
A smoothing criterion for families of curves

E. Sernesi

Abstract

We study some of the general principles underlying the geometry
of families of nodal curves. In particular: i) we prove a smoothing
criterion for nodal curves in a given family, ii) we derive from it the
existence of nodal curves on a general K3 surface according to Mum-
ford.

1 Introduction

This aim of this paper is to give a clear statement and proof of a
smoothing result for families of nodal curves which has been used,
and sometimes proved, in several special cases (see e.g. [3], [9] and [1],
§23) and which vox populi considers to be true more or less by obvious
general reasons. It states in precise terms that in a family of projective
curves with at most nodes as singularities the locus of δ-nodal curves,
if non-empty, has codimension ≤ δ and if equality holds then the family
contains smooth curves among its fibres (Theorem 6.3).

The reason for writing down a version of its proof is that the prin-
ciple underlying this result is very likely to hold in more general situ-
ations like, just to mention a few: a) for families of projective curves
with more complicated singularities than just nodes; b) for families of
surfaces with ordinary double points.

This expectation calls for a transparent explanation of why the
theorem holds, which could serve as a starting point for its general-
izations. This is what Theorem 6.3 hopefully does.

As an illustration of the applications of Theorem 6.3 we give a
proof of the well known (see [1], §23) existence of irreducible nodal
curves with any number of nodes between 0 and the maximum on a
general primitively polarized K3 surface.
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2 Multiple-point schemes

All schemes will be defined over k = k̄ of characteristic 0, and noethe-
rian.

Definition 2.1 A morphism f : X → Y is called curvilinear if the
differential

f∗Ω1
Y (x) → Ω1

X(x)

has corank ≤ 1 at every point x ∈ X.

A more manageable condition is given by the following:

Proposition 2.2 (i) A morphism f : X → Y is curvilinear if and
only if every point x ∈ X has an open neighborhood U such that the
restriction f|U factors through an embedding of U into the affine Y -line
A1
Y .
(ii) The property of being curvilinear for a morphism is invariant

under base change.

Proof. (i) See [6], Prop. 2.7, p. 12. (ii) follows immediately from
(i) or from the definition. 2

Let f : X → Y be a finite morphism. We can define the first
iteration f1 : X2 → X of f as follows:

X2 = IP (I∆), f1 : X2 → X ×Y X
p2−→ X

where ∆ ⊂ X×Y X is the diagonal. X2 is the so-called residual scheme
of ∆; its properties are described in [5], §2. Moreover we define:

Nr(f) = FittYr−1(f∗OX), Mr = f−1(Nr(f))

(see [10], p. 200). Nr(f) is called the r-th multiple point scheme of f .
We will need the following:

Proposition 2.3 If f is finite and curvilinear then f1 is also finite
and curvilinear and

Mr(f) = Nr−1(f1)

Proof. See [6], Lemma 3.9 and Lemma 3.10. 2
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Proposition 2.4 Assume that f : X → Y is finite and curvilinear,
local complete intersection of codimension 1. Assume moreover that
f is birational onto its image and that X and Y are local complete
intersections and pure-dimensional. Then:

(i) f1 : X2 → X is a local complete intersection of codimension 1,
finite and curvilinear, birational onto its image and X2 is a pure-
dimensional local complete intersection.

(ii) Each component of Mr(f) (resp. Nr(f)) has codimension at most
r − 1 in X (resp. at most r in Y ).

(iii) Assume moreover that Y is nonsingular. If Nr(f) 6= ∅ and has
pure codimension r in Y for some r ≥ 2, then Ns(f) 6= ∅ and
has pure codimension s in Y for all 1 ≤ s ≤ r − 1. Moreover:

Nr(f) ⊂ Nr−1(f)\Nr(f) ⊂ · · · ⊂ N1(f)\N2(f) (1)

Proof. (i) See [6], Lemma 3.10. (ii) See [6], Theorem 3.11.
(iii) by induction on r. The assumption that f is birational onto

its image implies that N1(f) has pure codimension 1 and that N2(f)
has pure codimension 2 in Y ([6] , Prop. 3.2(ii)). Therefore the
dimensionality assertion is true for r = 2. Assume r ≥ 3 and that
Nr(f) has pure codimension r in Y . Then Nr−1(f1) = Mr(f) has
pure codimension r − 1 in X. By part (i) we can apply the inductive
hypothesis to f1: it follows that Ms(f) = Ns−1(f1) 6= ∅ and has pure
codimension s − 1 in X for all 1 ≤ s − 1 ≤ r − 2. This implies that
Ns(f) 6= ∅ and has pure codimension s in Y for all such s. The chain
of inclusions (1) is a consequence of the fact that the non-emptyness
of all the Ns(f)’s is local around every point of Nr(f) because the
argument holds for the restriction of f above an arbitrary open subset
of Y . 2

