of the
geometric fibres of v is constant.

Proof. Since B is normal and all fibres of ¢ have the same geometric
genus we can apply [12], Theorem 1.3.2, to normalize simultaneously
the fibres of ¢. We obtain a commutative diagram:

N

where @ is a smooth projective family of curves and for each k-rational
point b € B the induced morphism C(b) — C(b) is the normalization.
The number of irreducible components of C(b) is the same as the num-
ber of connected components of C(b): thus it suffices to prove that this
is constant.

Since any two k-rational points of B can be joined by a chain
of algebraic integral curves, it suffices to prove what we need in the
case when B is an integral curve. We can even assume that B is
a nonsingular algebraic curve by pulling back to its normalization if

C C

14



necessary. Considering the Stein factorization of @:

Y
P

we see that the number of connected components of C(b) equals the
degree of the 0-dimensional scheme Z(b), and this is constant. In fact
Z = Spec(p+O5) and ¢, 05 is locally free because it is torsion free and
B is a nonsingular curve. O

h

N<—Q

B

In §7 we will give an application of Proposition 6.5 .

Example 6.6 (The Severi varieties of a linear system) This ex-
ample is the most basic one. Consider a globally generated line bundle
L on a projective connected surface S and the diagram

C ——= S x|L] (16)
e
L]
where |L| = IP(H°(L)) is the complete linear system defined by L,
C={(z,[C]) :xeC}
is the tautological family, 7 is the second projection. We have
Tiey(IL]) = H(C, N¢ys) = HY(C, Oc(C))
for any curve C in the linear system |L|. The map (10) is the natural:
H®(C,N¢ys) — HO(T})

so that its kernel, the space of first order locally trivial deformations
of C, is identified with TicyN,(f), where r = h(T%).

In general w has fibres with arbitrary planar singularities, so that,
in order to apply the previous theory, we will need to restrict m above a
conveniently chosen open subset B C |L| parametrizing curves with at
most nodes as singularities. We will denote by Vg the corresponding
Severi varieties; they are locally closed subschemes of |L| and will be
called Severi varieties of the linear system |L|. In the case S = IP?

15



and L = O(d) we obtain the classical Severi varieties of plane nodal
curves of degree d; they are denoted by Vg . It is well known that all
irreducible components of the VJ’s are regular (see [10]). The same is
true for the Severi varieties of globally generated L’s on a K3 surface
[11] and on an abelian surface [7].

7 Existence of nodal curves on K3 sur-
faces

As a simple application of Theorem 6.3 one can prove the existence of
nodal irreducible curves with any number of nodes between 0 and the
maximum, belonging to the primitive polarization on a general K3
surface.

Theorem 7.1 A general primitively polarized algebraic K3 surface
(X, L) of genus g > 2 contains irreducible nodal curves of geometric
genus g—0 for every 0 < § < g. Equivalently, Vg # 0 forall0 < 4§ <g.

Proof. We start from a Kummer surface Xy and a reducible nodal
curve Cy C X such that

Co=G+ S

where G, S are two nonsingular rational curves meeting transversally
at g + 1 points. The existence of Xy and Cj is explained for example
in [1], p. 366. Since CZ = 2g — 2, we have dim(|Cy|) = g. There
is a pair (X, L) and a projective morphism ¢ : X — U defining a
family of polarized K3 surfaces, with U nonsingular of dimension 19,
with isomorphic Kodaira-Spencer map at every point, and such that
(Xo0,0(Co)) = (X(up), L(ug)) for some point ug € U (see [1], Thm.
VIII, 7.3 and p. 366). Letting V' = IP(¢,L) and letting 7: V' — U be
the projection, we obtain a diagram

HX

¥ ¥

~—Q

47')[]

<

where 7 is smooth, dim(V) = ¢g + 19, and ¢ is a family of curves of
aritmetic genus g, such that, for every u € U, 771 (u) = |£(u)|, and

16



the restriction

C xy |L(u)| = X (u) x [L(u)| = [L(u)| xv &

|

|£(w)]

is the g-dimensional tautological family parametrized by |£(u)|. Let
vo € 7 Y(up) be such that C(vg) = Cp. Then, after restricting to a
neighborhood W of vg, we may assume that all fibres of ¢ have at
most nodes as singularities. Consider the Severi variety Vg,“'l c w.
By Lemma 6.2 we have:

7 (ug) N Vngl = Vf:?ulo)
which is zero-dimensional, and the reducible curve Cy does not ex-
tend to a surface X (u) for a general u € U because L£(u) is primitive.
Therefore, by applying Proposition 6.5 we deduce that Vg,“ has codi-
mension (at least and therefore equal to) g + 1 in W. By applying
Theorem 6.3, we deduce that Vg # () for all 0 < § < g. But since
]72 D Vg“, a general curve in sz, must be irreducible, having less
nodes that Cy and degenerating to Cp, which has two nonsingular ir-
reducible components. Moreover Vg has pure dimension 19 + g — ¢
(Theorem 6.3(ii)) and Vf, N|L(u)| = Vg(u) for u € U (Lemma 6.2). O

Note that the Severi varieties Vg whose existence is proved in The-
orem 7.1 are regular [11]. Therefore in particular Theorem 7.1 asserts
the existence of nodal rational curves and of a 1-dimensional family
of elliptic curves in |L|, thus recovering Theorem 23.1, p. 365, of [1].
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