Assume now that f : X → Y is finite and projective with X,Y
algebraic. Then we have two stratifications of Y . The first one is
defined by the multiple-point schemes of f :

M :
∐
r≥0

(Nr(f)\Nr+1(f)) → Y

The second one is the flattening stratification of the sheaf OX :

Φ :
∐
i≥0

Wi → Y
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Lemma 2.5 If f : X → Y is a finite and projective morphism of
algebraic schemes, then the stratifications M and Φ coincide.

Proof. Recalling that a finite morphism g : V → U is flat if and
only if g∗OV is locally free, the strata Wi of Φ are indexed by the
nonnegative integers, corresponding to the ranks of the locally free
sheaves f∗(OX|f−1(Wi)) = (f∗OX)|Wi

(see [10], Note 6 p. 205 for this
equality). On the other hand the stratification M is the one defined
by the sheaf f∗OX in the sense considered in [10], Theorem 4.2.7, p.
199, and its strata are also characterized by the fact that f∗OX has a
locally free restriction to each of them. Therefore M and Φ are equal.
2

Remark 2.6 Assume that f : X → Y is projective, finite and bira-
tional onto its image. Then Zariski’s Main Theorem implies that its
image f(X) = N1(f) cannot be normal unless f is an embedding, i.e.
unless Nr(f) = ∅ for all r ≥ 2. This means that, in presence of higher
multiple point schemes, we must expect that f(X) has non-normal
singularities.

Definition 2.7 Let q : C → B be a flat family of projective curves.
Assume that all the fibres of q are reduced curves having locally planar
singularities, and let T 1

q be the first relative cotangent sheaf of q. Then
T 1
q = OZ for a closed subscheme Z ⊂ C. We will call Z the critical

scheme of q.

It is well known and easy to show that, under the conditions of
the definition, Z is finite over B and commutes with base change
([10], Lemma 4.7.5 p. 258). It is supported on the locus where q is
not smooth. We will be interested in the multiple-point schemes of
f : Z → B, the restriction of q to Z.

Example 2.8 Planar double point singularities are those l.c.i. curve
singularities whose local ring Op has as completion:

Ôp ∼= k[[x, y]]/(y2 + xm), for some m ≥ 2

The semiuniversal deformation of Ôp is

k[[t1, . . . , tm−1]] // k[[t1,...,tm−1,x,y]]
(y2+xm+t1xm−2+···+tm−2x+tm−1) (2)
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We will denote by π : C → B the corresponding family of schemes, by
Z ⊂ C the critical scheme of π, and by f : Z → B the restriction of π.

The special cases of nodes, cusps and tacnodes are respectively:

Ôp ∼=


k[[x, y]]/(x2 + y2) (node)
k[[x, y]]/(y2 + x3) (cusp)
k[[x, y]]/(y2 + x4) (tacnode)

(3)

The corresponding semiuniversal deformations are:

k[[t]] → k[[t, x, y]]/(x2 + y2 + t) (node)

k[[u1, u2]] → k[[u1, u2, x, y]]/(y2 + x3 + u1x+ u2) (cusp)

k[[v1, v2, v3]] → k[[v1, v2, v3, x, y]]/(y2 + x4 + v1x
2 + v2x+ v3) (tacnode)

For the deformation (2) of the general planar double point, Z is
defined by:

k[[t1, . . . , tm−1, x]]
(xm + t1xm−2 + · · ·+ tm−2x+ tm−1,mxm−1 + (m− 2)t1xm−3 + · · ·+ tm−2)

In the special cases Z is defined by the following family:

k[[t, x, y]]/(x2 + y2 + t, x, y) ∼= k (node)

k[[u1, u2, x]]/(x3 + u1x+ u2, 3x2 + u1) (cusp)

k[[v1, v2, v3, x]]/(x4 + v1x
2 + v2x+ v3, 4x3 + 2v1x+ v2) (tacnode)

All these are clearly finite and curvilinear and moreover Z is nonsin-
gular of relative dimension −1 over B.

3 The generic deformation of a curve

Let C be a connected, reduced projective local complete intersection
(l.c.i.) curve of arithmetic genus pa(C). Then we have:

Ext2(Ω1
C ,OC) = 0

and DefC(k[ε]) = Ext1(Ω1
C ,OC) so that DefC is unobstructed and C

has a versal formal deformation

X // Specf (k[[z1, . . . , zn]])
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where

n = dimk

[
Ext1(Ω1

C ,OC)
]

= 3pa(C)− 3 + h0(TC)

and where TC = Hom(Ω1
C ,OC) (see [10]). By Grothendieck’s effectiv-

ity theorem ([10], Theorem 2.5.13, p. 82) X is the formal completion
of a unique scheme projective and flat over M := Spec(k[[z1, . . . , zn]]),
which we will also denote by X . We thus obtain a deformation

C //

��

X
π

��
Spec(k) //M

which we call the generic deformation of C, conforming to the termi-
nology introduced in [8], p. 64.

Let p ∈ C be a closed singular point. Since Ext2(ΩOp/k,Op) = 0,
the local ring Op = OC,p has a semiuniversal formal deformation Õp
which is an algebra over the smooth parameter algebra

Ap = k[[t1, . . . , tr(p)]]

The number of parameters is equal to

r(p) := dimk

[
Ext1(ΩOp/k,Op)

]
because Ext1(ΩOp/k,Op) = T 1

Op
is the first cotangent space of Op,

which is naturally identified with the space of first order deformations
of Op. We have an obvious restriction morphism of functors

DefC → DefOp

which corresponds, by semiuniversality, to a homomorphism

ψp : Ap → k[[z1, . . . , zn]]

inducing an isomorphism

OX ,p ∼= Õp ⊗Ap k[[z1, . . . , zn]]

Putting all these local informations together we obtain a morphism of
functors:

Ψ : DefC →
∏
p∈C

DefOp
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which corresponds to a morphism we will denote with the same letter:

Ψ :=
∏
p∈C

Spec(ψp) : M→Mlo = Spec(k[[t1, . . . , tr]]) = Spec(⊗̂pAp)

(4)
where

r = h0(C,Ext1(Ω1
C ,OC)) = h0(T 1

C) =
∑
p∈C

r(p)

Lemma 3.1 The morphism Ψ is smooth. Therefore, up to a change
of variables, it is dual to an inclusion

k[[t1, . . . , tr]]
� � // k[[t1, . . . , tr, zr+1, . . . , zr+m]]

Proof. Because of the smoothness of its domain, the smoothness of
Ψ is equivalent to the surjectivity of its differential. But

dΨ : Ext1(Ω1
C ,OC) → H0(C,Ext1(Ω1

C ,OC))

is a hedge-homomorphism in the spectral sequence for Ext’s, and it is
surjective because H2(C,Ext0(Ω1

C ,OC)) = 0. 2

Remark 3.2 Lemma 3.1 is Proposition (1.5) of [4]. It holds for any
reduced curve, without assuming that C is a l.c.i.. For obvious reasons
the number m of extra variables zj appearing in the statement of the
lemma is

m = dim(ker(dΨ)) = h1(C,Ext0(Ω1
C ,OC)) = h1(C, TC)

= 3pa(C)− 3 + h0(TC)− h0(T 1
C)

They correspond to the locus t1 = · · · = tr = 0 in M, parametrizing
locally trivial deformations of C.

4 Local properties of families of curves

Consider a flat projective family of deformations of C:

C //

��

C
ϕ

��
Spec(k) b // B

(5)
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Denote by Z ⊂ C the critical scheme, and by f : Z → B the restriction
of ϕ:

Z
� � //

f   A
AA

AA
AA

A C
ϕ

��
B

(6)

Let Ôb the completion of the local ring OB,b, let T := Spec(Ôb)
and denote by b the closed point of T too. Pulling back the family
(5) by the morphism h : T → B induced by OB,b → Ôb we obtain a
family

C //

��

C̃
ϕ̃

��

T ×B C

Spec(k) b // T

(7)

whose fibre over b is again C. Let

Z̃
� � //

f̃ ��@
@@

@@
@@

C̃
ϕ̃

��
T

be the critical scheme of ϕ̃.
By versality there is a morphism µ : T →M with uniquely deter-

mined differential such that C̃ = T ×M X , so that we also have the
composition:

Ψ ◦ µ : T
µ //M Ψ //Mlo

Infinitesimally µ and Ψ ◦ µ can be described as follows. We have
an exact sequence of locally free sheaves on C:

0 → ϕ∗Ω1
B → Ω1

C → Ω1
C/B → 0

(see [10], Theorem D.2.8) which dualizes as:

0 // TC/B // TC // ϕ∗TB
u // Ext1C(Ω

1
C/B,OC) // 0

OZ

(8)
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and this gives a global description of T 1
ϕ = OZ as the structure sheaf of

the critical scheme. If we push u down to B we obtain a factorization:

TB
ϕ∗(u) //

%%LLLLLLLLLLLL f∗OZ = f∗Ext
1
C(Ω

1
C/B,OC)

Ext1ϕ(Ω1
C/B,OC)

44jjjjjjjjjjjjjjj

and at the point b ∈ B this gives:

TbB
d(Φ◦µ) //

dµ

&&LLLLLLLLLLL [f∗OZ ](b) = H0(T 1
C)

Ext1(Ω1
C ,OC)

55kkkkkkkkkkkkkk

Here we used the fact that the critical scheme commutes with base
change for a l.c.i. morphism (generalizing [10], Lemma 4.7.5 p. 258).
The right diagonal arrows are edge homomorphisms of the respective
spectral sequences. Here we are especially interested in the differential
of Φ◦µ, so we will not insist in investigating dµ. The map d(Φ◦µ) can
be analyzed by means of the restriction of (8) to the fibre C = C(b):

0 // TC // TC|C // TbB ⊗k OC
u(b) // T 1

C
// 0

NC/C

(9)

which gives:

d(Φ ◦ µ) = H0(u(b)) : TbB // [f∗OZ ](b) = H0(T 1
C) (10)

A typical example of a family (5) is when C is contained in a pro-
jective scheme X, B is the Hilbert scheme of X and ϕ is the universal
family. In this case TbB = H0(C,NC/X) and the map (10) is induced
by the natural map of sheaves

NC/X → T 1
C

Proposition 4.1 Assume that the fibres of ϕ have at most planar
double point singularities. Then f is finite, projective and curvilinear.
If r = h0(T 1

C) then b ∈ Nr(f)\Nr+1(f) and

Tb[Nr(f)] = ker[H0(u(b))] (11)
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Proof. Z is supported at the singular points of the fibres of ϕ,
therefore it is a closed subscheme of X , projective over B, and having
a zero-dimensional intersection with every fibre. This implies that f
is finite and projective.

It suffices to prove curvilinearity locally above b and, since h is
etale, it suffices to prove it for f̃ . Locally around a point z ∈ Z̃,
ϕ̃ is the pullback of the semiuniversal deformation of a locally pla-
nar singularity. Since for such singularities taking the critical scheme
commutes with base change ([10], Lemma 4.7.5 p. 258), it follows that
Z is locally the pullback of one of the families described in Example
2.8, which are curvilinear.

Since [f∗OZ ](b) = H0(T 1
C), then b ∈ Nr(f)\Nr+1(f) by definition

of the support of Nr(f). We are left to prove (11). Consider a tangent
vector θ ∈ TbB and the pullback of (6) over Spec(k[ε]) via θ:

Z ⊗k k[ε] � � //

fθ

''NNNNNNNNNNN
C ⊗k k[ε] //

ϕθ

��

C
ϕ

��
Spec(k[ε]) θ // B

The usual deformation-theoretic interpretation of the exact sequence
(9) shows that a tangent vector θ ∈ TbB is in ker[H0(u(b))] if and only
if ϕθ is a first order deformation of C which is trivial locally at every
singular point. In turn this is equivalent to the flatness of fθ (see [13],
Lemma 3.3.7). But this means precisely that θ is a tangent vector to
the stratum containing b of the flattening stratification of OZ over B.
By applying Lemma 2.5 we conclude. 2

5 The stratification of the generic de-

formation - nodal case

Consider the simplest case, in which C has nodes p1, . . . , pδ and no
other singularities. Then

Mlo = Spec(k[[t1, . . . , tδ]]), M = Spec(k[[t1, . . . , tδ, zδ+1, . . . , zδ+m]]

tj is the parameter appearing in the versal deformation x2+y2+tj = 0
of the j-th node. The union of the coordinate hyperplanes t1 · · · tδ = 0
is a normal crossing divisor defining a stratification

Mlo =
∐

r=0,...,δ

Vr (12)
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where Vr is the locally closed nonsingular subscheme supported on the
set of points which belong to exactly r coordinate hyperplanes. The
stratum Vr has pure codimension r and is in turn a disjoint union:

Vr =
∐

1≤j1<···<jr≤δ
V(j1, . . . , jr)

where V(j1, . . . , jr) is the locus of points where precisely the coordi-
nates j1, . . . , jr vanish. Obviously V(j1, . . . , jr) is the linear subspace
V (tj1 , . . . , tjr).

The stratification (12) pulls back to M to an analogous one, de-
fined by the union of the coordinate hyperplanes t1 · · · tδ = 0, and
having nonsingular strata:

M =
∐

r=0,...,δ

Vr(π) (13)

with
Vr(π) =

∐
1≤j1<···<jr≤δ

V(j1, . . . , jr)(π) (14)

The Vr(π)’s and the V(j1, . . . , jr)(π)’s are defined by the same condi-
tions as the Vr’s and the V(j1, . . . , jr)’s, and share with them the same
properties of codimension and nonsingularity, being obtained from
them by taking the cartesian product with Spec(k[[zδ+1, . . . , zδ+m]]).
The following statement is an obvious consequence of the previous
analysis (compare also with [4], Corollary (1.9)).

Theorem 5.1 Let Z ⊂ X be the critical scheme of the generic de-
formation π : X → M. Denote by φ : Z → M the restriction of π.
Then:

(i) (13) is the flattening stratification of φ.

(ii) Each stratum Vr(π) is nonsingular of pure codimension r.

(iii) Let R be a complete local k-algebra R with R/mR
∼= k and let

k[[t1, . . . , tδ, zδ+1, . . . , zδ+m]] → R

be a local homomorphism. The induced morphism Spec(R) →M
factors through V(j1, . . . , jr)(π) if and only if the flat family of
deformations of C:

C //

��

Spec(R)×M X

��
Spec(k) // Spec(R)
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is locally trivial at the points pj1 , . . . , pjr .

6 Families of nodal curves

In this section we will consider a flat projective family of curves ϕ :
C → B parametrized by a scheme B. We will assume that all fibres of
ϕ have at most nodes as singularities. Let f : Z → B be the restriction
of ϕ to its critical scheme Z ⊂ C. By Proposition 4.1 f is projective,
finite and curvilinear and we can consider the multiple-point schemes
of f .

Definition 6.1 For any r ≥ 0 the r-th stratum Nr(f)\Nr+1(f) of the
multiple-point stratification of f is called the Severi variety of curves
with r nodes of the family ϕ, and denoted by Vrϕ. The stratification∐

r

Vrϕ

is called the Severi stratification of B.

Lemma 6.2 Let λ : Y → B be any morphism, and let:

CY //

ψ

��

C
ϕ

��
Y

λ // B

be the induced cartesian diagram. Then

λ−1(Vrϕ) = Vrψ

foa all r ≥ 0. In other words forming the Severi stratification com-
mutes with base change.

Proof. The lemma is a rephrasing of the fact that the critical
scheme and the multiple-point stratification both commute with base
change. 2

The following result is a generalized version of Theorem 2.2 of [3].

Theorem 6.3 Let ϕ : C → B be a flat projective family of curves
having at most nodes as singularities, with B algebraic and integral.
Assume that b ∈ B is a k-rational point such that the fibre C = C(b)
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has precisely δ ≥ 0 nodes and no other singularities, so that b ∈ Vδϕ.
Then

codimB(Vδϕ) ≤ δ

Assume moreover δ ≥ 1 and that one of the following conditions is
satisfied:

(i) Vδϕ has pure codimension δ in B at b.

(ii) b is a nonsingular point of B and the map (10) is surjective.

Then there is a neighborhood U of b where Vrϕ is non-empty and
of pure codimension r for all 0 ≤ r ≤ δ. Moreover in case (ii) all the
Severi varieties Vrϕ are nonsingular in a neighborhood of b ∈ U . In
particular the general fibre of ϕ is nonsingular.

Proof. Consider the scheme T = Spec(ÔB,b) and the deformation
(7) induced by ϕ. Since multiple-point stratifications commute with
base change, the Severi stratification of ϕ pulls back to the Severi
stratification of ϕ̃. Since T → B is an etale neighborhood of b, the
hypothesis and the conclusion are valid on T if and only if they are
valid on B. Hence it suffices to prove the theorem for ϕ̃. We have an
induced morphism

Φ ◦ µ : T →Mlo

whose differential is (10). The Severi stratification
∐
r Vrϕ̃ is obtained

by pulling back the stratification
∐
r Vr of Mlo by Φ ◦ µ. Since this

stratification is defined by the regular system of parameters t1, . . . , tδ,
the Severi stratification is defined by

(Φ ◦ µ)∗(t1), . . . , (Φ ◦ µ)∗(tδ) (15)

This implies in particular that Vδϕ̃ cannot have codimension larger
than δ. If Vδϕ̃ has codimension δ then (15) is a regular sequence, and
therefore each stratum Vrϕ̃ is non-empty and of pure codimension r.
This proves the theorem in case (i).

The hypothesis that the map (10) is surjective and that B is non-
singular at b implies that Φ ◦ µ is smooth. It follows that (15) is a
regular sequence, and moreover that all the strata of the Severi strat-
ification are nonsingular. 2

Definition 6.4 If Vδϕ is nonsingular and of codimension δ at a k-
rational point b we say that Vδϕ is regular at b; otherwise we say that
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Vδϕ is superabundant at b. If an irreducible component V of Vδϕ is
regular at all its k-rational points then V is called regular. Otherwise
V is called superabundant.

With this terminology, we can say that Theorem 6.3(ii) gives a
criterion of local regularity for the Severi varieties Vrϕ.

When one needs to apply Theorem 6.3, in practise it often happens
that one can construct a subvariety Y ⊂ Vδϕ of codimension δ in B such
that the restriction ϕY : Y ×B C → Y is a family of reducible curves
having δ nodes and not contained in a larger such family. In order to
apply Theorem 6.3 one would need to know that dim(Y ) = dim(Vδϕ),
i.e. that the family ϕY is not contained in a larger family generically
parametrizing irreducible curves having the same number δ of nodes.
This is guaranteed by the following useful result, classically called
splitting principle (“principio di spezzamento”).

Proposition 6.5 Let ϕ : C → B be a flat projective family of curves,
with B a normal connected algebraic scheme. Suppose that all the
geometric fibres of ϕ have precisely δ nodes and no other singularities
for some δ ≥ 0. Then the number of irreducible components of the
geometric fibres of ϕ is constant.

Proof. Since B is normal and all fibres of ϕ have the same geometric
genus we can apply [12], Theorem 1.3.2, to normalize simultaneously
the fibres of ϕ. We obtain a commutative diagram:

C //

ϕ̄ ��>
>>

>>
>>

> C

ϕ
����

��
��

��

B

where ϕ̄ is a smooth projective family of curves and for each k-rational
point b ∈ B the induced morphism C(b) → C(b) is the normalization.
The number of irreducible components of C(b) is the same as the num-
ber of connected components of C(b): thus it suffices to prove that this
is constant.

Since any two k-rational points of B can be joined by a chain
of algebraic integral curves, it suffices to prove what we need in the
case when B is an integral curve. We can even assume that B is
a nonsingular algebraic curve by pulling back to its normalization if
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necessary. Considering the Stein factorization of ϕ̄:

C
ϕ̄

��?
??

??
??

?

h
��
Z

ψ
// B

we see that the number of connected components of C(b) equals the
degree of the 0-dimensional scheme Z(b), and this is constant. In fact
Z = Spec(ϕ̄∗OC) and ϕ̄∗OC is locally free because it is torsion free and
B is a nonsingular curve. 2

In §7 we will give an application of Proposition 6.5 .

Example 6.6 (The Severi varieties of a linear system) This ex-
ample is the most basic one. Consider a globally generated line bundle
L on a projective connected surface S and the diagram

C

��

� � //

π

��

S × |L|

{{ww
ww

ww
ww

w

|L|

(16)

where |L| = IP (H0(L)) is the complete linear system defined by L,

C = {(x, [C]) : x ∈ C}

is the tautological family, π is the second projection. We have

T[C](|L|) = H0(C,NC/S) = H0(C,OC(C))

for any curve C in the linear system |L|. The map (10) is the natural:

H0(C,NC/S) → H0(T 1
C)

so that its kernel, the space of first order locally trivial deformations
of C, is identified with T[C]Nr(f), where r = h0(T 1

C).
In general π has fibres with arbitrary planar singularities, so that,

in order to apply the previous theory, we will need to restrict π above a
conveniently chosen open subset B ⊂ |L| parametrizing curves with at
most nodes as singularities. We will denote by VδL the corresponding
Severi varieties; they are locally closed subschemes of |L| and will be
called Severi varieties of the linear system |L|. In the case S = IP 2

15



and L = O(d) we obtain the classical Severi varieties of plane nodal
curves of degree d; they are denoted by Vδd . It is well known that all
irreducible components of the Vδd ’s are regular (see [10]). The same is
true for the Severi varieties of globally generated L’s on a K3 surface
[11] and on an abelian surface [7].

7 Existence of nodal curves on K3 sur-

faces

As a simple application of Theorem 6.3 one can prove the existence of
nodal irreducible curves with any number of nodes between 0 and the
maximum, belonging to the primitive polarization on a general K3
surface.

Theorem 7.1 A general primitively polarized algebraic K3 surface
(X,L) of genus g ≥ 2 contains irreducible nodal curves of geometric
genus g−δ for every 0 ≤ δ ≤ g. Equivalently, VδL 6= ∅ for all 0 ≤ δ ≤ g.

Proof. We start from a Kummer surface X0 and a reducible nodal
curve C0 ⊂ X0 such that

C0 = G+ S

where G,S are two nonsingular rational curves meeting transversally
at g + 1 points. The existence of X0 and C0 is explained for example
in [1], p. 366. Since C2

0 = 2g − 2, we have dim(|C0|) = g. There
is a pair (X ,L) and a projective morphism ψ : X → U defining a
family of polarized K3 surfaces, with U nonsingular of dimension 19,
with isomorphic Kodaira-Spencer map at every point, and such that
(X0,O(C0)) ∼= (X (u0),L(u0)) for some point u0 ∈ U (see [1], Thm.
VIII, 7.3 and p. 366). Letting V = IP (ψ∗L) and letting τ : V → U be
the projection, we obtain a diagram

C //

ϕ

��

X
ψ
��

V
τ // U

where τ is smooth, dim(V ) = g + 19, and ϕ is a family of curves of
aritmetic genus g, such that, for every u ∈ U , τ−1(u) = |L(u)|, and
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the restriction

C ×V |L(u)| �
� //

��

X (u)× |L(u)| = |L(u)| ×U X

|L(u)|

is the g-dimensional tautological family parametrized by |L(u)|. Let
v0 ∈ τ−1(u0) be such that C(v0) = C0. Then, after restricting to a
neighborhood W of v0, we may assume that all fibres of ϕ have at
most nodes as singularities. Consider the Severi variety Vg+1

ϕ ⊂ W .
By Lemma 6.2 we have:

τ−1(u0) ∩ Vg+1
ϕ = Vg+1

L(u0)

which is zero-dimensional, and the reducible curve C0 does not ex-
tend to a surface X(u) for a general u ∈ U because L(u) is primitive.
Therefore, by applying Proposition 6.5 we deduce that Vg+1

ϕ has codi-
mension (at least and therefore equal to) g + 1 in W . By applying
Theorem 6.3, we deduce that Vδϕ 6= ∅ for all 0 ≤ δ ≤ g. But since
Vδϕ ⊃ V g+1

ϕ , a general curve in Vδϕ must be irreducible, having less
nodes that C0 and degenerating to C0, which has two nonsingular ir-
reducible components. Moreover Vδϕ has pure dimension 19 + g − δ

(Theorem 6.3(ii)) and Vδϕ ∩ |L(u)| = VδL(u) for u ∈ U (Lemma 6.2). 2

Note that the Severi varieties VδL whose existence is proved in The-
orem 7.1 are regular [11]. Therefore in particular Theorem 7.1 asserts
the existence of nodal rational curves and of a 1-dimensional family
of elliptic curves in |L|, thus recovering Theorem 23.1, p. 365, of [1].
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